Skip to main content

Lunar Magma Ocean Theory, Origins, and Rationale

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science
  • 752 Accesses

Introduction

The lunar magma ocean (LMO) is a term used in planetary science to describe the thermal state of Earth’s Moon in the thousands to millions of years following its formation. The most widely accepted model for the formation of the Moon invokes a collision between proto-Earth and another proto-planet, often referred to as Theia (e.g., Hartmann and Davis 1975; Cameron and Ward 1976; Pritchard and Stevenson 2000; Canup and Asphaug 2001; Canup 2004, 2012; Ćuk and Stewart 2012). The Moon accreted from the resulting debris disk surrounding the Earth, which likely consisted of molten and vaporized silicate material. The accretion of the Moon from this debris disk leads to a body in a largely or completely molten state. This “magmasphere” is referred to as the LMO (Warren 1985).

The composition of the LMO is likely that of the bulk silicate Moon (BSM) and estimates of its depth have ranged from ~250 km to whole Moon melting (e.g., Taylor and Jakeš 1974; Solomon 1977; Warren 1985;...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adler I, Trombka JI (1977) Orbital chemistry – lunar-surface analysis from x-ray and gamma-ray remote-sensing experiments. Phys Chem Earth 10(1):17–43

    Article  ADS  Google Scholar 

  • Alibert C et al (1994) An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochim Cosmochim Acta 58(13):2921–2926

    Article  ADS  Google Scholar 

  • Borg LE et al (1999) Isotopic studies of ferroan anorthosite 62236: a young lunar crustal rock from a light rare-earth-element-depleted source. Geochim Cosmochim Acta 63(17):2679–2691

    Article  ADS  Google Scholar 

  • Borg LE et al (2004) Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature (London) 432(7014):209–211

    Article  ADS  Google Scholar 

  • Borg LE et al (2009) Mechanisms for incompatible element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032. Geochim Cosmochim Acta 73(13):3963–3980

    Article  ADS  Google Scholar 

  • Borg LE et al (2011) Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477(7362):U70–U150

    Article  ADS  Google Scholar 

  • Borg LE et al (2015) A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteor Planet Sci 50(4):715–732

    Article  ADS  Google Scholar 

  • Boyet M et al (2015) Sm-Nd systematics of lunar ferroan anorthositic suite rocks: constraints on lunar crust formation. Geochim Et Cosmochim Acta 148:203–218

    Article  ADS  Google Scholar 

  • BVSP (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, NY

    Google Scholar 

  • Cameron AGW, Ward WR (1976) The origin of the Moon. Lunar Sci 7:120–122

    ADS  Google Scholar 

  • Canup RM (2004) Dynamics of lunar formation. Annu Rev Astronom Astrophys 42:441–475

    Article  ADS  Google Scholar 

  • Canup RM (2012) Forming a Moon with an Earth-like composition from a giant impact. Science 338:1052–1055

    Article  ADS  Google Scholar 

  • Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412(6848):708–712

    Article  ADS  Google Scholar 

  • Carlson RW, Lugmair GW (1979) Sm-Nd constraints on early lunar differentiation and the evolution of kreep. Earth Planet Sci Lett 45(1):123–132

    Article  ADS  Google Scholar 

  • Carlson RW, Lugmair GW (1981) Time and duration of lunar highlands crust formation. Earth Planet Sci Lett 52(2):227–238

    Article  ADS  Google Scholar 

  • Carlson RW et al (2014) Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg- suite: the age of the lunar crust and its relation to the time of Moon formation. Phil Trans Roy Soc A 372(2024)

    Google Scholar 

  • Ćuk M, Stewart ST (2012) Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338(6110):1047–1052

    Article  ADS  Google Scholar 

  • Edmunson J et al (2009) A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: further evidence for early differentiation. Geochim Et Cosmochim Acta 73(2):514–527

    Article  ADS  Google Scholar 

  • Elardo SM et al (2011) Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim Cosmochim Acta 75(11):3024–3045

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT et al (2003) Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses. Meteor Planet Sci 38(4):515–527

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT (2012) Magma oceans in the inner solar system. Annu Rev Earth Planet Sci 40(40):113–139

    Article  ADS  Google Scholar 

  • Elkins-Tanton LT et al (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci Lett 304(3–4):326–336

    Article  ADS  Google Scholar 

  • Gaffney AM, Borg LE (2014) A young solidification age for the lunar magma ocean. Geochim Et Cosmochim Acta 140:227–240

    Article  ADS  Google Scholar 

  • Green DH et al (1971a) Experimental petrology and petrogenesis of Apollo 12 basalts. Proc 2nd Lunar Sci Conf 2:601–615

    ADS  Google Scholar 

  • Green DH et al (1971b) Experimental petrology of Apollo 12 basalts: part 1, Sample 12009. Earth Planet Sci Lett 13(1):85–96

    Article  ADS  Google Scholar 

  • Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24:504–515

    Article  ADS  Google Scholar 

  • Helmke PA et al (1972) Rare earths and other trace elements in Apollo 14 samples. Geochim Cosmochim Acta 3(2):1275–1292

    Google Scholar 

  • Hess PC (2000) On the source regions for mare picrite glasses. J Geophys Res 105(2):4347–4360

    Article  ADS  Google Scholar 

  • Hubbard NJ et al (1971) The composition and derivation of Apollo 12 soils. Earth Planet Sci Lett 10(3):341–350

    Article  ADS  MathSciNet  Google Scholar 

  • Jolliff BL et al (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res 105(E2):4197–4216

    Article  ADS  Google Scholar 

  • Jones JH, Delano JW (1989) A three-component model for the bulk composition of the Moon. Geochim Cosmochim Acta 53(2):513–527

    Article  ADS  Google Scholar 

  • Lognonné P et al (2003) A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon. Earth Planet Sci Lett 211(1–2):27–44

    Article  ADS  Google Scholar 

  • Longhi J (1992) Experimental petrology and petrogenesis of mare volcanics. Geochim Cosmochim Acta 56(6):2235–2251

    Article  ADS  Google Scholar 

  • Longhi J (2006) Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation. Geochim Cosmochim Acta 70:5919–5934

    Article  ADS  Google Scholar 

  • Meyer C (2011) “60025.” Lunar Sample Compendium

    Google Scholar 

  • Meyer C Jr, Hubbard NJ (1970) High potassium, high phosphorous glass as an important rock type in the Apollo 12 soil samples. Meteoritics 5(4):210–211

    ADS  Google Scholar 

  • Morgan JW et al (1978) The Moon: composition determined by nebular processes. Moon Planet 18(4):465–478

    Article  ADS  Google Scholar 

  • Neal CR (2001) Interior of the Moon: the presence of garnet in the primitive deep lunar mantle. J Geophys Res 106(E11):27865–27885

    Article  ADS  Google Scholar 

  • Norman MD et al (2003) Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteor Planet Sci 38(4):645–661

    Article  ADS  MathSciNet  Google Scholar 

  • Nyquist LE, Shih CY (1992) The isotopic record of lunar volcanism. Geochim Cosmochim Acta 56(6):2213–2234

    Article  ADS  Google Scholar 

  • O’Keefe JA (1968) Isostasy on Moon. Science 162(3860):1405–1406

    Article  ADS  Google Scholar 

  • O’Neill HSC (1991) The origin of the Moon and the early history of the Earth; a chemical model; Part 1, The Moon. Geochim Cosmochim Acta 55(4):1135–1157

    Article  ADS  Google Scholar 

  • Papike JJ et al (1998) Lunar samples. Rev Mineral 36:5–1–5–234

    Google Scholar 

  • Patterson JH et al (1969) Alpha-scattering experiment on surveyor 7: comparison with surveyors 5 and 6. J Geophys Res 74(25):6120–6148

    Article  ADS  Google Scholar 

  • Phinney RA et al (1969) Implications of surveyor 7 results. J Geophys Res 74(25):6053

    Article  ADS  Google Scholar 

  • Pritchard ME, Stevenson DJ (2000) Thermal aspects of a lunar origin by giant impact. In: Canup RM, Righter K (eds) Origin of the earth and moon, The University of Arizona space science series. University of Arizona Press in collaboration with Lunar and Planetary Institute, Houston, Tucson, pp 179–196

    Google Scholar 

  • Ringwood AE et al (1987) A komatiite component in Apollo 16 highland breccias; implications for the nickel-cobalt systematics and bulk composition of the Moon. Earth Planet Sci Lett 81(2–3):105–117

    Article  ADS  Google Scholar 

  • Shearer CK, Papike JJ (1993) Basaltic magmatism on the Moon: a perspective from volcanic picritic glass beads. Geochim Cosmochim Acta 57(19):4785–4812

    Article  ADS  Google Scholar 

  • Shearer CK, Papike JJ (1999) Magmatic evolution of the Moon. Am Mineral 84(10):1469–1494

    Article  ADS  Google Scholar 

  • Shearer CK et al (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60:365–518

    Article  Google Scholar 

  • Shih CY et al (1992) Rb-Sr and Sm-Nd chronology of an Apollo 17 Kreep Basalt. Earth Planet Sci Lett 108(4):203–215

    Article  ADS  Google Scholar 

  • Shih CY et al (1993) Ages of pristine noritic clasts from lunar breccias 15445 and 15455. Geochim Cosmochim Acta 57(4):915–931

    Article  ADS  Google Scholar 

  • Smith JV et al (1970a) A petrologic model for the Moon based on petrogenesis, experimental petrology, and physical properties. J Geol 78(4):381–405

    Article  ADS  Google Scholar 

  • Smith JV et al (1970b) Petrologic history of the Moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. In: Proceedings of the Apollo 11 lunar science conference, pp 897–925

    Google Scholar 

  • Snyder GA et al (1992) A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56(10):3809–3823

    Article  ADS  Google Scholar 

  • Solomon SC (1977) Relationship between crustal tectonics and internal evolution in Moon and Mercury. Phys Earth Planet In 15(2–3):135–145

    Article  ADS  Google Scholar 

  • Taylor SR (1975) Lunar science: a post-apollo view. Pergamon Press, New York

    Google Scholar 

  • Taylor SR (1982) Planetary science; a lunar perspective. Lunar and Planetary Institute, Houston, TX

    Google Scholar 

  • Taylor SR, Jakeš P (1974) The geochemical evolution of the Moon. In: Proceedings of the 5th Lunar science conference, pp 1287–1305

    Google Scholar 

  • Taylor GJ, Wieczorek MA (2014) Lunar bulk chemical composition: a post-gravity recovery and interior laboratory reassessment. Phil Trans Roy Soc A Math Phys Eng Sci 372(2024)

    Google Scholar 

  • Taylor SR et al (2006) The Moon: a Taylor perspective. Geochim Cosmochim Acta 70:5904–5918

    Article  ADS  Google Scholar 

  • Walker D et al (1976) Crystallization history of Lunar Picritic Basalt sample 12002: phase- equilibria and cooling-rate studies. Geol Soc Am Bull 87(5):646–656

    Article  Google Scholar 

  • Warren PH (1985) The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci 13:201–240

    Article  ADS  Google Scholar 

  • Warren PH (1989) KREEP: major-element diversity, trace-element uniformity (almost). In: Workshop on the Moon in transition: Apollo 14, KREEP and evolved lunar rocks 89-03:149–153

    Google Scholar 

  • Warren PH (2005) “New” lunar meteorites: implications for composition of the global lunar surface, lunar crust, and bulk Moon. Meteor Planet Sci 40:477–506

    Article  ADS  Google Scholar 

  • Warren PH, Wasson JT (1977) Pristine nonmare rocks and the nature of the lunar crust. In: 8th Lunar science conference, pp 2215–2235

    Google Scholar 

  • Warren PH, Wasson JT (1979) Origin of KREEP. Rev Geophys Space Phys 17:73–88

    Article  ADS  Google Scholar 

  • Weber RC et al (2011) Seismic detection of the lunar core. Science 331:309–312

    Article  ADS  Google Scholar 

  • Wieczorek MA et al (2006) The constitution and structure of the lunar interior. Rev Mineral Geochem 60:221–364

    Article  Google Scholar 

  • Wood JA et al (1970a) Lunar anorthosites. Science 167(3918):602–604

    Article  ADS  Google Scholar 

  • Wood JA et al (1970b) Lunar anorthosites and a geophysical model of the Moon. In: Proceedings of the Apollo 11 lunar science conference, pp 965–988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Elardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Elardo, S. (2015). Lunar Magma Ocean Theory, Origins, and Rationale. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics