Skip to main content

Emissivity

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science
  • 169 Accesses

Introduction

All the surfaces of materials having temperatures above absolute zero emit thermal radiation continuously. Thermal radiation refers to all electromagnetic radiation including visible light to longer infrared rays. The amount of the thermal radiation emitted from the surface a body depends on its temperature and composition and can be calculated by the Planck’s law of blackbody radiation. A blackbody is a hypothetical ideal radiator, which absorbs all the wavelength incident upon it and also emit all the absorbed radiation to the surrounding. Even though two surfaces are at the same temperature, the amount of the thermal radiation emitted by them will not be the same; the difference is attributed to the “emissivity” of the surface.

Emissivity

The emissivity (ε) of a surface is its effectiveness in emitting energy as thermal radiation. It is defined as the ratio of the thermal radiation exiting from a surface to the radiation from a black body surface at the same temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Conel JE (1969) Infrared emissivities of silicates: experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums. J Geophys Res 74(6):1614–1634

    Article  ADS  Google Scholar 

  • Glotch TD, Lucey PG, Bandfield JL et al (2010) Highly silicic compositions on the Moon. Science 329(5998):1510–1513

    Article  ADS  Google Scholar 

  • Greenhagen BT, Lucey PG, Wyatt MB et al (2010) Global silicate mineralogy of the Moon from the diviner lunar radiometer. Science 329:1507–1509

    Article  ADS  Google Scholar 

  • Hunt GR (1982) Spectroscopic properties of rocks and minerals. In: Carmichael RS (ed) Handbook of physical properties of rocks, vol I. CRC Press, Boca Raton, pp 295–385

    Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (1987) Remote sensing and image interpretation. Wiley, Hoboken. ISBN: 978-1-118-34328-9

    Google Scholar 

  • Logan LM, Hunt GR (1970) Emission spectra of particulate silicates under simulated lunar conditions. J Geophys Res 75:6539–6548

    Article  ADS  Google Scholar 

  • Logan LM, Hunt GR, Salisbury JW et al (1973) Compositional implications of Christensen frequency maxima for infrared remote sensing application. J Geophys Res 78:4989–5003

    Article  ADS  Google Scholar 

  • Lucey PG, Greenhagen BT, Song E et al (2017) Space weathering effects in Diviner Lunar Radiometer multispectral infrared measurements of the lunar Christiansen feature: characteristics and mitigation. Icarus 283:343–351

    Article  ADS  Google Scholar 

  • Paige DA, Foote MC, Greenhagen BT et al (2009) The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Space Sci Rev 150(1–4):125–160

    ADS  Google Scholar 

  • Sabins FF (1997) Remote sensing. Principles and interpretation, 3rd edn. W.H. Freeman, New York

    Google Scholar 

  • Salisbury JW, D’Aria DM (1989) Measurement of Christiansen frequencies in spectra of particulate samples for determination of rock composition. LPSC Abstr 20:940

    Google Scholar 

  • Salisbury JW, Murcray DG, Blatherwick RD (1995) Thermal infrared spectra of the moon. Icarus 115:181–190

    Article  ADS  Google Scholar 

  • Salisbury JW, Basu A, Fischer EM (1997) Thermal infrared spectra of lunar soils. Icarus 130:125–139

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Kusuma .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kusuma, K.N. (2020). Emissivity. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_196-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_196-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics