Skip to main content

Lunar Atmosphere, Source and Loss Processes

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science
  • 143 Accesses

The Moon is the closest example of bodies with surface-bounded exospheres, i.e., bodies that do not possess a collisional atmosphere. Since collisions between particles are negligible, the dynamics of the exosphere depend on the interaction of the source with the surface, i.e., from the processes with which atoms and molecules are released. These processes include both external drivers, such as solar irradiation, micrometeoroids, solar wind, and other energetic particles and photons including visible and ultraviolet solar radiation, extragalactic gamma rays, and Lyman-alpha photons resonantly scattered by hydrogen atoms in the interplanetary medium. Internal drivers include thermal desorption (evaporation) and venting from the interior.

This chapter elucidates sources and sinks of the lunar exosphere.

Sources

Impact Vaporization: Impact vaporization is the most universal process in promoting atomic, molecular, and ionic species into the exosphere, in that it is energetic enough to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Benna M, Mahaffy PR, Halekas JS, Elphic RC, Delory GT (2015a) Variability of helium, neon, and argon in the lunar exosphere as observed by the LADEE NMS instrument. Geophys Res Lett 42(10):3723–3729

    Article  ADS  Google Scholar 

  • Benna M, Hurley DM, Stubbs TJ, Mahaffy PR, Elphic RC (2015b). Observations of meteoroidal water in the lunar exosphere by the LADEE NMS instrument. LPI Contributions 1863, 2059

    Google Scholar 

  • Cintala MJ (1992) Impact induced thermal effects in the lunar and Mercurian regoliths. J Geophys Res 97:947–973

    Article  ADS  Google Scholar 

  • Cook JC, Stern SA (2014) Sporadic increases in lunar atmospheric helium detected by LAMP. Icarus 236:48–55

    Article  ADS  Google Scholar 

  • Farrell WM, Hurley DM, Esposito VJ, McLain JL, Zimmerman MI (2017) The statistical mechanics of solar wind hydroxylation at the Moon, within lunar magnetic anomalies, and at Phobos. J Geophys Res Planets 122:269–289. https://doi.org/10.1002/2016JE005168

    Article  ADS  Google Scholar 

  • Fink D, Krauser J, Nagengast D, Murphy TA, Erxmeier J, Palmetshofer L, Weidinger A (1995) Hydrogen implantation and diffusion in silicon and silicon dioxide. Appl Phys A 61(4):381–388

    Article  ADS  Google Scholar 

  • Futaana Y, Barabash S, Wieser M, Holmström M, Lue C, Wurz P, Schaufelberger A, Bhardwaj A, Dhanya MB, Asamura K (2012) Empirical energy spectra of neutralized solar wind protons from the lunar regolith. J Geophys Res 117:E05005. https://doi.org/10.1029/2011JE004019

    Article  ADS  Google Scholar 

  • Grava C, Retherford KD, Hurley DM, Feldman PD, Gladstone GR, Greathouse TK, Kaufmann DE (2016) Lunar exospheric helium observations of LRO/LAMP coordinated with ARTEMIS. Icarus 273:36–44

    Article  ADS  Google Scholar 

  • Hodges RR (2011) Resolution of the lunar hydrogen enigma. Geophys Res Lett 38:L06201. https://doi.org/10.1029/2011GL046688

    Article  ADS  Google Scholar 

  • Horz F, Grieve R, Heiken G, Spudis P, Binder A (1991) Lunar surface processes. In: Heiken GH, Vaniman DT, French BM (eds) Lunar sourcebook. Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney

    Google Scholar 

  • Hurley DM, Cook JC, Benna M, Halekas JS, Feldman PD, Retherford KD, Greathouse T (2016) Understanding temporal and spatial variability of the lunar helium atmosphere using simultaneous observations from LRO, LADEE, and ARTEMIS. Icarus 273:45–52

    Article  ADS  Google Scholar 

  • Hurley DM, Cook JC, Retherford KD, Greathouse T, Gladstone GR, Mandt K, Pryor W (2017) Contributions of solar wind and micrometeoroids to molecular hydrogen in the lunar exosphere. Icarus 283:31–37

    Article  ADS  Google Scholar 

  • Lue C et al (2011) Strong influence of lunar crustal fields on the solar wind flow. Geophys Res Lett 38:L03202. https://doi.org/10.1029/2010GL046215

    Article  ADS  Google Scholar 

  • Marchi S, Brunetto R, Magrin S, Lazzarin M, Gandolfi D (2005) Space weathering of near-Earth and main belt silicate-rich asteroids: observations and ion irradiation experiments. Astron Astrophys 443(3):769–775

    Article  ADS  Google Scholar 

  • McComas DJ, Allegrini F, Bochsler P, Frisch P, Funsten HO, Gruntman M, Schwadron NA (2009) Lunar backscatter and neutralization of the solar wind: first observations of neutral atoms from the Moon geophys. Res Lett 36:L12104

    Article  ADS  Google Scholar 

  • McCord TB, Taylor LA, Combe JP, Kramer G, Pieters CM, Sunshine JM, Clark RN (2011) Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J Geophys Res 116:E00G05

    Article  Google Scholar 

  • Mendillo M, Baumgardner J (1995) Constraints on the origin of the Moon’s atmosphere from observations during a lunar eclipse. Nature 377:404–406

    Article  ADS  Google Scholar 

  • Mendillo M, Baumgardner J, Wilson J (1999) Observational test for the solar wind sputtering origin of the Moon’s extended sodium atmosphere. Icarus 137(1):13–23

    Article  ADS  Google Scholar 

  • Pieters CM, Goswami JN, Clark RN et al (2009) Character and spatial distribution of OH=H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326:568–572

    Article  ADS  Google Scholar 

  • Poppe AR, Halekas JS, Delory GT, Farrell WM (2012) Particle-in-cell simulations of the solar wind interaction with lunar crustal magnetic anomalies: magnetic cusp regions. J Geophys Res Space Physics 117(A9):16. https://doi.org/10.1029/2012JA017844

    Article  Google Scholar 

  • Saito Y et al (2008) Solar wind proton reflection at the lunar surface: low energy ion measurement by MAP-PACE onboard SELENE (KAGUYA). Geophys Res Lett 35:L24205. https://doi.org/10.1029/2008GL036077

    Article  ADS  Google Scholar 

  • Starukhina LV (2006) Polar regions of the moon as a protential repository of solar wind-implanted gases. Adv Space Res 37:50–58

    Article  ADS  Google Scholar 

  • Stern SA (1999) The lunar atmosphere: history, status, current problems, and context. RevGeo 37:453–492

    ADS  MathSciNet  Google Scholar 

  • Stern SA, Cook JC, Chaufray J-Y, Feldman PD, Gladstone GR, Retherford KD (2013) Lunar atmospheric H 2 detections by the LAMP UV spectrograph on the Lunar Reconnaissance Orbiter. Icarus 226:1210–1213

    Article  ADS  Google Scholar 

  • Sunshine JM, Farnham TL, Feaga LM et al (2009) Temporal and spatialvariability of lunar hydration as observed by the deep impact spacecraft. Science 326:565–568

    Article  ADS  Google Scholar 

  • Zeller EJ, Ronca LB, Levy PW (1966) Photon-induced hydroxyl formation on lunar surface. J Geophys Res 71(20):4855

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary M. Killen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Killen, R.M. (2019). Lunar Atmosphere, Source and Loss Processes. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_89-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_89-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics