Skip to main content

Sulfides in the Moon

  • Living reference work entry
  • First Online:

Introduction

Resolving the question whether or not the lunar mantle is sulfide saturated is of great importance for geochemical models of lunar origin and subsequent magmatic evolution. Many iron-loving (siderophile) elements show chalcophile (sulfide-loving) behavior, including the platinum group elements (PGE) and many volatile siderophile elements (e.g., Cu, Zn, Se, As, Te, Sb, Pb) (entry “Lunar Core Formation”). The presence of significant amounts of sulfides in the lunar mantle would control the storage capacity of the lunar mantle for chalcophile elements. Many of these elements are also (highly) volatile, and establishing their lunar interior abundances is important for studying the volatile budget of the Moon. The abundance of sulfur in the lunar mantle also has important implications for the range of plausible light element (S, C) abundances of the lunar core (entry “Lunar Core Composition”). High S contents in magmas relating to sulfide saturation in their source region...

This is a preview of subscription content, log in via an institution.

References

  • Bombardieri DJ, Norman MD, Kamenetsky VS et al (2005) Major element and primary sulfur concentrations in Apollo 12 mare basalts: the view from melt inclusions. Meteorit Planet Sci 40:679–693

    Article  ADS  Google Scholar 

  • Brett R (1976) Reduction of mare basalt by sulfur loss. Geochim Cosmochim Acta 40:977–1004

    Article  ADS  Google Scholar 

  • Chen Y et al (2015) Water, fluorine, and sulfur concentrations in the lunar mantle. Earth Planet Sci Lett 427:37–46

    Article  ADS  Google Scholar 

  • Danckwerth PA, Hess PC, Rutherford MJ (1979) The solubility of sulfur in high-TiO2 mare basalts. In: Lunar and Planetary Science Conference, 10th, Houston, TX, pp 517–530

    Google Scholar 

  • Day JMD, Walker RJ (2015) Highly siderophile element depletion in the Moon. Earth Planet Sci Lett 423, 114–124

    Google Scholar 

  • Ding S, Dasgupta R, Tsuno K (2014) Sulfur concentration of martian basalts at sulfide saturation at high pressures and temperatures – implications for deep sulfur cycle on Mars. Geochim Cosmochim Acta 131:227–246

    Article  ADS  Google Scholar 

  • Gibson EK, Brett R, Andrawes F (1977) Sulfur in lunar mare basalts as a function of bulk composition. In: Lunar and Planetary Science Conference, 8th, Houston, TX, pp 1417–1428

    Google Scholar 

  • Gibson Jr. EK, Usselman TM, Morris RV (1976) Sulfur in the Apollo 17 basalts and their source regions. Proc Lunar Sci Conf 7th, 1491–1505

    Google Scholar 

  • Haskin LA, Warren P (1991) Lunar chemistry. In: Heiken GH, Vaniman DT, French BV (eds) Lunar source book. Cambridge University Press, New York, pp 357–474

    Google Scholar 

  • Haughton D, Roedder PL, Skinner BJ (1974) Solubility of sulfur in mafic magmas. Econ Geol 69:451–467

    Article  Google Scholar 

  • Hauri EH et al (2015) Water in the Moon’s interior: truth and consequences. Earth Planet Sci Lett 409:252–264

    Article  ADS  Google Scholar 

  • McCubbin FM, Vander Kaaden KE, Tartese R et al (2015) Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust and regolith: abundances, distributions, processes and reservoirs. Am Mineral 100:1668–1707

    Article  ADS  Google Scholar 

  • Meyer C (2011) The lunar sample compendium. http://curator.jsc.nasa.gov/Lunar/lsc/index/cfm. Accessed 25 Apr 2017

  • Norman MD, Keil K, Griffin WL et al (1995) Fragments of ancient lunar crust: petrology and geochemistry of ferroan noritic anorthosites from the Descartes region of the Moon. Geochim Cosmochim Acta 59:831–847

    Article  ADS  Google Scholar 

  • Papike JJ, Burger PV, Shearer CK et al (2011) Sulfides from martian and lunar basalts: comparative chemistry for Ni, Co, Cu, and Se. Am Mineral 96:932–935

    Article  ADS  Google Scholar 

  • Rees CE, Thode HG (1974) Sulfur concentrations and isotope ratios in Apollo 16 and 17 samples. In: Lunar and Planetary Science Conference, 5th, pp 1963–1973

    Google Scholar 

  • Ringwood AE, Kesson SE (1976) A dynamic model for mare basalt petrogenesis. In: Lunar and Planetary Science Conference, 7th, pp 1697–1722

    Google Scholar 

  • Skinner BJ (1970) High crystallization temperatures indicated for igneous rocks from Tranquility-Base. Science 167:652–654

    Article  ADS  Google Scholar 

  • Steenstra et al (2017a) Carbon as the dominant light element in the lunar core. Am Mineral 102:92–97

    Article  ADS  Google Scholar 

  • Steenstra et al (2017b) Metal-silicate partitioning of S, Se, Te and Sb suggests minor volatile loss during lunar formation and no volatile-rich late veneer. In: Lunar and Planetary Science Conference, 48th, p 1051

    Google Scholar 

  • Taylor LA, Kullerud G, Bryan WB (1971) Opaque mineralogy and textural features of Apollo 12 samples and a comparison with Apollo 11 rocks. In: Lunar and Planetary Science Conference, 2nd, pp 855–871

    Google Scholar 

  • Walker RJ (2016) Siderophile elements in tracing planetary formation and evolution. Geochemical Perspectives 5–1, 1–143

    Google Scholar 

  • Wing BA, Farquhar J (2015) Sulfur isotope homogeneity of lunar mare basalts. Geochim Cosmochim Acta 170:266–280

    Article  ADS  Google Scholar 

  • Wykes JL, O’Neill HSTC, Mavrogenes JA (2015) The effect of FeO on the sulfur content at sulfide saturation (SCSS) and the selenium content at selenide saturation of silicate melts. J Petrol 56:1407–1424

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Sikko Steenstra .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Steenstra, E.S., van Westrenen, W. (2017). Sulfides in the Moon. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_119-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_119-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics