Skip to main content

Porous Silicon Multilayers and Superlattices

  • Reference work entry
  • First Online:

Abstract

Electrochemical etching of silicon can generate porous silicon where porosity is modulated with depth. The overall fabrication technique, experimental tips for improving uniformity, typical porosity profiles, and methods of patterning and stabilization are reviewed. Due to its ease of fabrication, such multilayers have been extensively fabricated and applied in different fields, such as photonics, phononics, sensing etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal V, del Rio JA (2003) Tailoring the photonic band gap of a porous silicon dielectric mirror. Appl Phys Lett 82:1512

    Article  Google Scholar 

  • Becerra D, Agarwal V (2009) Surface and interface analysis of nanostructured porous silicon layers fabricated at low temperatures from highly doped silicon substrate: application in optical filters. J Porous Mater 16:191–195

    Article  Google Scholar 

  • Berger MG, Dieker C, Thönissen M, Vescan L, Lüth H, Munder H, Wernke M, Grosse P (1994) Porosity superlattices: a new class of Si heterostructures. J Phys D Appl Phys 27:1333

    Article  Google Scholar 

  • Berger MG, Arens-Fischer R, Thoenissen M, Krueger M, Billat S, Lueth H, Hilbrich S, Theiss W, Grosse P (1997) Dielectric filters made of PS: advanced performance by oxidation and new layer structures. Thin Solid Films 297:237–240

    Article  Google Scholar 

  • Billat S, Thönissen M, Arens-Fischer R, Berger MG, Krüger M, Lüth H (1997) Influence of etch stops on the microstructure of the porous silicon layers. Thin Solid Films 297:22–25

    Article  Google Scholar 

  • Bresse MBH, Mangaiyarkarasi D (2007) Porous silicon Bragg reflectors with sub-micrometer lateral dimensions. Opt Express 15(9):5537

    Article  Google Scholar 

  • Buttard D et al (1996) X-ray diffraction investigation of porous silicon superlattices. Thin Solid Films 276:69

    Article  Google Scholar 

  • Canham LT, Stewart MP, Buriak JM, Revees CL, Anderson M, Squire EK, Allcock P, Snow PA (2000) Derivatized porous silicon mirrors: implantable optical components with slow resorbability. Phys Stat Sol (a) 182:521

    Article  Google Scholar 

  • Chan S, Fauchet PM (2001) Silicon microcavity light emitting devices. Opt Mater 17:31–34

    Article  Google Scholar 

  • David Ariza-Flores A, Gaggero-Sager LM, Agarwal V (2012) White metal-like omnidirectional mirror from porous silicon dielectric multilayers. Appl Phys Lett 101:031119

    Google Scholar 

  • Escorcia-Garcia J, Sarracino Martíınez O, Gracia-Jiménez JM, Agarwal V (2009) Porous silicon photonic devices using pulsed anodic etching of lightly doped silicon. J Phys D Appl Phys 42:145101

    Article  Google Scholar 

  • Estephan E, Saab M-B, Agarwal V, Cuisinier FJG, Larroque C, Gergely C (2011) Peptides for the biofunctionalization of silicon for use in optical sensing with porous silicon microcavities. Adv Func Mater 21:2003–2011

    Article  Google Scholar 

  • Frohnhoff S, Berger MG (1994) Porous silicon superlattices. Adv Mater 6:963–965

    Article  Google Scholar 

  • Frohnhoff S, Berger MG, Thönissen M, Arens-Fischer R, Munder H, Lüth H, Arntzen M, Thei W (1995) Formation techniques for porous silicon superlattices. Thin Solid Films 255:59

    Article  Google Scholar 

  • Ge DH, Wang MC, Liu WJ, Qin S, Yan PL, Jiao JW (2013) Formation of macro-meso-microporous multilayer structures. Electrochim Acta 88:141–146

    Article  Google Scholar 

  • Ghulinyan M, Oton CJ, Negro LD, Pavesi L (2005) Light-pulse propagation in Fibonacci quasicrystals. Phys Rev B 71:094204

    Article  Google Scholar 

  • Ghulinyan M, Gelloz B, Ohta T, Pavesi L, Lockwood DJ, Koshida N (2008) Stabilized porous silicon optical superlattices with controlled surface passivation. Appl Phys Lett 93:061113

    Article  Google Scholar 

  • Halimaoui A (1997) Porous silicon formation by anodization. In: Canham LT (ed) Properties of porous silicon. IEE INSPEC, The Institution of Electrical Engineers, London, p 1

    Google Scholar 

  • Hunkel D, Butz R, Ares-Fisher R, Marso M, Lüth H (1999) Interference filters from porous silicon with laterally varying wavelength of reflection. J Lumin 80:133–136

    Article  Google Scholar 

  • Jalkanen T, T-Costa V, Salonen J et al (2009) Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors. Opt Express 17(7):5446–5456

    Article  Google Scholar 

  • James TD, Keating AJ, Parish G, Musca CA (2009) Pulsed anodization for control of porosity gradients and interface roughness in porous silicon. J Electrochem Soc 156:H744–H750

    Article  Google Scholar 

  • Kaminska K, Brown T, Beydaghyan G, Robbie K (2003) Vacuum evaporated porous silicon photonic interference filters. Appl Optics 42:4212–4219

    Article  Google Scholar 

  • Kilian KA, Bocking T, Gaus K, Gal M, Gooding JJ (2007a) Si–C linked oligo(ethylene glycol) layers in silicon-based photonic crystals: optimization for implantable optical materials. Biomaterials 28:3055–3062

    Article  Google Scholar 

  • Kilian KA, Bocking T, Ilyas S, Gaus K, Jessup W, Gal M (2007b) Forming antifouling organic multilayers on porous silicon rugate filters towards in vivo/ex vivo biophotonic devices. Adv Func Mater 17:2884–2890

    Article  Google Scholar 

  • Lammel G, Schweizer S, Renaud P (2001) MEMs infrared gas spectrometer based on a porous silicon tunable filter. In: The 14th IEEE international conference on micro electro mechanical systems, Interlaken, Switzerland, pp 578–581

    Google Scholar 

  • Lehmann V, Gösele U (1991) Porous silicon formation: a quantum wire effect. Appl Phys Lett 58:856

    Article  Google Scholar 

  • Liu Y, Xiong ZH, Liu Y, Xu SH, Lui XB, Ding XM, Hou XY (2003) A novel method of fabrication porous silicon material: ultrasonically enhanced anodic electrochemical etching. Solid State Commun 127:583–588

    Article  Google Scholar 

  • Lo SA, Murphy TE (2009) Porous silicon based terahertz bragg grating filter. In: Conference on lasers and electro-optics/international quantum electronics conference, OSA technical digest (CD). Optical Society of America

    Google Scholar 

  • Mangaiyarkarasi D, Ow Yueh Sheng, Bresse MBH, Fuh VLS, Eric Tang Xioasong (2008) Fabrication of large-area patterned porous silicon distributed Bragg reflectors. Opt Express 16(17):12757

    Article  Google Scholar 

  • Manotas S, Agulló-Rueda F, Moreno JD, Martín-Palma RJ, Guerrero-Lemus R, Martínez-Duart JM (1999) Depth-resolved microspectroscopy of porous silicon multilayers. Appl Phys Lett 75:977

    Article  Google Scholar 

  • Martín-Palma RJ, Herrero P, Guerrero-Lemus R, Moreno JD, Martínez-Duart JM (1998) Cross-section TEM and optical characterization of porous silicon multilayer stacks. J Mater Sci Let 17:845–847

    Article  Google Scholar 

  • Mulloni V, Mazzoleni C, Pavesi L (1999) Elaboration, characterization and aging effects of porous silicon microcavities formed on lightly p-type doped substrates. Semicond Sci Technol 14:1052

    Article  Google Scholar 

  • Murzina TV, Fedor Yu Sychev, Kolmychek IA, Aktsipetrov OA (2007) Tunable ferroelectric photonic crystals based on porous silicon templates infiltrated by sodium nitrite. Appl Phys Lett 90:161120

    Article  Google Scholar 

  • Muzina TV, Sychev FY, Kim EM, Rau EI, Obydena SS, Aktsipetrov OA, Bader MA, Marowsky G (2005) One dimensional photonic crystals based on porous n-type silicon. J Appl Phys 98:123702

    Article  Google Scholar 

  • Orosco MM, Pacholski C, Sailor MJ (2009) Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nat Nanotechnol 4:255

    Article  Google Scholar 

  • Ouyang H, Christophersen M, Fauchet PM (2005a) Enhanced control of porous silicon morphology for macropore to mesopore formation. Phys Stat Sol (a) 202:1396–1401

    Article  Google Scholar 

  • Ouyang H, Christophersen M, Viard R, Miller BL, Fauchet PM (2005b) Macroporous silicon microcavities for macromolecule detection. Adv Funct Mater 15:1851–1859

    Article  Google Scholar 

  • Ouyang H, Striemer CC, Fauchet PM (2006) Quantitative analysis of sensitivity of porous silicon biosensors. Appl Phys Lett 88:163108

    Article  Google Scholar 

  • Pavesi L (1997) Porous silicon dielectric multilayers and microcavities. La Rivista del Nuovo Cimento (ITA) 20:1–76

    Article  Google Scholar 

  • Pavesi L, Turan R (eds) (2010) Silicon nanocrystals, Section 14: silicon nanocrystals in porous silicon and applications. Federal Republic of Germany

    Google Scholar 

  • Reece PJ, Lerondel G, Zheng WH, Gal M (2002) Optical microcavities with subnanometer linewidths based on porous silicon. Appl Phys Lett 81:4895

    Article  Google Scholar 

  • Robbie K, Beydaghyan G, Brown T, Dean C, Adams J, Buzea C (2004) Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure. Rev Sci Instrum 75(4):1089

    Article  Google Scholar 

  • Salem MS, Sailor MJ, Fukami K, Sakka T, Ogata YH (2008) Sensitivity of porous silicon rugate filters for chemical vapor detection. J Appl Phys 103:083516

    Article  Google Scholar 

  • Servidori M, Ferrero C, Lequien S, Milita S, Parisini A, Romestain R, Sama S, Setzu S, Thiaudieare D (2001) Influence of the electrolyte viscosity on the structural features of porous silicon. Solid State Commun 118:85–90

    Article  Google Scholar 

  • Setzu S, Ferrand P, Romestain R (2000) Optical properties of multilayered porous silicon. Mater Sci Eng B 69–70:34–42

    Article  Google Scholar 

  • Smith RL, Collins SD (1992) Porous silicon formation mechanism. J Appl Phys 71:R1

    Article  Google Scholar 

  • Svyakhovskiy SE, Maydykovsky AI, Murzina TV (2012) Mesoporous silicon photonic structures with thousands of periods. J Appl Phys 112:013106

    Article  Google Scholar 

  • Thonissen M, Berger MG (1997) Multilayer structures of porous silicon. In: Canham LT (ed) Properties of porous silicon. INSPEC Publications, London, p 35

    Google Scholar 

  • Torres-Costa V, Pászti F, Climent-Font A, Martın-Palm RJ, Martınez-Duart JM (2004) RBS characterization of porous silicon multilayer interference filters. Electrochem Solid-State Lett 7:G244

    Article  Google Scholar 

  • Um S, Lee SG, Woo H-G, Cho S, Sungdong HS (2013) Adsorption and desorption characteristics of gradient distributed Bragg reflector porous silicon layers. J Nanosci Nanotechnol 13:288–293

    Article  Google Scholar 

  • Vincent G (1994) Optical properties of porous silicon superlattices. Appl Phys Lett 64:2367

    Article  Google Scholar 

  • Weiss SM, Ouyang H, Zhang J, Fauchet PM (2005) Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals. Opt Express 13:1090

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivechana Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Agarwal, V. (2014). Porous Silicon Multilayers and Superlattices. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_15

Download citation

Publish with us

Policies and ethics