Skip to main content

Lunar Primitive Crust, Evolution of

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science

Abstract

The Moon provides a unique opportunity to characterize early large-scale differentiation processes of a planetary body including core formation, the evolution of a global magma ocean, and the formation of an early crust. Determining the chemical and mineralogical composition and evolution of the lunar crust provides first-order constraints on early planetary evolution and crustal genesis. Synthesizing data from both remote sensing and sample analysis reveals that the lunar crust is compositionally heterogeneous both laterally and vertically (e.g., Jolliff et al. 2000; Tompkins and Pieters 1999). The compositional diversity and evolution of the lunar crust are broadly understood within the framework of the lunar magma ocean (LMO) and post-LMO processes, in which the ancient crust is formed through the flotation of anorthositic plagioclase in a global differentiation event (e.g., Wood et al. 1970; Shirley 1983; Warren 1985). Other lithologies such as Mg-suite rocks are thought to have formed through subsequent post-LMO magmatism (e.g., Wieczorek et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bussey DBJ, Spudis PD (2000) Compositional studies of the Orientale, Humorum, Nectaris, and Crisium lunar basins. J Geophys Res 105:4235–4243

    Article  ADS  Google Scholar 

  • Cahill JT, Lucey PG, Wieczorek MA (2009) Compositional variations of the lunar crust: Results from radiative transfer modeling of central peak spectra. J Geophys Res 114(E9):1–17

    Article  Google Scholar 

  • de Vries J, van den Berg AP, van Westrenen W (2011) Numerical convection modelling of a compositionally stratified lunar mantle. Paper presented at the 42nd Lunar and Planetary Science Conference, Texas, 7–11 Mar 2011

    Google Scholar 

  • Dhingra D, Mustard JF, Wiseman S et al (2011) Non-linear spectral un-mixing using Hapke modeling: application to remotely acquired M3 spectra of spinel bearing lithologies on the moon. Paper presented at the 42nd Lunar and Planetary Science Conference, Texas, 7–11 Mar 2011

    Google Scholar 

  • Elardo SM, Draper DS, Shearer CK (2011) Lunar Magma Ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim Cosmochim Acta 75(11):3024–3045

    Article  ADS  Google Scholar 

  • Heiken GH et al (1991) Lunar sourcebook: A user’s guide to the Moon. Cambridge University Press Archive, pp 126–129

    Google Scholar 

  • Hess PC, Parmentier EM (1995) A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet Sci Lett 134(3):501–514

    Article  ADS  Google Scholar 

  • Hiesinger H, Head JW (2006) New views of lunar geoscience: an introduction and overview. Rev mineral geochem 60(1):1–81

    Article  Google Scholar 

  • Jackson CR, Cheek LC, Parman SW et al (2012) Compositional constraints on lunar spinel anorthosite: Synthesis of spinel with variable iron content. Paper presented at the 43rd Lunar and Planetary Science Conference, Texas, 19–23 Mar 2012

    Google Scholar 

  • Jolliff BL, Gillis JJ, Haskin LA et al (2000) Major lunar crustal terranes: Surface expressions and crust-mantle origins. J Geophys Res 105(E2):4197–4216

    Article  ADS  Google Scholar 

  • Lawrence DJ, Feldman WC, Barraclough BL et al (1998) Global elemental maps of the Moon: the Lunar Prospector gamma-ray spectrometer. Science 281(5382):1484–1489

    Article  ADS  Google Scholar 

  • Lawrence DJ, Feldman WC, Barraclough BL et al (2000) Thorium abundances on the lunar surface. J Geophys Res 105(E8):20307–20331

    Article  ADS  Google Scholar 

  • Lucey PG, Taylor GJ, Hawke B et al (1998) FeO and TiO2 concentrations in the South Pole-Aitken basin: implications for mantle composition and basin formation. J Geophys Res 103(E2):3701–3708

    Article  ADS  Google Scholar 

  • Lucey P, Korotev RL, Gillis JJ et al (2006) Understanding the lunar surface and space-moon interactions. Rev Mineral Geochem 60(1):83–219

    Article  Google Scholar 

  • Papike J, Taylor L, Simon S (1991) Lunar minerals. In: Lunar sourcebook: a user’s guide to the Moon. Cambridge University Press, New York, pp p121–p181

    Google Scholar 

  • Pieters CM, Boardman J, Buratti B et al (2010) Identification of a new spinel-rich lunar rock type by the Moon Mineralogy Mapper (M3). Paper presented at the 41st Lunar and Planetary Science Conference, Texas, 1–5 Mar 2010

    Google Scholar 

  • Pieters CM, Besse S, Boardman J et al (2011) Mg-spinel lithology: A new rock type on the lunar farside. J Geophys Res 116(E6):1–14

    Google Scholar 

  • Ryder G, Wood JA (1977) Serenitatis and Imbrium impact melts-Implications for large-scale layering in the lunar crust. Paper presented at the 8th Lunar and Planetary Science Conference proceedings, Texas, 1977

    Google Scholar 

  • Shearer CK, Papike JJ (1999) Magmatic evolution of the Moon. Am Mineral 84:1469–1494

    Article  ADS  Google Scholar 

  • Shearer CK, Hess PC, Wieczorek MA et al (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60(1):365–518

    Article  Google Scholar 

  • Shirley DN (1983) A partially molten magma ocean model. J Geophys Res 88(S02):A519–A527

    Article  Google Scholar 

  • Snyder GA, Taylor LA, Neal CR (1992) A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56(10):3809–3823

    Article  ADS  Google Scholar 

  • Song E, Bandfield JL, Lucey PG et al (2013) Bulk mineralogy of lunar crater central peaks via thermal infrared spectra from the Diviner Lunar Radiometer: a study of the Moon’s crustal composition at depth. J Geophys Res 118(4):689–707

    Article  Google Scholar 

  • Spudis PD, Davis PA (1986) A chemical and petrological model of the lunar crust and implications for lunar crustal origin. J Geophys Res 91(B13):E84–E90

    Article  Google Scholar 

  • Spudis PD, Hawke BR, Lucey P (1984) Composition of Orientale basin deposits and implications for the lunar basin-forming process. J Geophys Res 89(S01):C197–C210

    Article  Google Scholar 

  • Spudis PD, Bussey DB, Hawke BR (1999). Structure and composition of the lunar crust. Paper presented at New Views of the Moon 2: understanding the Moon through the Integration of Diverse Datasets

    Google Scholar 

  • Sun Y, Li L (2015) Characterization of Lunar Crust Mineralogy with M3 Data. Paper presented at the 46th Lunar and Planetary Science Conference, Texas, 16–20 Mar 2015

    Google Scholar 

  • Taylor GJ, Wieczorek MA (2014) Lunar bulk chemical composition: a post-Gravity Recovery and Interior Laboratory reassessment. Philos Trans R Soc A Math Phys Eng Sci 372(2024):20130242

    Article  ADS  Google Scholar 

  • Tompkins S, Pieters CM (1999) Mineralogy of the lunar crust: results from Clementine. Meteorit Planet Sci 34(1):25–41

    Article  ADS  Google Scholar 

  • Warren PH (1985) The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci 13:201–240

    Article  ADS  Google Scholar 

  • Warren PH (1986) Anorthosite assimilation and the origin of the Mg/Fe-related bimodality of pristine moon rocks: support for the magmasphere hypothesis. J Geophys Res 91(B4):331–343

    Article  ADS  Google Scholar 

  • Wieczorek MA, Jolliff BL, Khan A et al (2006) The constitution and structure of the lunar interior. Rev Mineral Geochem 60(1):221–364

    Article  Google Scholar 

  • Wieczorek MA, Neumann GA, Nimmo F et al (2013) The crust of the Moon as seen by GRAIL. Science 339(6120):671–675

    Article  ADS  Google Scholar 

  • Wood JA, Dickey JS Jr, Marvin UB et al (1970) Lunar anorthosites and a geophysical model of the moon. Geochim Cosmochim Acta Suppl 1:965

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Sun, Y. (2016). Lunar Primitive Crust, Evolution of. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics