Skip to main content

Lunar Ionosphere

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Lunar Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AMPTE:

Active Magnetospheric Particle Tracer Experiment

ARTEMIS:

Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun

CHACE:

Chandra’s Altitudinal Composition Explorer

eV:

Electron volt

ISEE-1:

International Sun-Earth Explorer 1

LACE:

Lunar Atmosphere Composition Experiment

LADEE:

Lunar Atmosphere and Dust Environment Explorer

LDEX:

Lunar Dust Experiment

LHG:

Lunar horizon glow

LRO:

Lunar Reconnaissance Orbiter

NMS:

Neutral Mass Spectrometer

RL:

Lunar radius

SBI:

Surface-bounded ionosphere

SMART-1:

Small Missions for Advanced Research in Technology-1

SIDE:

Suprathermal Ion Detector Experiments

SZA:

Solar zenith angle

TEC:

Total electron content

UHF:

Ultra high frequency

UV:

Ultraviolet

Al:

Aluminum

Ar:

Argon

C:

Carbon

Ca:

Calcium

CO:

Carbon monoxide

CO2:

Carbon dioxide

Fe:

Iron

H2:

Molecular hydrogen

H2O:

Water

H3O:

Hydronium

He:

Helium

K:

Potassium

Na:

Sodium

Ne:

Neon

O:

Oxygen

S:

Sulfur

Si:

Silicon

References

  • Ando H et al (2012) Dual-spacecraft radio occultation measurement of the electron density near the lunar surface by the SELENE mission. J Geophys Res 117:A08313. https://doi.org/10.1029/2011JA017141

    Article  ADS  Google Scholar 

  • Bauer SJ (1996) Limits to a lunar ionosphere. Anz Abt II 133:17–21

    MATH  Google Scholar 

  • Baumjohann W, Treumann RA (1997) Basic space plasma physics. Imperial College Press, London

    MATH  Google Scholar 

  • Benna M, Mahaffy PR, Halekas JS, Elphic RC, Delory GT (2015) Variability of helium, neon, and argon in the lunar exosphere as observed by the LADEE NMS instrument. Geophys Res Lett 42:3723–3729. https://doi.org/10.1002/2015GL064120

    Article  ADS  Google Scholar 

  • Chamberlain JW, Hunten DM (1987) Theory of planetary atmospheres: an introduction to their physics and chemistry, 2nd edn. International geophysics series, 36. Academic, Florida

    Google Scholar 

  • Choudhary RK, Ambili KM, Choudhury S, Dhanya MB, Bhardwaj A (2016) On the origin of the ionosphere at the Moon using results from Chandrayaan-1 S band radio occultation experiment and a photochemical model. Geophys Res Lett 43:10,025–10,033. https://doi.org/10.1002/2016GL070612

    Article  Google Scholar 

  • Colaprete A, Sarantos M, Wooden DH, Stubbs TJ, Cook AM, Shirley M (2016) How surface composition and meteoroid impacts mediate sodium and potassium in the lunar exosphere. Science 351(6270):249

    Article  ADS  Google Scholar 

  • Cook JC, Stern SA, Feldman PD, Gladstone GR, Retherford KD, Tsanga CC (2013) New upper limits on numerous atmospheric species in the native lunar atmosphere. Icarus 225:681–687

    Article  ADS  Google Scholar 

  • Daily WD, Barker WA, Parkin CW, Clark M, Dyal P (1977) Ionosphere and atmosphere of the Moon in the geomagnetic tail. J Geophys Res 82:5441–5451

    Article  ADS  Google Scholar 

  • Elsmore B (1957) Radio observations of the lunar atmosphere. Philos Mag 2:1040–1046

    Article  ADS  Google Scholar 

  • Feldman PD, Glenar DA, Stubbs TJ, Retherford KD, Gladstone GR, Miles PF, Stern SA (2014) Upper limits for a lunar dust exosphere from far-ultraviolet spectroscopy by LRO/LAMP. Icarus 233:106–113

    Article  ADS  Google Scholar 

  • Feuerbacher B, Anderegg M, Fitton B, Laude LD, Willis RF (1972) Photoemission from lunar surface fines and the lunar photoelectron sheath. In: Proceedings of the 3rd Lunar Science Conference, vol 3, pp 2655–2663

    Google Scholar 

  • Freeman JW, Hills HK (1991) The Apollo lunar surface water event revisited. Geophys Res Lett 1811:2109–2112

    Article  ADS  Google Scholar 

  • Freeman JW Jr, Benson JL (1977) A search for gaseous emissions from the Moon. Phys Earth Planet Inter 14:276–281

    Article  ADS  Google Scholar 

  • Glenar DA, Stubbs TJ, McCoy JE, Vondrak RR (2011) A reanalysis of the Apollo light scattering observations, and implications for lunar exospheric dust. Planet Space Sci 59:1695–1707

    Article  ADS  Google Scholar 

  • Glenar DA, Stubbs TJ, Hahn JM, Wang Y (2014) Search for a high-altitude lunar dust exosphere using Clementine navigational star tracker measurements. J Geophys Res Planets 119:2548–2567. https://doi.org/10.1002/2014JE004702

    Article  ADS  Google Scholar 

  • Grava C, Retherford KD (2015) Lunar Atmosphere. In: Cudnik B (eds) Encyclopedia of Lunar Science. Springer, Cham

    Google Scholar 

  • Halekas JS, Poppe AR, Delory GT, Sarantos M, Farrell WM, Angelopoulos V, McFadden JP (2012) Lunar pickup ions observed by ARTEMIS: spatial and temporal distribution and constraints on species and source locations. J Geophys Res 117:E06006. https://doi.org/10.1029/2012JE004107

    Article  ADS  Google Scholar 

  • Halekas JS, Benna M, Mahaffy PR, Elphic RC, Poppe AR, Delory GT (2015) Detections of lunar exospheric ions by the LADEE neutral mass spectrometer. Geophys Res Lett 42:5162–5169. https://doi.org/10.1002/2015GL064746

    Article  ADS  Google Scholar 

  • Hartle RE, Thomas GE (1974) Neutral and ion exosphere models for lunar hydrogen and helium. J Geophys Res 79(10):1519–1526. https://doi.org/10.1029/JA079i010p01519

    Article  ADS  Google Scholar 

  • Hilchenbach M, Hovestadt D, Klecker B, Mobius E (1993) Observation of energetic lunar pick-up ions near earth. Adv Space Res 13(10):321–324

    Article  ADS  Google Scholar 

  • Horányi M, Szalay JR, Kempf S, Schmidt J, Grün E, Srama R, Sternovsky Z (2015) A permanent, asymmetric dust cloud around the Moon. Nature 522(7556):324–326

    Article  ADS  Google Scholar 

  • Imamura T et al (2010) Studying the lunar ionosphere with SELENE Radio science experiment. Space Sci Rev 154:305–316

    Article  ADS  Google Scholar 

  • Imamura T et al (2012) Radio occultation measurement of the electron density near the lunar surface using a subsatellite on the SELENE mission. J Geophys Res 117:A06303. https://doi.org/10.1029/2011JA017293

    Article  ADS  Google Scholar 

  • Luhmann J (1995) Ionospheres. In: Kivelson MG, Russel CT (eds) Introduction to space physics. Cambridge University Press, Cambridge, pp 183–200

    Google Scholar 

  • McCoy JE (1976) Photometric studied of light scattering above the lunar terminator from Apollo solar corona photography. In: Proceedings of the 7th Lunar Science Conference, vol 1, pp 1087–1112

    Google Scholar 

  • Murkett AJ (1979) Physics in the ionosphere. Phys Educ 14(2):87–91

    Article  ADS  Google Scholar 

  • Pluchino S, Schilliro F, Salerno E, Pupillo G, Maccaferri G, Cassaro P (2008) Radio occultation measurements of the lunar ionosphere. Mem Soc Astron Ital Suppl 12:53

    Google Scholar 

  • Pomalaza-Diaz JC (1967) Measurement of the lunar ionosphere by occultation of the Pioneer 7 spacecraft. Scientific Report SU-SEL-67-095, Stanford Electronics Lab

    Google Scholar 

  • Potter AE, Morgan TH (1988) Discovery of sodium and potassium vapor in the atmosphere of the Moon. Science 241:675–680

    Article  ADS  Google Scholar 

  • Reasoner DL, Burke WJ (1972) Direct observations of the lunar photoelectron layer. In: Proceedings of the Third Lunar Science Conference. Geochim Cosmochim Acta 3(Suppl 3):2639–2654

    Google Scholar 

  • Savich NA (1976) Cislunar plasma model. Space Res 16:941–943

    Google Scholar 

  • Sridharan R, Ahmed SM, Das TP, Sreelatha P, Pradeepkumar P, Naik N, Supriyas G (2010) The sunlit lunar atmosphere: a comprehensive study by CHASE on the Moon impact probe of Chandrayaan-I. Planet Space Sci 58:1567–1577

    Article  ADS  Google Scholar 

  • Stern AS (1999) The lunar atmosphere: history, status, current problems, and context. Rev Geophys 37:453–491. https://doi.org/10.1029/1999RG900005

    Article  ADS  Google Scholar 

  • Stubbs TJ, Glenar DA, Farrell WM, Vondrak RR, Collier MR, Halekas JS, Delory GT (2011) On the role of dust in the lunar ionosphere. Planet Space Sci 59:1659–1664

    Article  ADS  Google Scholar 

  • Stubbs TJ, Farrell WM, Halekas JS, Burchill JK, Collier MR, Zimmerman MI, Vondrak RR, Delory GT, Pfaff RF (2014) Dependence of lunar surface charging on solar wind plasma conditions and solar irradiation. Planet Space Sci 90:10–27. https://doi.org/10.1016/j.pss.2013.07.008

    Article  ADS  Google Scholar 

  • Szalay JR (2017) Lunar Dust Exosphere. In: Cudnik B (eds) Encyclopedia of Lunar Science. Springer, Cham

    Google Scholar 

  • Tanaka T et al (2009) First in situ observation of the Moon-originating ions in the Earth’s magnetosphere by MAP-PACE on SELENE (KAGUYA). Geophys Res Lett 36:L22106. https://doi.org/10.1029/2009GL040682

    Article  ADS  Google Scholar 

  • Vasil’ev MB et al (1974) Radio transparency of circumlunar space using the Luna-19 station. Cosm Res 12:102–107

    ADS  Google Scholar 

  • Vondrak RR (1992) Lunar base activities and the lunar environment. In: The second conference on lunar bases and space activities of the 21st century, vol 1. NASA, Washington, DC, pp 337–345

    Google Scholar 

  • Vyshlov AS (1976) Preliminary results of circumlunar plasma research by the Luna 22 spacecraft. Space Res 16:945–949

    Google Scholar 

  • Vyshlov AS, Savich NA (1979) Observation of radio source occultations by the Moon and the nature of the plasma near the Moon. Cosm Res 16:450–454

    ADS  Google Scholar 

  • Wang XD et al (2011) Detection of m/q = 2 pickup ions in the plasma environment of the Moon: the trace of exospheric H2+. Geophys Res Lett 38:L14204. https://doi.org/10.1029/2011GL047488

    Article  ADS  Google Scholar 

  • Withers P (2010) Prediction of uncertainties in atmospheric properties measured by radio occultation experiments. Adv Space Res 46:58–73. https://doi.org/10.1016/j.asr.2010.03.004

    Article  ADS  Google Scholar 

  • Wolt MK, Aminaei A, Zarka P, Schrader J-R, Boonstra A-J, Falcke H (2012) Radio astronomy with the European lunar lander: opening up the last unexplored frequency regime. Planet Space Sci 74(1):167–178. https://doi.org/10.1016/j.pss.2012.09.004

    Article  ADS  Google Scholar 

  • Yokota S et al (2009) First direct detection of ions originating from the Moon by MAP-PACE IMA onboard SELENE (KAGUYA). Geophys Res Lett 36:L11201. https://doi.org/10.1029/2009GL038185

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Stubbs .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stubbs, T.J. (2018). Lunar Ionosphere. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_94-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_94-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics