Skip to main content

Lunar Impact Melt Deposits

  • Living reference work entry
  • First Online:
  • 131 Accesses

Definition

Impact melt refers to the partially or completely molten material, produced during the impact cratering process on planetary bodies, which has subsequently cooled to attain various degrees of crystallinity and morphological form.

Introduction

Impact cratering is a fundamental planetary process that has taken place across the solar system, from the rocky bodies in the inner part to the icy bodies in the outer reaches. The geological imprints of this process are preserved on the surface in the form of craters and the material that was excavated and deposited during the crater-forming event. Impact melt represents part of the displaced material that was also melted to various extents during the cratering process. The melt deposits occur both inside and outside of the crater with the relative proportion of emplaced melt being influenced by the crater size. Larger craters tend to retain relatively larger volumes of impact melt on the crater floors compared to the smaller craters...

This is a preview of subscription content, log in via an institution.

References

  • Barr AC, Citron RI (2011) Scaling of melt production in hypervelocity impacts from high-resolution numerical simulations. Icarus 211:913–916

    Article  ADS  Google Scholar 

  • Bottke WF, Vokrouhlický D, Minton D, Nesvorný D, Morbidelli A, Brasser R, Simonson B, Levison HF (2012) Nature 485(Issue 7396):78–81

    Article  ADS  Google Scholar 

  • Bray VJ et al (2010) New insight into lunar impact melt mobility from LRO camera. Geophys Res Lett 37:L21202. doi:10.1029/2010GL044666

    Article  ADS  Google Scholar 

  • Carter LM, Neish CD, Bussey DBJ, Spudis PD, Patterson GW, Cahill JT, Raney RK (2012) Initial observations of lunar impact melts and ejecta flows with the mini-RF radar. J Geophys Res 117:E00H09. doi:10.1029/2011JE003911

    Article  Google Scholar 

  • Chin et al (2007) Lunar reconnaissance orbiter overview: the instrument suite and mission. Space SciRev 129:391–419

    Article  ADS  Google Scholar 

  • Cintala MJ, Grieve RAF (1998) Scaling impact melting and crater dimensions: implications for the lunar cratering record. Meteorit Planet Sci 33:889–912

    Article  ADS  Google Scholar 

  • Dence MR (1971) Impact melts. J Geophys Res 76:5552–5565

    Article  ADS  Google Scholar 

  • Denevi BW, Koeber SD, Robinson MS, Garry WB, Hawke BR, Tran TN, Lawrence SJ, Keszthelyi LP, Barnouin OS, Ernst CM, Tornabene LL (2012) Physical constraints on impact melt properties from lunar reconnaissance orbiter camera images. Icarus 219:665–675

    Article  ADS  Google Scholar 

  • Dhingra D, Pieters CM, Head JW, Isaacson PJ (2013) Large mineralogically distinct impact melt feature at Copernicus crater – evidence for retention of compositional heterogeneity. Geophys Res Lett 40:1043–1048. doi:10.1002/grl.50255

    Article  ADS  Google Scholar 

  • Floran RJ, Grieve RAF, Phinney WC, Warner JL, Simonds CH, Blanchard DP, Dence MR (1978) Manicouagan impact melt, Quebec, 1, stratigraphy, petrology, and chemistry. J Geophys Res 83(B6):2737–2759. doi:10.1029/JB083iB06p02737

    Article  ADS  Google Scholar 

  • Foing BH, Racca GD, Marini A, Heather DJ, Koschny D, Grande M, Huovelin J, Keller HU, Nathues A, Josset JL, Malkki A, Schmidt W, Noci G, Birkl R, Iess L, Sodnik Z, McManamon P (2003) SMART-1 mission to the moon: technology and science goals. Adv Space Res 31(11):2323–2333

    Article  ADS  Google Scholar 

  • Goswami JN, Annadurai M (2009) Chandrayaan-1: India’s first planetary science mission to the moon. Curr Sci 6(4):486–491

    Google Scholar 

  • Grieve RAF, Dence MR, Robertson PB (1977) Cratering process: as interpreted from the occurrence of impact melts. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 791–814

    Google Scholar 

  • Hartmann WK, Ryder G, Dones L, Grinspoon D (2000) The time dependent intense bombardment of the primordial earth/moon system. In: Canup RM, Righter K (eds) Origin of the earth and moon. University of Arizona Press, Tucson, and Lunar and Planetary Institute, Houston, pp 493–512

    Google Scholar 

  • Haruyama J et al (2008) Global lunar-surface mapping experiment using the lunar imager/spectrometer on SELENE. Earth Planets Space 60:243–256

    Article  ADS  Google Scholar 

  • Hawke BR, Head JW (1977) Impact melt on lunar crater rims. In: Roddy, Peppin, Merrill (eds) Impact and explosion cratering. Pergamon Press, NY, pp 815–841

    Google Scholar 

  • Howard KA, Wilshire HG (1975) Flows of impact melt at lunar craters. J Res USGeol Surv 3:237–251

    Google Scholar 

  • Hurwitz DM, Kring DA (2014) Differentiation of the south pole–Aitken basin impact melt sheet: implications for lunar exploration. J Geophys Res 119:1110–1133. doi:10.1002/2013JE004530

    Article  Google Scholar 

  • Kring DA et al (2004) Impact lithologies and their emplacement in the Chicxulub impact crater: Initial results from the Chicxulub scientific drilling project, Yaxcopoil, Mexico, Meteorit. Planet. Sci., 39(6), 879–897

    Google Scholar 

  • Lambert P (2010) Target and impact deposits at Rochechouart impact structure, France. In: Gibson, Reimold (eds) Large meteorite impacts and planetary evolution IV, Geological Society of America Special Paper. 465, 509–541

    Google Scholar 

  • Morbidelli A, Marchi S, Bottke WF, Kring DA (2012) A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet Sci Lett 355:144–151

    Article  ADS  Google Scholar 

  • Neish CD, Madden J, Carter LM, Hawke BR, Giguere T, Bray VJ, Osinski GR, Cahill JTS (2014) Global distribution of lunar impact melt flows. Icarus 239:105–117. doi:10.1016/j.icarus.2014.05.049

    Article  ADS  Google Scholar 

  • Osinski GR, Grieve RAF, Collins GS, Marion C, Sylvester P (2008) The effect of target lithology on the products of impact melting. Meteorit Planet Sci 43(12):1939–1954

    Article  ADS  Google Scholar 

  • Palme H, Marie-Jossee J, Takahashi H, Anders E, Hertogen A (1977) Meteoritic material at five large impact craters. Geochem Cosmochem Acta 42(3):313–323

    Article  ADS  Google Scholar 

  • Plescia JB, Cintala MJ (2012) Impact melt in small lunar highland craters. J Geophys Res 117:E00H12. doi:10.1029/2011JE003941

  • Phinney, W. C., Simonds C. H. (1977), Dynamical implications of the petrology and distribution of impact melt rocks, Impact and explosion cratering, Roddy, Pepin, Merrill, New York, Pergamon Press 771–790

    Google Scholar 

  • Pierazzo E, Melosh HJ (2000) Melt production in oblique impacts. Icarus 145:252–261

    Article  ADS  Google Scholar 

  • Pierazzo E, Vickery AM, Melosh HJ (1997) A reevaluation of impact melt production. Icarus 127:408–423

    Article  ADS  Google Scholar 

  • Simonds CH (1975) Thermal regimes in impact melts and the petrology of the Apollo 17 Station 6 boulder. Proc Lunar Sci Conf 6th:641–672

    Google Scholar 

  • Spudis PD, Martin DJP, Kramer G (2014) Geology and composition of the orientale basin impact melt sheet. J Geophys Res 119(1):19–29

    Article  Google Scholar 

  • Stopar JD, Hawke BR, Robinson MS, Denevi BW, Giguere TA, Koeber SD (2014) Occurrence and mechanisms of impact melt emplacement at small lunar craters. Icarus 243:337–357

    Article  ADS  Google Scholar 

  • Tera F, Papamastassiou DA, Wasserberg GJ (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22:1–21

    Article  ADS  Google Scholar 

  • Tompkins S, Pieters CM (2010) Spectral characteristics of lunar impact melt and inferred mineralogy. Meteorit Planet Sci 45:1152–1169. doi:10.1111/j.1945-5100.2010.01074.x

    Article  ADS  Google Scholar 

  • Vaughan WM, Head JW, Wilson L, Hess PC (2013) Geology and petrology of enormous volumes of impact melt on the moon: a case study of the orientale basin impact melt sea. Icarus 223(2):749–765

    Article  ADS  Google Scholar 

  • Warren PH, Claeys P, Cedillo-Pardo E (1996) Mega-impact melt petrology (Chicxulub, Sudbury, and the moon): effects of scale and other factors on potential for fractional crystallization and development of cumulates. In: Ryder G, Fastovsky D, Gartner S (eds) The cretaceous-tertiary event and other catastrophes in earth history. Geological Society of America Special Paper, Boulder, p 307

    Google Scholar 

  • Wöhler C, Grumpe A, Berezhnoy A, Bhatt MU, Mall U (2014) Integrated topographic, photometric and spectral analysis of the lunar surface: application to impact melt flows and ponds. Icarus 235:86–122

    Article  ADS  Google Scholar 

  • Wünnemann K, Collins GS, Osinksi GR (2008) Numerical modelling of impact melt production in porous rocks. Earth Planet Sci Lett 269:530–539

    Article  ADS  Google Scholar 

  • Xiao Z, Zeng Z, Li Z, Blair DM, Xiao L (2014) Cooling fractures in impact melt deposits on the moon and mercury: implications for cooling solely by thermal radiation. J Geophys Res 119:1496–1515. doi:10.1002/2013JE004560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Dhingra .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Dhingra, D. (2017). Lunar Impact Melt Deposits. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics