Skip to main content

Lunar Mare Basalts, Stratigraphy of

  • Living reference work entry
  • First Online:

The internal thermal history and evolution of planetary bodies is expressed in the timing and extent of volcanic activity on their surfaces (Head and Wilson 1992). In particular, investigations of the compositions and ages of volcanic products on the surface are indicative of the thermal and geologic evolution of a planet. Thus, stratigraphic studies attempt to date geological units, integrate them into a stratigraphic column, which is applicable over the entire planet, and to calibrate this column with absolute ages. In the past, four principal methods have been used to derive the ages of lunar mare basalts, including (1) stratigraphic approaches (e.g., Shoemaker and Hackman 1962; Wilhelms 1970, 1987; Soderblom and Boyce 1972; Lucchitta 1978; Stuart-Alexander 1978; Wilhelms et al. 1979; Wilhelms 1987), (2) radiometric investigations of lunar samples (e.g., Papanastassiou and Wasserburg 1971; Silver 1971; Tera and Wasserburg 1974a, b; Husain 1974; Nunes et al. 1974; Schaefer and...

This is a preview of subscription content, log in via an institution.

References

  • Anand M, Taylor LA, Floss C, Neal CR, Terada K, Tanikawa S (2006) Petrology and geochemistry of LaPaz Icefield 02205: a new unique low-Ti mare-basalt meteorite. Geochim Cosmochim Acta 70:246–264

    Article  ADS  Google Scholar 

  • Antonenko I, Yingst RA (2002) Mare and cryptomare deposits in the Schickard region of the Moon: new measurements using Clementine FeO data. Lunar Planet Sci XXXIII, abstract 1438, Houston

    Google Scholar 

  • Antonenko I, Head JW III, Mustard JF, Hawke BR (1995) Criteria for the detection of lunar cryptomaria. Earth Moon Planet 69:141–172

    Article  ADS  Google Scholar 

  • Arvidson R, Boyce J, Chapman C, Cintala M, Fulchignoni M, Moore H, Neukum G, Schultz P, Soderblom L, Strom R, Woronow A, Young R (1979) Standard techniques for presentation and analysis of crater size-frequency data. Icarus 37:467–474

    Article  ADS  Google Scholar 

  • Baldwin RB (1971) On the history of lunar impact cratering: the absolute time scale and the origin of planetesimals. Icarus 14:36–52

    Article  ADS  Google Scholar 

  • Baldwin RB (1974) Was there a “Terminal Lunar Cataclysm” 3.9–4.0 × 109 years ago? Icarus 23:157–166

    Article  ADS  Google Scholar 

  • Baldwin RB (1987) On the relative and absolute ages of seven lunar front face basins: II. From crater counts. Icarus 71:19–29

    Article  ADS  Google Scholar 

  • Basaltic Volcanism Study Project (BVSP) (1981) Basaltic volcanism on the terrestrial planets. Pergamon, New York, p 1286

    Google Scholar 

  • Basilevsky AT, Neukum G, Nyquist L (2010) The spatial and temporal distribution of lunar mare basalts as deduced from analysis of data for lunar meteorites. Planet Space Sci 58:1900–1905

    Article  ADS  Google Scholar 

  • Bell JF, Hawke BR (1984) Lunar dark-haloed impact craters: origins and implications for early mare volcanism. J Geophys Res 8:6899–6910

    Article  ADS  Google Scholar 

  • Bierhaus EB, Chapman CR, Merline WJ (2005) Secondary craters on Europa and implications for cratered surfaces. Nature 437:1125–1127

    Article  ADS  Google Scholar 

  • Borg LE, Gaffney A, DePaolo D (2007) Rb–Sr and Sm–Nd isotopic systematics of NWA 032. In: 70th annual Meteoritical Society meeting. Abstract 5232

    Google Scholar 

  • Boyce JM (1976) Ages of flow units in the lunar nearside maria based on Lunar Orbiter IV photographs. 7th Proc Lunar Sci Conf:2717–2728, Houston

    Google Scholar 

  • Boyce JM, Johnson DA (1978) Ages of flow units in the far eastern maria and implications for basin-filling history. 9th Proc Lunar Planet Sci Conf:3275–3283, Houston

    Google Scholar 

  • Bugiolacchi R, Guest JE (2008) Compositional and temporal investigation of exposed lunar basalts in the Mare Imbrium region. Icarus 197:1–18

    Article  ADS  Google Scholar 

  • Bugiolacchi R, Spudis PD, Guest JE (2006) Stratigraphy and composition of lava flows in Mare Nubium and Mare Cognitum. Meteorit Planet Sci 41:285–304

    Article  ADS  Google Scholar 

  • Burgess R, Turner G (1998) Laser 40Ar–39Ar age determinations of Luna 24 mare basalts. Meteoritics Space Sci 33(4):921–935

    Article  ADS  Google Scholar 

  • Carr MH (1966) Geologic map of the Mare Serenitatis region of the Moon. USGS, Washington, DC, Map I-489 (LAC-42)

    Google Scholar 

  • Dasch EJ, Shih C-Y, Bansal BM, Wiesmann H, Nyquist LE (1987) Isotopic analysis of basaltic fragments from lunar breccia 14321: chronology and petrogenesis of pre-Imbrium mare volcanism. Geochim Cosmochim Acta 51:3241–3254

    Article  ADS  Google Scholar 

  • Deutsch A, Stöffler D (1987) Rb–Sr-analyses of Apollo 16 melt rocks and a new age estimate for the Imbrium basin: lunar basin chronology and the early heavy bombardment of the moon. Geochim Cosmochim Acta 51:1951–1964

    Article  ADS  Google Scholar 

  • Elardo SM, Shearer CK, Fagan AL, Borg LE, Gaffney AM, Burger PV, Neal CR, Fernandes VA, McCubbin FM (2014) The origin of young mare basalts inferred from lunar meteorites Northwest Africa 4734, 032, and LaPaz Icefield 02205. Meteoritics Space Sci 49(2):261–291

    Article  ADS  Google Scholar 

  • Fagan TJ, Taylor GJ, Keil K, Bunch TE, Wittke JH, Korotev RL, Jolliff BL, Gillis JJ, Haskin LA, Jarosewich E, Clayton RN, Mayeda TK, Fernandes VA, Burgess R, Turner G, Eugster O, Lorenzetti S (2002) Northwest Africa 032: product of lunar volcanism. Meteorit Planet Sci 37:371–394

    Article  ADS  Google Scholar 

  • Feldman WC, Barraclough BL, Maurice S, Elphic RC, Lawrence DJ, Thomsen DR, Binder AB (1998) Major compositional units of the Moon: lunar prospector thermal and fast neutrons. Science 281:1489. doi:10.1126/science.281.5382.1489

    Article  ADS  Google Scholar 

  • Feldman WC, Lawrence DJ, Elphic RC, Vaniman DT, Thomsen DR, Barraclough BL, Maurice S, Binder AB (2000) Chemical information content of lunar thermal and epithermal neutrons. J Geophys Res 105:20347–20364. doi:10.1029/1999JE001183, 2000

    Article  ADS  MATH  Google Scholar 

  • Feldman WC, Gasnault O, Maurice S, Lawrence DJ, Elphic RC, Lucey PG, Binder AB (2002) Global distribution of lunar composition: new results from lunar prospector. J Geophys Res 107. doi :10.1029/2001JE001506

    Google Scholar 

  • Fernandes VA, Burgess R (2006) Lunar volcanism during the Erastothenian II: NWA479. In: 69th annual Meteoritical Society meeting. Abstract 5312

    Google Scholar 

  • Fernandes VA, Burgess R, Turner G (2003) 40Ar–39Ar chronology of lunar meteorites Northwest Africa 032 and 773. Meteorit Planet Sci 38:555–564

    Article  ADS  Google Scholar 

  • Gaffney AM, Borg LE, Depaolo DJ, Irving AJ (2008) Age and isotope systematics of Northwest Africa 4898, a new type of highly-depleted mare basalt. Lunar Planet Sci XXXIX, abstract 1877, Houston

    Google Scholar 

  • Greeley R, Gault DE (1970) Precision size-frequency distributions for craters for 12 selected areas of the lunar surface. Moon 2:10–77

    Article  ADS  Google Scholar 

  • Greeley R, Kadel SD, Williams DA, Gaddis LR, Head JW III, McEwen AS, Murchie SL, Nagel E, Neukum G, Pieters CM, Sunshine JM, Wagner R, Belton MJS (1993) Galileo imaging observations of Lunar Maria and related deposits. J Geophys Res 98:17183–17206

    Article  ADS  Google Scholar 

  • Guggisberg S, Eberhardt P, Geiss J, Grögler N, Stettler A, Brown GM, Peckett A (1979) Classification of the Apollo-11 mare basalts according to Ar39-Ar40 ages and petrological properties. 10th Proc Lunar Planet Sci Conf:1–39, Houston

    Google Scholar 

  • Hackwill T, Guest J, Spudis PD (2006) Stratigraphy and evolution of basalts in Mare Humorum and southeastern Procellarum. Meteorit Planet Sci 41:479–488

    Article  ADS  Google Scholar 

  • Hartmann WK (1966) Early lunar cratering. Icarus 5:406–418

    Article  ADS  Google Scholar 

  • Haruyama J, Othake M, Matsunaga T, Honda C, Yokota Y, Abe M, Ogawa Y, Miyamoto H, Iwasaki A, Pieters CM, Asada N, Demura H, Hirata N, Terazono J, Sasaki S, Saiki K, Yamaj A, Tori M, Josset JL (2009) Long-lived volcanism on the lunar farside revealed by SELENE Terrain Camera. Science 323:905–908

    Article  ADS  Google Scholar 

  • Haskin LA, Gillis JJ, Korotev RL, Jolliff BL (2000) The materials of the lunar Procellarum KREEP Terrane: a synthesis of data from geomorphological mapping, remote sensing, and sample analyses. J Geophys Res 105:20403–20416. doi:10.1029/1999JE001128

    Article  ADS  Google Scholar 

  • Hawke BR, Bell JF (1981) Remote sensing studies of lunar dark-halo impact craters: preliminary results and implications for early volcanism. 12th Proc Lunar Planet Sci Conf:665–678, Houston

    Google Scholar 

  • Head JW III (1976) Lunar volcanism in space and time. Rev Geophys 14:265–300

    Article  ADS  Google Scholar 

  • Head JW III, Wilson L (1992) Lunar mare volcanism: stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim Cosmochim Acta 55:2155–2175

    Article  ADS  Google Scholar 

  • Hiesinger H, Jaumann R, Neukum G, Head JW III (2000) Ages of mare basalts on the lunar nearside. J Geophys Res 105:29239–29275

    Article  ADS  Google Scholar 

  • Hiesinger H, Head III JW, Wolf U, Neukum G (2001) New age determinations of lunar mare basalts in Mare Cognitum, Mare Nubium, Oceanus Procellarum, and other nearside mare. Lunar Planet Sci XXXII, abstract 1815, Houston

    Google Scholar 

  • Hiesinger H, Head III JW, Wolf U, Jaumann R, Neukum G (2002) Lunar mare basalt flow thicknesses determined from crater size-frequency distributions. Geophys Res Lett 29. doi:10.1029/2002GL014847

    Google Scholar 

  • Hiesinger H, Head III JW, Wolf U, Jaumann R, Neukum G (2003) Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J Geophys Res 108. doi:10.1029/2002JE001985

    Google Scholar 

  • Hiesinger H, Head III JW, Wolf U, Jaumann R, Neukum G (2006) New ages for basalts in Mare Fecunditatis based on crater size-frequency measurements. Lunar Planet Sci IX:382–384, Houston

    Google Scholar 

  • Hiesinger H, Head III JW, Wolf U, Jaumann R, Neukum G (2010) Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size-frequency distribution measurements. J Geophys Res 115. doi:10.1029/2009JE003380

    Google Scholar 

  • Hiesinger H, Head JW III, Wolf U, Jaumann R, Neukum G (2011) Ages and stratigraphy of lunar mare basalts: a synthesis. Geol Soc Am SpecPap 477:1–51

    Google Scholar 

  • Husain L (1974) 40Ar-39Ar chronology and cosmic ray exposure ages of the Apollo 15 samples. J Geophys Res 79(17):2588–2606

    Article  ADS  Google Scholar 

  • James OB (1981) Petrologic and age relations of the Apollo 16 rocks: implications for subsurface geology and the age of the Nectaris Basin. Proc Lunar Planet Sci Conf 12b:209–233, Houston

    Google Scholar 

  • Jessberger EK, Kirsten T, Staudacher T (1977) One rock and many ages – further K-Ar data on consortium breccia 73215. 8th Proc Lunar Planet Sci Conf:2567–2580, Houston

    Google Scholar 

  • Jolliff BL, Gillis JJ, Haskin LA, Korotev RL, Wieczorek MA (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res 105:4197–4216. doi:10.1029/1999JE001103

    Article  ADS  Google Scholar 

  • Laneuville M, Wieczorek MA, Breuer D, Tosi N (2013) Asymmetric thermal evolution of the Moon. J Geophys Res 118:1435–1452. doi:10.1002/jgre.20103

    Article  Google Scholar 

  • Lawrence DJ, Feldman WC, Barraclough BL, Binder AB, Elphic RC, Maurice S, Thomsen DR (1998) Global elemental maps of the Moon: the lunar prospector gamma-ray spectrometer. Science 281:1484. doi:10.1126/science.281.5382.1484

    Article  ADS  Google Scholar 

  • Lawrence DJ, Feldman WC, BLawrence DJ, Feldman WC, Barraclough BL, Binder AB, Elphic RC, Maurice S, Miller MC, Prettyman TH (1999) High resolution measurements of absolute thorium abundances on the lunar surface. Geophys Res Lett 26:2681–2684. doi:10.1029/1999GL008361

    Article  ADS  Google Scholar 

  • Lawrence DJ, Feldman WC, Barraclough BL, Binder AB, Elphic RC, Maurice S, Miller MC, Prettyman TH (2000) Thorium abundances on the lunar surface. J Geophys Res 105:20307–20332. doi:10.1029/1999JE001177

    Article  ADS  Google Scholar 

  • Lucchitta BK (1978) Geologic map of the north side of the Moon. U.S. Geological Survey, Washington, DC, Map I-1062

    Google Scholar 

  • Maurer P, Eberhardt P, Geiss J, Grögler N, Stettler A (1978) Pre-Imbrium craters and basins: ages, compositions and excavation depths of Apollo 16 breccias. Geochim Cosmochim Acta 42:1687–1720

    Article  ADS  Google Scholar 

  • McEwen AS, Bierhaus EB (2006) The importance of secondary cratering to age constraints on planetary surfaces. Annu Rev Earth Planet Sci 34:535–567

    Article  ADS  Google Scholar 

  • Morota T, Haruyama J, Ohtake M, Matsunaga T, Yokota Y, Honda C, Torii M, Ogawa Y, Abe M, The LISM Working Group (2008) Age determination of mare basalts surrounding the crater Lichtenberg: preliminary results using SELENE(Kaguya)/Terrain Camera data. Lunar Planet Sci XXXIX, abstract 1513, Houston

    Google Scholar 

  • Morota T, Haruyama J, Honda C, Othake M, Yakota Y, Kimura J, Matsunaga T, Ogawa Y, Hirata N, Demura H, Iwasaki A, Miyamoto H, Nakamura R, Takeda H, Ishihara Y, Sasaki S (2009) Mare volcanism in the lunar farside Moscoviense region: implication for lateral variation in magma production of the Moon. Geophys Res Lett 36. doi:10.1029/2009GL040472

    Google Scholar 

  • Morota T, Haruyama J, Othake M, Matsunaga T, Honda C, Yokota Y, Kimura J, Ogawa Y, Hirata N, Demura H, Iwasaki A, Sugihara T, Saiki K, Nakamura R, Kobayashi S, Ishihara Y, Takeda H, Hiesinger H (2011) Timing and characteristics of the latest mare eruption on the Moon. Earth Planet Sci Lett 302:255–266

    Article  ADS  Google Scholar 

  • Neukum G (1971) Untersuchungen über Einschlagskrater auf dem Mond. Dissertation an der Ruprecht-Karl-Universität, Heidelberg

    Google Scholar 

  • Neukum G (1977) Lunar cratering. Philos Trans R Soc Lond A 285:267–272

    Article  ADS  Google Scholar 

  • Neukum G (1983) Meteoritenbombardement und Datierung planetarer Oberflächen, Habilitationsschrift, University of München, Munich

    Google Scholar 

  • Neukum G, Horn P (1976) Effects of lava flows on lunar crater populations. Moon 15:205–222

    Article  ADS  Google Scholar 

  • Neukum G, Ivanov BA (1994) Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data. In: Gehrels T (ed) Hazard due to comets and asteroids. University of Arizona Press, Tucson, pp 359–416

    Google Scholar 

  • Neukum G, Koenig B, Fechtig H, Storzer D (1975a) Cratering in the Earth-Moon system: consequences for age determination by crater counting. 6th Proc Lunar Sci Planet Conf:2597–2620, Houston

    Google Scholar 

  • Neukum G, Koenig B, Arkani-Hamed J (1975b) A study of lunar impact crater size-distributions. Moon 12:201–229

    Article  ADS  Google Scholar 

  • Neukum G, Ivanov BA, Hartmann WK (2001) Cratering records in the inner solar system in relation to the lunar reference system. Space Sci Rev 96:55–86

    Article  ADS  Google Scholar 

  • Nunes PD, Tatsumoto M, Unruh DM (1974) U–Th–Pb systematics of some Apollo 17 lunar samples and implications for a lunar basin excavation chronology. 5th Proc Lunar Planet Sci Conf:1487–1514, Houston

    Google Scholar 

  • Nyquist LE, Shih C-Y (1992) The isotopic record of lunar volcanism. Geochim Cosmochim Acta 56:2213–2234

    Article  ADS  Google Scholar 

  • Nyquist LE, Bogard DD, Shih C-Y (2001) The century of space science. Kluwer, Dordrecht, pp 1325–1376

    Book  Google Scholar 

  • Papanastassiou DA, Wasserburg GJ (1971) Lunar chronology and evolution from Rb–Sr studies of Apollo 11 and 12 samples. Earth Planet Sci Lett 11:37–62

    Article  ADS  Google Scholar 

  • Pasckert JH, Hiesinger H, van der Bogert CH (2014) Lunar mare basalts in- and outside of the South Pole-Aitken basin. Lunar Planet Sci XXXXV, abstract 1968, Houston

    Google Scholar 

  • Pieters CM, Head JW, Adams JB, McCord TB, Zisk SH, Whitford-Stark JL (1980) Late high-titanium basalts of the western maria: geology of the Flamsteed region of Oceanus Procellarum. J Geophys Res 85:3913–3938

    Article  ADS  Google Scholar 

  • Qiao L, Xiao L, Zhao J, Huang Q, Haruyama J (2014) Geological features and evolution history of Sinus Iridum, the Moon. Planet Space Sci. doi:10.1016/j.pss.2014.06007

    Google Scholar 

  • Rankenburg K, Brandon AD, Norman MD (2007) A Rb–Sr and Sm–Nd isotope geochronology and trace element study of lunar meteorite LaPaz Icefield 02205. Geochim Cosmochim Acta 71:2120–2135. doi:10.1016/j.gca.2007.01.014

    Article  ADS  Google Scholar 

  • Ryder G, Spudis PD (1980) Volcanic rocks in the lunar highlands. In: Proceedings of the conference on the lunar highlands crust. Pergamon, New York/Oxford, pp 353–375

    Google Scholar 

  • Schaefer OA, Husain L (1974) Chronology of lunar basin formation and ages of lunar anorthositic rocks. Lunar Planet Sci Conf V:663–665, Houston

    Google Scholar 

  • Schultz PH, Spudis PD (1979) Evidence for ancient mare volcanism. 10th Proc Lunar Planet Sci Conf:2899–2918, Houston

    Google Scholar 

  • Schultz PH, Spudis PD (1983) Beginning and end of lunar mare volcanism. Nature 302:233–236

    Article  ADS  Google Scholar 

  • Shih C-Y, Nyquist LE, Reese Y, Yamaguchi A, Takeda H (2005) Rb–Sr and Sm–Nd isotopic studies of lunar highland meteorite Y86032 and lunar ferroan anorthosites 60025 and 67075. Lunar Planet Sci XXXVI, abstract 1433, Houston

    Google Scholar 

  • Shoemaker EM, Hackman R (1962) Stratigraphic basis for a lunar time scale. In: Kopal Z, Mikhailov ZK (eds) The Moon: symposium 14 of the International Astronomical Union. Academic, San Diego, pp 289–300

    Google Scholar 

  • Silver LT (1971) U–Th–Pb isotope systems in Apollo 11 and 12 regolithic materials and a possible age for the Copernican impact. Eos Trans AGU 52(7):534

    Google Scholar 

  • Soderblom LA (1972) The process of crater removal in the lunar maria. In: Apollo 15 preliminary science report, NASA SP-289, 25-87-25-91, NASA, U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Soderblom LA, Boyce JM (1972) Relative ages of some near-side and far-side terra plains based on Apollo 16 metric photography. In: Apollo 16 preliminary science report, NASA SP-315, 29-3-29-6

    Google Scholar 

  • Soderblom LA, Arnold JR, Boyce JM, Lin RP (1977) Regional variations in the lunar maria: age, remanent magnetism, and chemistry. 8th Proc Lunar Planet Sci Conf:1191–1199, Houston

    Google Scholar 

  • Stadermann FJ, Heusser E, Jessberger EK, Lingner S, Stöffler D (1991) The case for a young Imbrium basin: new 40Ar–39Ar ages of Apollo 14 rocks. Geochim Cosmochim Acta 55:2339–2349

    Article  ADS  Google Scholar 

  • Stöffler D, Ryder G (2001) Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. Space Sci Rev 96:9–54

    Article  ADS  Google Scholar 

  • Stöffler D, Ryder G, Ivanov BA, Artemieva NA, Cintala MJ, Grieve RAF (2006) Cratering history and lunar chronology. In: Jolliff BL, Wieczorek MA, Shearer CK, Neal CR (eds) New views of the Moon, vol 60, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, pp 519–596

    Google Scholar 

  • Stuart-Alexander DE (1978) Geologic map of the central far side of the Moon, vol I-1047. U.S. Geological Survey, Washington, DC

    Google Scholar 

  • Taylor LA, Shervais JW, Hunter RH, Shih C-Y, Bansal BM, Wooden J, Nyquist LE, Laul LC (1983) Pre-4.2 AE mare-basalt volcanism in the lunar highlands. Earth Planet Sci Lett 66:33–47

    Article  ADS  Google Scholar 

  • Tera F, Wasserburg GJ (1974a) The evolution and history of mare basalts as inferred from U–Th–Pb systematics. Lunar Planet Sci VI:807–809, Houston

    Google Scholar 

  • Tera F, Wasserburg GJ (1974b) U–Th–Pb systematics on lunar rocks and interferences about lunar evolution and the age of the Moon. 5th Proc Lunar Planet Sci Conf:1571–1599, Houston

    Google Scholar 

  • Terada K, Anand M, Sokol A, Bischoff A, Sano Y (2007) Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature 450. doi:10.1038/nature06356

    Google Scholar 

  • Walker AS, El-Baz F (1982) Analysis of crater distributions in mare units on the lunar far side. Moon Planet 27:91–106

    Article  ADS  Google Scholar 

  • Werner SC, Ivanov BA, Neukum G (2006) Mars: secondary cratering – implications for age determination. Lunar Planet Sci XXXVII, abstract 1595, Houston

    Google Scholar 

  • Whitten J, Head JW, Staid M, Pieters CM, Mustard J, Clark R, Nettles J, Klima RL, Taylor L (2011) Lunar mare deposits associated with the Orientale impact basin: new insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from the Moon Mineralogy Mapper (M3) data from Chandrayaan-1. J Geophys Res 116: doi:10.1029/2010JE003736

    Google Scholar 

  • Wieczorek MA, Phillips RJ (2000) The Procellarum KREEP Terrane: Implications for mare volcanism and lunar evolution. J Geophys Res 105:20417–20430.

    Article  ADS  Google Scholar 

  • Wilhelms DE (1970) Summary of telescopic lunar stratigraphy. USGS Professional Paper, 599-F. U.S. Geological Survey, Washington, DC, pp 235–305

    Google Scholar 

  • Wilhelms DE (1987) The geologic history of the Moon. U.S. Geological Survey Professional Paper, 1348. U.S. Geological Survey, Washington, DC, p 302

    Google Scholar 

  • Wilhelms DE, El-Baz F (1977) Geologic map of the east side of the Moon. U.S. Geological Survey, Washington, DC, Map I-948

    Google Scholar 

  • Wilhelms DE, McCauley JF (1971) Geologic map of the nearside of the Moon. U.S. Geological Survey, Washington, DC, Map I-703

    Google Scholar 

  • Wilhelms DE, Howard KA, Wilshire HG (1979) Geologic map of the south side of the Moon, vol I-1162. U.S. Geological Survey, Washington, DC

    Google Scholar 

  • Ziethe R, Seiferlein K, Hiesinger H (2009) Duration and extent of lunar volcanism: comparison of 3D convection models to mare basalt ages. Planet Space Sci 57:784–796

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Hiesinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Hiesinger, H. (2014). Lunar Mare Basalts, Stratigraphy of. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics