Skip to main content

Lunar Magma Ocean, Pre-Apollo, Apollo, and Post-Apollo Views

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Lunar Science
  • 247 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Binder AB (1976) On the compositions and characteristics of the mare basalt magmas and their source regions. The Moon 16:115–150

    Article  ADS  Google Scholar 

  • Binder AB (1980) The first few hundred years of evolution of a moon of fission origin. Proc Lunar Planet Sci Conf 11th 1931–1939

    Google Scholar 

  • Borg LE, Connelly JN, Boyet M, Carlson RW (2011) Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477:70–72

    Article  ADS  Google Scholar 

  • Boyet M, Carlson RW (2007) A highly depleted moon or a non-magma ocean origin for the lunar crust? Earth Planet Sci Lett 262:505–516

    Google Scholar 

  • Brandon AD, Lapen TJ, Debaille V, Beard BL, Rankenburg K, Neal CR (2009) Re-evaluating 142Nd/144Nd in lunar mare basalts with implications for the early evolution and bulk Sm/Nd of the Moon. Geochim Cosmochim Acta 73:6421–6445

    Article  ADS  Google Scholar 

  • Buck WR, Toksöz MN (1980) The bulk composition of the Moon based on geophysical constraints. Proc Lunar Planet Sci Conf 11th 2043–2058

    Google Scholar 

  • Buffon GLL, Comte De (1749) Histoire naturelle, generale et particuliere. Paris, Imprimeric royale

    Google Scholar 

  • Byrne CJ (2007) A large basin on the near side of the moon. Earth Moon Planet 101:153–188. doi:10.1007/s11038-007-9225-8

    Article  ADS  Google Scholar 

  • Chenoweth PA (1962) Comparison of the ocean floor with the lunar surface. Geol Soc Am Bull 73:199–210. doi:10.1130/0016-7606(1962)73[199:COTOFW]2.0.CO;2

    Article  Google Scholar 

  • Davenport JD, Longhi JE, Neal CR, et al (2013) MAGFOX, MAGPOX and FXMOTR: a suite of lunar and planetary igneous crystallization programs. www.lpi.usra.edu

  • Draper DS, van Westrenen W (2007) Quantifying garnet-melt trace element partitioning using lattice-strain theory: assessment of statistically significant controls and a new predictive model. Contrib Mineral Petrol 154:731–746. doi:10.1007/s00410-007-0235-3

    Article  ADS  Google Scholar 

  • Draper DS, duFrane SA, Shearer CK Jr et al (2006) High-pressure phase equilibria and element partitioning experiments on Apollo 15 green C picritic glass: implications for the role of garnet in the deep lunar interior. Geochim Cosmochim Acta 70:2400–2416. doi:10.1016/j.gca.2006.01.027

    Article  ADS  Google Scholar 

  • Elardo SM, Draper DS, Shearer CK Jr (2011) Lunar Magma Ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim Cosmochim Acta 75:3024–3045. doi:10.1016/j.gca.2011.02.033

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT, Chatterjee N, Grove TL (2003) Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses. Meteorit Planet Sci 38:515–527. doi:10.1111/j.1945-5100.2003.tb00024.x

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT, Burgess S, Yin Q-Z (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci Lett 304:326–336. doi:10.1016/j.epsl.2011.02.004

    Article  ADS  Google Scholar 

  • Gaffney AM, Borg LE (2014) A young solidification age for the lunar magma ocean. Geochim Cosmochim Acta 140:227–240

    Article  ADS  Google Scholar 

  • Greeley R (1994) Planetary landscapes, 2nd edn. New York, NY, Chapman & Hall. doi:10.1017/S0016756800012954

    Google Scholar 

  • Green DH, Ringwood AE, Ware NG, et al (1971a) Experimental petrology and petrogenesis of Apollo 12 basalts. Proc Lunar Sci Conf 2nd 1:601–615

    Google Scholar 

  • Green DH, Ware NG, Hibberson WO, Major A (1971b) Experimental petrology of Apollo 12 basalts: part 1, sample 12009. Earth Planet Sci Lett 13:85–96

    Google Scholar 

  • Haskin LA (1989) Rare earth elements in lunar materials. Rev Mineral Geochem 21:227–258

    Google Scholar 

  • Haskin LA, Lindstrom MM, Salpas PA, Lindstrom DJ (1981) On compositional variations among lunar anorthosites. Proc Lunar Planet Sci 12B:41–66

    ADS  Google Scholar 

  • Hess PC, Parmentier EM (1995) A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet Sci Lett 134:501–514. doi:10.1016/0012-821X(95)00138-3

    Article  ADS  Google Scholar 

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108. doi:10.1016/0012-821X(96)00154-9

    Article  ADS  Google Scholar 

  • Hubbard NJ, Gast PW, Meyer C et al (1971) Chemical composition of lunar anorthosites and their parent liquids. Earth Planet Sci Lett 13:71–75. doi:10.1016/0012-821X(71)90106-3

    Article  ADS  Google Scholar 

  • Jolliff BL, Gaddis LR, Ryder G, et al (2000) New views of the Moon: improved understanding through data integration. Eos 81:349–354, 355

    Google Scholar 

  • Kant I (1969) Universal natural history and theory of the heavens. Introduction by Milton K. Munitz. Ann Arbor, University of Michigan Press

    Google Scholar 

  • Kesson SE (1975) Mare basalts: melting experiments and petrogenetic interpretations. Proc Lunar Sci Conf 6th 921–944

    Google Scholar 

  • Kirk RL, Stevenson DJ (1989) The competition between thermal contraction and differentiation in the stress history of the moon. J Geophys Res 94:12133–12144. doi:10.1029/JB094iB09p12133, ISSN 0148-0227

    Article  ADS  Google Scholar 

  • Lee D-C, Halliday AN, Leya I et al (2002) Cosmogenic tungsten and the origin and earliest differentiation of the Moon. Earth Planet Sci Lett 198:267–274. doi:10.1016/S0012-821X(02)00533-2

    Article  ADS  Google Scholar 

  • Longhi J (2003) A new view of lunar ferroan anorthosites: postmagma ocean petrogenesis. J Geophys Res 108:5083. doi:10.1029/2002JE001941

    Article  Google Scholar 

  • Longhi J (2006) Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation. Geochim Cosmochim Acta 70:5919–5934. doi:10.1016/j.gca.2006.09.023

    Article  ADS  Google Scholar 

  • Longhi J, Ashwal LD (1985) Two-stage models for lunar and terrestrial anorthosites: petrogenesis without a magma ocean. J Geophys Res 90:C571–C584

    Article  Google Scholar 

  • Loper DE, Werner CL (2002) On lunar asymmetries 1. Tilted convection and crustal asymmetry. J Geophys Res 107:5046. doi:10.1029/2000JE001441

    Article  Google Scholar 

  • Lugmair GW, Carlson RW (1978) The Sm-Nd history of KREEP. Proc Lunar Planet Sci Conf 9th 689–704

    Google Scholar 

  • Meyer C Jr, Brett R, Hubbard NJ, et al (1971) Mineralogy, chemistry, and origin of the KREEP component in soil samples from the Ocean of Storms. Proc Lunar Sci Conf 2nd 1:393–411

    Google Scholar 

  • Minear JW (1980) The lunar magma ocean: a transient lunar phenomenon. Proc Lunar Planet Sci Conf 11th 1941–1955

    Google Scholar 

  • Minear JW, Fletcher CR (1978) Crystallization of a lunar magma ocean. Proc Lunar Planet Sci Conf 9th 263–283

    Google Scholar 

  • Miyamoto S (1968) Morphological study of the lunar crust. Icarus 9:373–390

    Article  ADS  Google Scholar 

  • Morse SA (1982) Adcumulus growth of anorthosite at the base of the lunar crust. J Geophys Res 87:A10–A18

    Article  Google Scholar 

  • Namur O, Charlier B, Toplis MJ et al (2011) Differentiation of tholeiitic basalt to A-type granite in the Sept Iles layered intrusion, Canada. J Petrol 52:487–539. doi:10.1093/petrology/egq088

    Article  Google Scholar 

  • Neal CR (2001) Interior of the Moon: the presence of garnet in the primitive deep lunar mantle. J Geophys Res 106:27865–27886. doi:10.1029/2000JE001386

    Article  ADS  Google Scholar 

  • Nemchin A, Timms NE, Pidgeon RT et al (2009) Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat Geosci 2:133–136. doi:10.1038/ngeo417

    Article  ADS  Google Scholar 

  • Neumann GA, Zuber MT, Smith DE, Lemoine FG (1996) The lunar crust: global structure and signature of major basins. J Geophys Res 101:16841–16864. doi:10.1029/96JE01246

    Article  ADS  Google Scholar 

  • Nyquist LE (1977) Lunar Rb-Sr chronology. Phys Chem Earth 10:103–142

    ADS  Google Scholar 

  • Nyquist LE, Shih C-Y (1992) The isotopic record of lunar volcanism. Geochim Cosmochim Acta 56:2213–2234. doi:10.1016/0016-7037(92)90185-L

    Article  ADS  Google Scholar 

  • Nyquist LE, Shih C-Y, Wooden JL, et al (1979) The Sr and Nd isotopic record of Apollo 12 basalts: implications for lunar geochemical evolution. Proc Lunar Planet Sci Conf 10th 77–114

    Google Scholar 

  • Papanastassiou DA, Wasserburg GJ (1975) Rb-Sr study of a lunar dunite and evidence for early lunar differentiates. Proc Lunar Sci Conf 6th 1467–1489

    Google Scholar 

  • Ringwood AE, Kesson SE (1976) A dynamic model for mare basalt petrogenesis. Proc Lunar Sci Conf 7th 1697–1722

    Google Scholar 

  • Ryder G (1982) A note against a small-body origin for shergottites, nakhlites, and chassignites. J Geophys Res 87:A401–A402

    Article  Google Scholar 

  • Sha L-K (2012) Concurrent fractional and equilibrium crystallisation. Geochim Cosmochim Acta 86:52–75. doi:10.1016/j.gca.2012.02.027

    Article  ADS  Google Scholar 

  • Shearer CK Jr, Papike JJ (1993) Basaltic magmatism on the Moon: a perspective from volcanic picritic glass beads. Geochim Cosmochim Acta 57:4785–4812. doi:10.1016/0016-7037(93)90200-G

    Article  ADS  Google Scholar 

  • Shearer CK Jr, Layne GD, Papike JJ (1994) The systematics of light lithophile elements (Li, Be and B) in lunar picritic glasses: implications for basaltic magmatism on the Moon and the origin of the Moon. Geochim Cosmochim Acta 58:5349–5362. doi:10.1016/0016-7037(94)90318-2

    Article  ADS  Google Scholar 

  • Smith JV, Anderson AT Jr., Newton RC, et al (1970) Petrologic history of the moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. Proc Apollo 11 Lunar Sci Conf 1:897–925

    Google Scholar 

  • Snyder GA, Taylor LA, Neal CR (1992) A chemical model for generating the sources of mare basalts – combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56:3809–3823. doi:10.1016/0016-7037(92)90172-F

    Article  ADS  Google Scholar 

  • Solomatov VS (2000) Fluid dynamics of a terrestrial magma ocean. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. Tucson, pp 323–338

    Google Scholar 

  • Solomon SC, Chaiken J (1976) Thermal expansion and thermal stress in the moon and terrestrial planets: clues to early thermal history. Proc Lunar Sci Conf 7th 3229–3243

    Google Scholar 

  • Solomon SC, Longhi J (1977) Magma oceanography: 1. Thermal evolution. Proc Lunar Sci Conf 8th 583–599

    Google Scholar 

  • Spera FJ (1992) Lunar magma transport phenomena. Geochim Cosmochim Acta 56:2253–2265. doi:10.1016/0016-7037(92)90187-N

    Article  ADS  Google Scholar 

  • Taylor SR (1982) Planetary science: a lunar perspective. Houston, Texas, Lunar and Planetary Institute

    Google Scholar 

  • Taylor SR, Jakeš P (1974) The geochemical evolution of the moon. Proc Lunar Conf 5th 2:1287–1305

    Google Scholar 

  • Tera F, Wasserburg GJ (1974) U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the Moon. Proc Lunar Conf 5th 2:1571–1599

    Google Scholar 

  • Thomson W (1864) On the secular cooling of the earth. Trans R Soc Edinb XXIII:157–169

    Google Scholar 

  • Touboul M, Kleine T, Bourdon B et al (2009) Tungsten isotopes in ferroan anorthosites: implications for the age of the Moon and lifetime of its magma ocean. Icarus 199:245–249. doi:10.1016/j.icarus.2008.11.018

    Article  ADS  Google Scholar 

  • Van Orman JA, Grove TL (2000) Origin of lunar high-titanium ultramafic glasses: constraints from phase relations and dissolution kinetics of clinopyroxene-ilmenite cumulates. Meteorit Planet Sci 35:783–794

    Article  ADS  Google Scholar 

  • Walker D (1983) Lunar and terrestrial crust formation. J Geophys Res 88:B17–B25. doi:10.1029/JB088iS01p00B17

    Article  Google Scholar 

  • Warren PH (1985) The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci 13:201–240

    Article  ADS  Google Scholar 

  • Warren PH, Wasson JT (1979) The origin of KREEP. Rev Geophys Space Phys 17:73–88. doi:10.1029/RG017i001p00073

    Article  ADS  Google Scholar 

  • Wasson JT, Warren PH (1980) Contribution of the mantle to the lunar asymmetry. Icarus 44:752–771. doi:10.1016/0019-1035(80)90142-6

    Article  ADS  Google Scholar 

  • Wood JA, Dickey JS Jr, Marvin UB, Powell BN (1970a) Lunar anorthosites and a geophysical model of the Moon. Proc Apollo 11 Lunar Sci Conf 1:965–988

    Google Scholar 

  • Wood JA, Dickey JS Jr, Marvin UB, Powell BN (1970b) Lunar anorthosites. Science 167:602–604. doi:10.1126/science.167.3918.602

    Google Scholar 

  • Zhong S, Parmentier EM, Zuber MT (2000) A dynamic origin for the global asymmetry of lunar mare basalts. Earth Planet Sci Lett 177:131–140. doi:10.1016/S0012-821X(00)00041-8

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Donohue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Donohue, P. (2015). Lunar Magma Ocean, Pre-Apollo, Apollo, and Post-Apollo Views. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics