Skip to main content

Lunar Tectonism, History of

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science
  • 143 Accesses

Definition

The temporal sequence by which tectonic landforms on the Moon were formed and what the types and spatial distributions of those landforms tell us of their formation mechanisms, with implications for the thermal evolution of the body.

Introduction

The Moon shows no evidence for having experienced plate tectonics, such as divergent or convergent plate boundaries, volcanic arcs, subduction trenches, or extensive rift zones. Instead, the Moon experienced an early phase of differentiation during primordial cooling that segregated buoyant plagioclase from a global magma ocean and led to the development of a feldspathic crust (e.g., Wood et al. 1970; Green et al. 1971). This crust, likely mechanically uniform and less dense than the underlying mantle, rendered the Moon a one-plate or stagnant-lid planetary body (e.g., Solomon and Head 1979; Hiesinger and Head 2006). With a thick, rigid outer layer hundreds of kilometers thick (e.g., Nakamura et al. 1973; Wieczorek et al. 2006), no...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahrens TJ, Rubin AM (1993) Impact-induced tensional failure in rock. J Geophys Res 98:1185–1203

    Article  ADS  Google Scholar 

  • Andrews-Hanna JC et al (2013) Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry. Science 339:675–678

    Article  ADS  Google Scholar 

  • Banks ME, Watters TR, Robinson MS, Tornabene LL, Tran T, Ojha L, Willliams NR (2012) Morphometric analysis of small-scale lobate scarps on the Moon using data from the Lunar Reconnaissance Orbiter. J Geophys Res 117:E00H11

    Article  Google Scholar 

  • Binder AB, Gunga H-C (1985) Young thrust-fault scarps in the highlands: Evidence for an initially totally molten Moon. Icarus 63:421–441.

    Article  ADS  Google Scholar 

  • Bryan WB (1973) Wrinkle-ridges as deformed surface crust on ponded mare lava. In: Proceedings of lunar science conference, vol 4, pp 93–106

    Google Scholar 

  • Byrne PK, Klimczak C, McGovern PJ, Mazarico E, James PB, Neumann GA, Zuber MT, Solomon SC (2015) Deep-seated thrust faults bound the Mare Crisium lunar mascon. Earth Planet Sci Lett 427:183–190

    Article  ADS  Google Scholar 

  • Dombard AJ, Gillis JJ (2001) Testing the viability of topographic relaxation as a mechanism for the formation of lunar floor-fractured craters. J Geophys Res 106:27901–27910

    Article  ADS  Google Scholar 

  • Golombek MP (1979) Structural analysis of lunar grabens and the shallow crustal structure of the Moon. J Geophys Res 84:4657–4666

    Article  ADS  Google Scholar 

  • Green DH, Ware NG, Hibberson A, Major A (1971) Experimental petrology of Apollo 12 mare basalts, part 1, sample 12009. Earth Planet Sci Lett 13:85–96

    Article  ADS  Google Scholar 

  • Hall JL, Solomon SC, Head JW (1981) Lunar floor-fractured craters: evidence for viscous relaxation of crater topography. J Geophys Res 86:9537–9552

    Article  ADS  Google Scholar 

  • Hartmann WK, Wood CA (1971) Moon: origin and evolution of multiring basins. The Moon 3:3–78

    Article  ADS  Google Scholar 

  • Hiesinger H, Head JW (2006) New views of lunar geoscience: an introduction and overview. Rev Mineral Geochem 60:1–81

    Article  Google Scholar 

  • Hiesinger H, van der Bogert CH, Reiss D, Robinson MS (2011) Crater size–frequency distribution measurements of Mare Crisium. Lunar Planet Sci 42:2179

    ADS  Google Scholar 

  • Johnson BC et al (2016) Formation of the Orientale lunar multiring basin. Science 354:441–444

    Article  ADS  Google Scholar 

  • Jozwiak LM, Head JW, Zuber MT, Smith DE, Neumann GA (2012) Lunar floor-fractured craters: classification, distribution, origin and implications for magmatism and shallow crustal structure. J Geophys Res 117:E11005

    Article  ADS  Google Scholar 

  • Jozwiak LM, Head JW, Wilson L (2015) Lunar floor-fractured craters as magmatic intrusions: geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies. Icarus 248:424–447

    Article  ADS  Google Scholar 

  • Lucchitta BK, Watkins JA (1978) Age of graben systems on the Moon. In: Proceedings of lunar and planetary science conference, 9th Geochim Cosmochim Acta, vol 3, pp 3459–3472

    Google Scholar 

  • Masursky H et al (1978) Apollo over the Moon: a view from orbit. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  • Mattingly TK, El-Baz F, Laidley RA (1972) Observations and impressions from lunar orbit. Apollo 16 Prel Sci Rep, pp 28-1–28-16. http://adsabs.harvard.edu/abs/1972NASSP.315..281M.

  • McGovern PJ, Litherland MM (2011) Lithospheric stress and basaltic magma ascent on the Moon, with implications for large volcanic provinces and edifices. Lunar Planet Sci 42. Abstract 2587

    Google Scholar 

  • Melosh HJ (1980) Tectonic patterns on a tidally distorted planet. Icarus 43:334–337

    Article  ADS  Google Scholar 

  • Muehlberger WR (1974) Structural history of southeastern Mare Serenitatis and adjacent highlands. In: Proceedings of lunar science conference, 5th Geochim Cosmochim Acta, vol 1, pp 101–110

    Google Scholar 

  • Mueller K, Golombek MP (2004) Compressional structures on Mars. Annu Rev Earth Planet Sci 32:435–464

    Article  ADS  Google Scholar 

  • Nakamura Y, Lammlein D, Latham G, Ewing M, Dorman J, Press F, Toksöz MN (1973) New seismic data on the state of the deep lunar interior. Science 181:49–51

    Article  ADS  Google Scholar 

  • Pike RJ (1971) Some preliminary interpretations of lunar mass-wasting process from Apollo 10 photography. In: Analysis of Apollo 10 photography and visual observations, NASA SP, vol 232. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC, pp 14–20

    Google Scholar 

  • Platz T, Massironi M, Byrne PK, Hiesinger H (2015) Volcanism and tectonism across the solar system: an overview. Geol Soc Lond Spec Publ 401:1–56

    Article  Google Scholar 

  • Plescia JB, Golombek MP (1986) Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol Soc Am Bull 97:1289–1299

    Article  Google Scholar 

  • Ronca LB (1965) A geological model of Mare Humorum. Icarus 4:390–395

    Article  ADS  Google Scholar 

  • Schultz PH (1976) Floor-fractured lunar craters. The Moon 15:241–273

    Article  ADS  Google Scholar 

  • Schultz PH, Gault DE (1975) Seismic effects from major basin formations on the Moon and Mercury. The Moon 12:159–177

    Article  ADS  Google Scholar 

  • Scott DH, Diaz JM, Watkins JA (1977) Lunar farside tectonics and volcanism. Proc Lunar Sci Conf 8:1119–1130

    ADS  Google Scholar 

  • Shoemaker EM, Robinson MS, Eliason EM (1994) The south pole region of the Moon as seen by Clementine. Science 266:1851–1854

    Article  ADS  Google Scholar 

  • Solomon SC (1977) The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys Earth Planet Inter 15:135–145

    Article  ADS  Google Scholar 

  • Solomon SC (1978) The nature of isostasy on the Moon: how big of a Pratt-fall for Airy methods. Proc Lunar Planet Sci 9:3499–3511

    ADS  Google Scholar 

  • Solomon SC, Chaiken J (1976) Thermal expansion and thermal stress in the Moon and terrestrial planets – clues to early thermal history. Proc Lunar Planet Sci 7:3229–3243

    ADS  Google Scholar 

  • Solomon SC, Head JW (1979) Vertical movement in mare basins: relation to mare emplacement, basin tectonics, and lunar thermal history. J Geophys Res 84:1667–1682

    Article  ADS  Google Scholar 

  • Solomon SC, Head JW (1980) Lunar mascon basins: lava filling, tectonics, and evolution of the lithosphere. Rev Geophys Space Phys 18:107–141

    Article  ADS  Google Scholar 

  • Strom RG (1964) Analysis of lunar lineaments, I: tectonic maps of the Moon. University of Arizona Lunar and Planetary Laboratory. Communications 2:205–216

    Google Scholar 

  • van der Bogert CH, Hiesinger H, Banks ME, Watters TR, Robinson MS (2012) Derivation of absolute model ages for lunar lobate scarps. Lunar Planet Sci Conf 43. Abstract 1847

    Google Scholar 

  • Watters TR, Johnson CL (2010) Lunar tectonics. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, New York, pp 121–182

    Google Scholar 

  • Watters TR et al (2010) Evidence of recent thrust faulting on the Moon revealed by the lunar reconnaissance orbiter camera. Science 329:936–940

    Article  ADS  Google Scholar 

  • Watters TR, Robinson MS, Collins GC, Banks ME, Daud K, Williams NR, Selvans MM (2015) Global thrust faulting on the Moon and the influence of tidal stresses. Geology 43:851–854

    Article  ADS  Google Scholar 

  • Wichman RW, Schultz PH (1995) Floor-fractured craters in Mare Smythii and west of Oceanus Procellarum: implications of crater modification by viscous relaxation and igneous intrusion models. J Geophys Res 100:21201–21218

    Article  ADS  Google Scholar 

  • Wieczorek MA, Jolliff BL, Khan A, Pritchard ME, Weiss BP, Williams JG, Hood LL, Righter K, Neal CR, Shearer CK, McCallum IS, Tompkins S, Hawke BR, Peterson C, Gillis JJ, Bussey B (2006) The constitution and structure of the lunar interior. Rev Mineral Geochem 60:221–364

    Article  Google Scholar 

  • Wilhelms DE (1987) The geologic history of the Moon. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Wood JA, Dickey JS, Marvin UB, Powell BN (1970) Lunar anorthosites and a geophysical model of the Moon. In: Levinson AA (ed) Proceedings of Apollo 11 lunar science conference, vol 1, pp 965–988

    Google Scholar 

  • Xiao Z, Zeng Z, Ding N, Molaro J (2013) Mass wasting features on the Moon – how active is the lunar surface? Earth Planet Sci Lett 376:1–11

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul K. Byrne .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Byrne, P.K. (2018). Lunar Tectonism, History of. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_85-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_85-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics