Skip to main content

Lunar Magma Ocean, Comparison to Other Planetary Magma Oceans

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Lunar Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe Y, Matsui T (1986) Early evolution of the earth: accretion, atmosphere formation, and thermal history. J Geophys Res Solid Earth 91:E291–E302

    Article  ADS  Google Scholar 

  • Baker J et al (2005) Early planetesimals melting from an age of 4.5662 Gyr for differentiated meteorites. Nature 436:1127–1131

    Article  ADS  Google Scholar 

  • Barrat JA, Yamaguchi A (2014) Comment on: “the origin of eucrites, diogenites and olivine diogenites: Magma ocean crystallization and shallow magma processes on Vesta” by BE Mandler and LT Elkins-Tanton. Meteorit Planet Sci 49:468–472

    Article  ADS  Google Scholar 

  • Brown SM, Elkins-Tanton LT (2009) Compositions of Mercury's earliest crust from magma ocean models. Earth Planet Sci Lett 286(3):446–455

    Article  ADS  Google Scholar 

  • Cuk M, Stewart ST (2012) Making the Moon from a fast-spinning earth: a giant Iimpact followed by resonant despinning. Science 338:1047–1052

    Article  ADS  Google Scholar 

  • Dale CW et al (2012) Late accretion on the earliest planetesimals revealed by the highly siderophile elements. Science 336:73–75

    Article  ADS  Google Scholar 

  • Dauphas N, Pourmand A (2011) Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–492

    Article  ADS  Google Scholar 

  • Davison TM, Ciesla FJ, Collins GS (2012) Post-impact thermal evolution of porous planetesimals. Geochim Cosmochim Acta 95:252–269

    Article  ADS  Google Scholar 

  • Debaille V, Brandon AD, Yin QZ, Jacobsen B (2007) Coupled 142Nd-143Nd evidence for a protracted magma ocean in Mars. Nature 450:525–528

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT (2012) Magma oceans in the inner solar system. Annu Rev Earth Planet Sci 40:113–139

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT, Weiss BP, Zuber MT (2011) Chondrites as samples of differentiated planetesimals. Earth Planet Sci Lett 305:1–10

    Article  ADS  Google Scholar 

  • Fujiya W, Sugiura N, Sano Y, Hiyagon H (2013) Mn-Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite. Earth Planet Sci Lett 362:130–142

    Article  ADS  Google Scholar 

  • Greenwood RC, Franchi IA, Jambon A. and Buchanan PC (2005) Widespread magma oceans on asteroidal bodies in the early Solar system. Nature 435:916–918

    Article  ADS  Google Scholar 

  • Greenwood RC et al (2014) The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth Planet Sci Lett 390:165–174

    Article  ADS  Google Scholar 

  • Keil K (2012) Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chem Erde 72:191–218

    Article  Google Scholar 

  • Kinoshita N et al (2012) A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the solar system. Science 335:1614–1617

    Article  ADS  Google Scholar 

  • Kleine T et al (2004) 182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim Cosmochim Acta 68:2935–2946

    Article  ADS  Google Scholar 

  • Kleine T et al (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim Cosmochim Acta 73:5150–5188

    Article  ADS  Google Scholar 

  • Kleine T, Hans U, Irving AJ, Bourdon B (2012) Chronology of the angrite parent body and implications for core formation in protoplanets. Geochim Cosmochim Acta 84:186–203

    Article  ADS  Google Scholar 

  • Kong P, Ebihara M, Palme H (1999) Siderophile elements in Martian meteorites and implications for core formation in Mars. Geochim Cosmochim Acta 63:1865–1875

    Article  ADS  Google Scholar 

  • Lin YH et al (2017) Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean. Nat Geosci 10:14–18

    Article  ADS  Google Scholar 

  • Mandler BE, Elkins-Tanton LT (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteorit Planet Sci 48:2333–2349

    Article  ADS  Google Scholar 

  • McSween HY Jr et al (2013) Dawn, the Vesta-HED connection, and the geologic context for eucrites, diogenites, and howardites. Meteorit Planet Sci 48:2090–2104

    Article  ADS  Google Scholar 

  • Nimmo F, Kleine T (2015) Early differentiation and core formation: processes and timescales. In: The early earth: accretion and differentiation. American Geophysical Union/Wiley, Washington, DC/Hoboken

    Google Scholar 

  • Peplowski PN et al (2016) Remote sensing evidence for an ancient carbon-bearing crust on mercury. Nat Geosci 9:273–276

    Article  ADS  Google Scholar 

  • Rai N, van Westrenen W (2014) Core-mante differentiation in Mars. J Geophys Res: Planets 118:1195–1203

    Article  ADS  Google Scholar 

  • Righter K (2008) Siderophile element depletion in the Angrite Parent Body (APB) Mantle: due to core formation?. In: 39th Lunar and Planetary Science Conference #9729, League City

    Google Scholar 

  • Righter K, Chabot NL (2011) Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars. Meteorit Planet Sci 46:157–176

    Article  ADS  Google Scholar 

  • Righter K et al (2015) Highly siderophile element (HSE) abundances in the mantle of Mars are due to core formation at high pressure and temperature. Meteorit Planet Sci 50:604–631

    Article  ADS  Google Scholar 

  • Rubie DC, Nimmo F, Melosh HJ (2007) Formation of Earth’s core. Treatise Geophys 9:51–90

    Article  Google Scholar 

  • Rugel G et al (2009) New measurement of the Fe60 half-life. Phys Rev Lett 103:072502-1–072502-4

    Article  ADS  Google Scholar 

  • Schiller M et al (2011) Rapid timescales for magma ocean crystallization on the howardite-eucrite-diogenite parent body. Astrophys J Letters 740:L22

    Article  ADS  Google Scholar 

  • Schiller M et al (2015) Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth Planet Sci Lett 420:45–54

    Article  ADS  Google Scholar 

  • Shirai N, Humayun M, Righter K (2008) Moderately siderophile element abundances in angrites. Meteorit Planet Sci Suppl 43:5294

    ADS  Google Scholar 

  • Smith JV et al (1970) Petrologic history of the Moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. In: Proceedings of the Apollo 11 lunar science conference. Pergammon Press, New York, pp 897–925

    Google Scholar 

  • Steenstra ES et al (2017) The effect of melt composition on metal-silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body. Geochim Cosmochim Acta 212(6):62–83

    Article  ADS  Google Scholar 

  • Tang T, Dauphas N (2012) Abundance, distribution and origin of 60Fe in the solar protoplanetary disk. Earth Planet Sci Lett 359:248–263

    Article  ADS  Google Scholar 

  • Tang H, Dauphas N (2014) 60Fe-60Ni chronology of core formation in Mars. Earth Planet Sci Lett 390:264–274

    Article  ADS  Google Scholar 

  • Trinquier A et al (2008) 53Mn-53Cr systematics of the early solar system revisited. Geochim Cosmochim Acta 72:5146–5163

    Article  ADS  Google Scholar 

  • Tucker JM, Mukhopadhyay S (2014) Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet Sci Lett 393:254–265

    Article  ADS  Google Scholar 

  • Van Orman JA, Cherniak DJ, Kita NT (2014) Magnesium diffusion in plagioclase: dependence on composition, and implications for thermal resetting of the 26Al-26Mg early solar system chronometer. Earth Planet Sci Lett 385:79–88

    Article  ADS  Google Scholar 

  • Vander Kaaden KE, McCubbin FM (2015) Exotic crust formation on mercury: consequences of shallow, FeO-poor mantle. J Geophys Res Planets 120:195–209

    Article  ADS  Google Scholar 

  • Wadhwa M, Srinivasan G, Carlson RW (2006) Timescales of planetesimal differentiation in the early solar system. In: Meteorites and the early solar system. University of Arizona Press, Tucson, pp 715–732

    Google Scholar 

  • Wood JA et al (1970) Lunar anorthosites and a geophysical model of the Moon. In: Proceedings of the Apollo 11 lunar science conference. Pergamon Press, New York, pp 965–988

    Google Scholar 

  • Zahnle K et al (2007) Emergence of a habitable planet. Space Sci Rev 129:35–78

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Steenstra .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Steenstra, E.S., van Westrenen, W. (2017). Lunar Magma Ocean, Comparison to Other Planetary Magma Oceans. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics