Skip to main content

Lunar Magma Ocean

A Benchmark of Lunar and Planetary Geologic Theory

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science
  • 298 Accesses

Understanding the ways in which the solar system and space beyond formed is essential to achieving human exploration in space. Additionally, understanding the formation and evolution of the Moon is the key to jump-starting this foray into space. The Moon holds key information to unlocking the evolution of the solar system, as well as potential opportunities for future colonies, exploration, or extraction of natural resources.

The Moon is the most explored body in the solar system other than the Earth, and the basic concepts of planetary formation by giant impact origin and planetary evolution processes are based on the data obtained by past lunar missions. Ever since the return and analysis of samples in 1969 by the Apollo 11 mission to the Moon, a number of investigators have advocated for the segregation of low-density plagioclase via a large scale-melting event in an attempt to help explain the large occurrences of plagioclase-rich crust on the Moon (Fig. 1; Smith et al. 1970; Wood...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agnor CB, Canup RM, Levison HF (1999) On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142:219–237

    Article  ADS  Google Scholar 

  • Benz W, Slattery WL, Cameron AGW (1986) The origin of the moon and the single-impact hypothesis I. Icarus 66:515–535

    Article  ADS  Google Scholar 

  • Benz W, Slattery WL, Cameron AGW (1987) The origin of the moon and the single-impact hypothesis II. Icarus 71:30–45

    Article  ADS  Google Scholar 

  • Cameron AGW (1997) The origin of the Moon and the single impact hypothesis V. Icarus 126:126–137

    Article  ADS  Google Scholar 

  • Cameron AGW, Benz W (1991) The origin of the Moon and the single impact hypothesis IV. Icarus 92:204–216

    Article  ADS  Google Scholar 

  • Cameron AGW, Canup RM (1998) The giant impact and the formation of the Moon. In: Proceedings of origin of the Earth and Moon. LPI contribution no. 957, Lunar and Planetary Institute.

    Google Scholar 

  • Canup RM (2004) Dynamics of lunar formation. Ann Rev Astron Astrophys 42:441–475

    Article  ADS  Google Scholar 

  • Canup RM, Asphaug E (2001) The lunar-forming giant impact. Nature 412:708–712

    Article  ADS  Google Scholar 

  • Canup RM, Esposito LW (1996) Accretion of the Moon from an impact-generated disk. Icarus 119:427–446

    Article  ADS  Google Scholar 

  • Elardo SM, Draper DS, Shearer CK (2011) Lunar magma ocean crystallisation revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim Cosmochim Acta 75:3024–3045

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT, Van Orman J, Hager BH, Grove TL (2002) Reexamination of the lunar magma ocean cumulate overturn hypothesis: melting or mixing is required. Earth Planet Sci Lett 196:249–259

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT, Burgess S, Yin QZ (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci Lett 304:326–336

    Article  ADS  Google Scholar 

  • Green DH, Ringwood AE, Ware NG, Hibberson A, Kiss E (1971a) Experimental petrology and petrogenesis of Apollo 12 basalts. In: Proceedings of Lunar Science Conference, vol 2, pp 601–615

    Google Scholar 

  • Green DH, Ware NG, Hibberson A, Major A (1971b) Experimental petrology of Apollo 12 mare basalts, part 1, sample 12009. Earth Planet Sci Lett 13:85–96

    Google Scholar 

  • Haskin LA, Lindstrom MM, Salpas PA, Lindstrom D (1981) On compositional variations among lunar anorthosites. In: Proceedings of Lunar and Planetary Science Conference, vol 12, pp 41–66

    Google Scholar 

  • Levison HF, Dones L, Chapman CR, Stern SA, Duncan MJ, Zahnle K (2001) Could the lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune? Icarus 151:286–306

    Article  ADS  Google Scholar 

  • Longhi J (2003) A new view of lunar ferroan anorthosites: postmagma ocean petrogenesis. J Geophys Res 108:5083–5098

    Article  Google Scholar 

  • Longhi J (2006) Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation. Geochim Cosmochim Acta 70:5919–5934

    Article  ADS  Google Scholar 

  • Longhi J, Ashwal LD (1985) Two-stage models for lunar and terrestrial anorthosites: petrogenesis without a magma ocean. In: Proceedings, 15th Lunar and Planetary Science Conference, pp C571–C584

    Google Scholar 

  • McCallum IS (2001) A new view of the Moon in light of data from Clementine and Prospector missions. Earth Moon Planet 85–85:253–269

    Google Scholar 

  • Morse SA (1982) Adcumulus growth of anorthosite at the base of the lunar crust. In: Proceedings of Lunar and Planetary Science Conference, vol 13, pp A10–A18

    Google Scholar 

  • Namur O, Charlier B, Picard C, Hermann J, Liegeois JP, Auwera JV (2011) Anorthosite formation by plagioclase floatation in ferrobasalt and implications for the lunar crust. Geochim Cosmochim Acta 75:4998–5018

    Article  ADS  Google Scholar 

  • Nyquist LE, Shih C-Y (1992) The isotopic record of lunar volcanism. Geochim Cosmochim Acta 56:2213–2234

    Article  ADS  Google Scholar 

  • Nyquist LE, Smith CY, Wooden JL, Bansal BM, Wiesmann H (1979) The Sr and Nd isotopic record of Apollo 12 basalts. Implications for lunar geochemical evolution. In: Proceedings, 10th Lunar and Planetary Science Conference, pp 77–114

    Google Scholar 

  • Rapp JF, Draper DS (2012) Experimental fractional crystallization of the lunar magma ocean (abstract #2048). In: 43rd Lunar and Planetary Science Conference. CDROM

    Google Scholar 

  • Rapp JF, Draper DS (2013) Can fractional crystallization of a lunar magma ocean produce the crust? (abstract #2732). In: 44th Lunar and Planetary Science Conference. CD-ROM

    Google Scholar 

  • Ryder G (1982) Lunar anorthosite 60025, the petrogenesis of lunar anorthosites, and the bulk composition of the Moon. Geochim Cosmochim Acta 46:1591–1601

    Article  ADS  Google Scholar 

  • Smith JV, Anderson AT, Newton RC, Olsen EJ, Wyllie PJ, Crewe AV, Isaacson MS, Johnson D (1970) Petrologic history of the moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. In: Proceedings, Apollo 11 Lunar Science Conference, pp 897–925

    Google Scholar 

  • Snyder GA, Taylor LA, Neal CR (1992) A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56:3809–3823

    Article  ADS  Google Scholar 

  • Spera FJ (1992) Lunar magma transport phenomena. Geochim Cosmochim Acta 56:2253–2265

    Article  ADS  Google Scholar 

  • Stöffler D, Ryder G (2001) Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. In: Kallenbach R, Geiss J, Hartmann WK (eds) Chronology and evolution of Mars, Space science series of ISSI. Kluwer Academic Publishers, Dordrecht, Space Science Rev 96:9–54

    Google Scholar 

  • Taylor SR (1978) Geochemical constraints on melting and differentiation of the Moon. In: Proceedings, 9th Lunar and Planetary Science Conference, pp 12–23

    Google Scholar 

  • Taylor SR (1982) Planetary science: a lunar perspective. Lunar and Planetary Institute, Houston, 481 p

    Google Scholar 

  • Taylor SR, Jakes P (1974) The geochemical evolution of the Moon. In: Proceedings, 5th Lunar Science Conference, pp 1287–1305

    Google Scholar 

  • Tonks WB, Melosh HJ (1992) Core formation by giant impacts. Icarus 100:326–346

    Article  ADS  Google Scholar 

  • Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res 98:5319–5333

    Article  ADS  Google Scholar 

  • Warren PH (1985) The magma ocean concept and lunar evolution. Ann Rev Earth Planet Sci 13:201–240

    Article  ADS  Google Scholar 

  • Wieczorek MA, Neumann GA, Nimmo F, Kiefer WS, Taylor GJ, Melosh JH, Phillips RJ, Solomon SC, Andrews-Hanna JC, Asmir SW, Konopliv AS, Lemoine FG, Smith DE, Watkins MM, Williams JG, Zuber MT (2013) The crust of the Moon as seen by GRAIL. Science 339:671–675

    Article  ADS  Google Scholar 

  • Wood JA, Dickey JSJ, Marvin UB, Powell BN (1970) Lunar anorthosites and a geophysical model of the moon. In: Proceedings, Apollo 11 Lunar Science Conference, pp 965–988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse D. Davenport .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Davenport, J.D. (2016). Lunar Magma Ocean. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics