Skip to main content

MACE Silicon Nanostructures

  • Reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

Metal-assisted chemical etching (MACE) of silicon is receiving much interest as a controllable method of generating silicon nanostructures of varied forms, including porous silicon. The various morphologies, etch chemistry variables (e.g., metal catalysts, substrate type, electrolyte temperature), and potential applications of the resulting nanostructures are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asoh H, Arai F, Ono S (2009) Effect of noble metal catalyst species on the morphology of macroporous silicon formed by metal-assisted chemical etching. Electrochim Acta 54:5142–5148

    Article  Google Scholar 

  • Bai F et al. (2012) One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature. J Solid State Chem

    Google Scholar 

  • Balasundaram K et al (2012) Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires. Nanotechnology 23:305304

    Article  Google Scholar 

  • Chartier C, Bastide S, Lévy-Clément C (2008) Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim Acta 53:5509–5516

    Article  Google Scholar 

  • Chen C-Y, Wu C-S, Chou C-J, Yen T-J (2008) Morphological control of single-crystalline silicon nanowire arrays near room temperature. Adv Mater 20:3811–3815

    Article  Google Scholar 

  • Chen H et al (2010a) Lightly doped single crystalline porous Si nanowires with improved optical and electrical properties. J Mater Chem 21:801–805

    Article  Google Scholar 

  • Chen H, Wang H, Zhang X-H, Lee C-S, Lee S-T (2010b) Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles. Nano Lett 10:864–868

    Article  Google Scholar 

  • Chiappini C, Liu X, Fakhoury JR, Ferrari M (2010) Biodegradable porous silicon barcode nanowires with defined geometry. Adv Funct Mater 20:2231–2239

    Article  Google Scholar 

  • Dimova-Malinovska D, Sendova-Vassileva M, Tzenov N, Kamenova M (1997) Preparation of thin porous silicon layers by stain etching. Thin Solid Films 297:9–12

    Article  Google Scholar 

  • Douani R, Si-Larbi K, Hadjersi T, Megouda N, Manseri A (2008) Silver-assisted electroless etching mechanism of silicon. Phys Stat Sol (a) 205:225–230

    Article  Google Scholar 

  • Dudley ME, Kolasinski KW (2009) Stain etching with Fe(III), V(V), and Ce(IV) to form microporous silicon. Electrochem Solid-State Lett 12:D22

    Article  Google Scholar 

  • Geyer N et al (2012) Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts. J Phys Chem C 116:13446–13451

    Article  Google Scholar 

  • Harada Y, Li X, Bohn PW (2001) Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays. J Am Chem Soc 123:8709–8717

    Google Scholar 

  • Hochbaum AI, Gargas D, Hwang YJ, Yang P (2009) Single crystalline mesoporous silicon nanowires. Nano Lett 9:3550–3554

    Article  Google Scholar 

  • Huang Z et al (2010a) Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. J Phys Chem C 114:10683–10690

    Article  Google Scholar 

  • Huang Z, Geyer N, Werner P, de Boor J, Gösele U (2010b) Metal-assisted chemical etching of silicon: a review. Adv Mater 23:285–308

    Article  Google Scholar 

  • Kato Y, Adachi S (2011) Synthesis of Si nanowire arrays in AgO/HF solution and their optical and wettability properties. J Electrochem Soc 158:K157–K163

    Article  Google Scholar 

  • Kato S et al (2013) Optical assessment of silicon nanowire arrays fabricated by metal-assisted chemical etching. Nanoscale Res Lett 8:216

    Article  Google Scholar 

  • Kim J et al (2011a) Au/Ag bilayered metal mesh as a Si etching catalyst for controlled fabrication of Si nanowires. ACS Nano 5:3222–3229

    Article  Google Scholar 

  • Kim J, Rhu H, Lee W (2011b) A continuous process for Si nanowires with prescribed lengths. J Mater Chem 21:15889–15894

    Article  Google Scholar 

  • Kim Y, Tsao A, Lee DH, Maboudian R (2012) Solvent-induced formation of unidirectionally curved and tilted Si nanowires during metal-assisted chemical etching. J Mater Chem C 1:220–224

    Article  Google Scholar 

  • Kiraly B, Yang S, Huang TJ (2013) Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering. Nanotechnology 24:245704

    Article  Google Scholar 

  • Kolasinski KW (2005) Silicon nanostructures from electroless electrochemical etching. Curr Opin Solid State Mater Sci 9:73–83

    Article  Google Scholar 

  • Lee C-L, Tsujino K, Kanda Y, Ikeda S, Matsumura M (2008) Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts. J Mater Chem 18:1015

    Article  Google Scholar 

  • Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H[sub 2]O[sub 2] produces porous silicon. Appl Phys Lett 77:2572–2574

    Article  Google Scholar 

  • Li X et al (2013) Upgraded silicon nanowires by metal-assisted etching of metallurgical silicon: a new route to nanostructured solar-grade silicon. Adv Mater 25:3187–3191

    Article  Google Scholar 

  • Lin L, Guo S, Sun X, Feng J, Wang Y (2010) Synthesis and photoluminescence properties of porous silicon nanowire arrays. Nanoscale Res Lett 5:1822–1828

    Article  Google Scholar 

  • Loni A et al (2011) Extremely high surface area metallurgical-grade porous silicon powder prepared by metal-assisted etching. Electrochem Solid-State Lett 14:K25

    Article  Google Scholar 

  • Megouda N, Hadjersi T, Piret G, Boukherroub R, Elkechai O (2009) Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution. Appl Surf Sci 255:6210–6216

    Article  Google Scholar 

  • Mikhael B et al (2011) New silicon architectures by gold-assisted chemical etching. ACS Appl Mater Interfaces 3:3866–3873

    Article  Google Scholar 

  • Nahidi M, Kolasinski KW (2006) Effects of stain etchant composition on the photoluminescence and morphology of porous silicon. J Electrochem Soc 153:C19

    Article  Google Scholar 

  • Najar A, Charrier J, Pirasteh P, Sougrat R (2012) Ultra-low reflection porous silicon nanowires for solar cell applications. Opt Expr, 20:16861–16870

    Google Scholar 

  • Peng K, Zhu J (2003) Simultaneous gold deposition and formation of silicon nanowire arrays. J Electroanal Chem 558:35–39

    Article  Google Scholar 

  • Peng K, Zhu J (2004) Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochimica Acta, 49:2563–2568

    Google Scholar 

  • Peng K, Yan Y, Gao S, Zhu J (2003) Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv Funct Mater 13:127–132

    Google Scholar 

  • Peng K et al (2005) Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew Chem Int Ed 44:2737–2742

    Article  Google Scholar 

  • Peng K et al (2006a) Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem A Eur J 12:7942–7947

    Article  Google Scholar 

  • Peng KQ et al (2006b) Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater 16:387–394

    Article  Google Scholar 

  • Qu Y et al (2010) Photocatalytic properties of porous silicon nanowires. J Mater Chem 20:3590

    Article  Google Scholar 

  • Qu Y, Zhou H, Duan X (2011) Porous silicon nanowires. Nanoscale 3:4060–4068

    Article  Google Scholar 

  • Sivakov V, Voigt F, Hoffmann B, Gerliz V, Christiansen S Wet-chemically etched silicon nanowire architectures: formation and properties, Nanowires Fundamental Resources, doi:10.577216736

    Google Scholar 

  • Sivakov V et al (2009) Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9:1549–1554

    Article  Google Scholar 

  • Sivakov VA et al (2010) Realization of vertical and zigzag single crystalline silicon nanowire architectures. J Phys Chem C 114:3798–3803

    Article  Google Scholar 

  • Sun X et al (2011) Fabrication and characterization of polycrystalline silicon nanowires with silver-assistance by electroless deposition. Appl Surf Sci 257:3861–3866

    Article  Google Scholar 

  • Tsujino K, Matsumura M (2005) Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst. Electrochem Solid-State Lett 8:C193

    Article  Google Scholar 

  • Tsujino K, Matsumura M (2007) Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochim Acta 53:28–34

    Article  Google Scholar 

  • Voigt F et al (2011) Photoluminescence of samples produced by electroless wet chemical etching: between silicon nanowires and porous structures. Phys Status Solidi A 208:893–899

    Article  Google Scholar 

  • Wang XL, Han WQ (2010) Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. ACS Appl Mater Interfaces 2:3709–3713

    Google Scholar 

  • Wang F-Y et al (2011) Highly active and enhanced photocatalytic silicon nanowire arrays. Nanoscale 3:3269–3276

    Article  Google Scholar 

  • Wang W, Li D, Tian M, Lee Y-C, Yang R (2012) Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions. Appl Surf Sci 258:8649–8655

    Article  Google Scholar 

  • Weisse JM et al. Thermal conductivity in porous silicon nanowire arrays. Nanoscale Res Lett 7:554

    Google Scholar 

  • Weisse JM, Lee CH, Kim DR, Zheng X (2012) Fabrication of flexible and vertical silicon nanowire electronics. Nano Lett 12:3339–3343

    Article  Google Scholar 

  • Wu S-L, Zhang T, Zheng R-T, Cheng G-A (2012a) Facile morphological control of single-crystalline silicon nanowires. Appl Surf Sci 258:9792–9799

    Article  Google Scholar 

  • Wu S-L, Zhang T, Zheng R-T, Cheng G-A (2012b) Photoelectrochemical responses of silicon nanowire arrays for light detection. Chem Phys Lett 538:102–107

    Article  Google Scholar 

  • Yae S, Kawamoto Y, Tanaka H, Fukumuro N, Matsuda H (2003) Formation of porous silicon by metal particle enhanced chemical etching in HF solution and its application for efficient solar cells. Electrochem Commun 5:632–636

    Article  Google Scholar 

  • Yae S, Tanaka H, Kobayashi T, Fukumuro N, Matsuda H (2005) Porous silicon formation by HF chemical etching for antireflection of solar cells. Phys Stat Sol (c) 2:3476–3480

    Article  Google Scholar 

  • Yae S et al (2007) Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions. Electrochim Acta 53:35–41

    Article  Google Scholar 

  • Yeo C, Kim JB, Song YM, Lee YT (2013) Antireflective silicon nanostructures with hydrophobicity by metal-assisted chemical etching for solar cell applications. Nanoscale Res Lett 8:159

    Article  Google Scholar 

  • Zhang ML et al (2008) Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J Phys Chem C 112:4444–4450

    Article  Google Scholar 

  • Zhang C et al (2009) Electrically conductive and optically active porous silicon nanowires. Nano Lett 9:4539–4543

    Article  Google Scholar 

  • Zhang C et al (2013) Enhanced photoluminescence from porous silicon nanowire arrays. Nanoscale Res Lett 8:277

    Article  Google Scholar 

  • Zhong X, Qu Y, Lin Y-C, Liao L, Duan X (2011) Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl Mater Interfaces 3:261–270

    Article  Google Scholar 

  • Zhu M et al (2011) Structural and optical characteristics of silicon nanowires fabricated by wet chemical etching. Chem Phys Lett 511:106–109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Chiappini .

Editor information

Editors and Affiliations

Additional information

Kim et al. (2011), Geyer et al. (2012), Chiappini et al. (2010), Chartier et al. (2008), Li and Bohn (2000), Dudley and Kolasinski (2009), Peng et al. (2003, 2006), Yae et al. (2007) of particular interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Chiappini, C. (2014). MACE Silicon Nanostructures. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_17

Download citation

Publish with us

Policies and ethics