Skip to main content

Plasma Environment of the Moon

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Lunar Science
  • 240 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alvarez R (1977) Photoconductive effects on lunar and terrestrial fines. In: Merril RB (ed) Lunar and planetary science conference proceedings, volume 8 of lunar and planetary science conference proceedings. New York, Pergamon Press, Inc., pp 1277–1290

    Google Scholar 

  • Ashida Y, Usui H, Shinohara I, Nakamura M, Funaki I, Miyake Y, Yamakawa H (2014) Full kinetic simulations of plasma flow interactions with meso- and microscale magnetic dipoles. Phys Plasmas 21(12):122903

    Article  ADS  Google Scholar 

  • Bale SD, Owen CJ, Bougeret J-L, Goetz K, Kellogg PJ, Lepping RP, Manning R, Monson SJ (1997) Evidence of currents and unstable particle distributions in an extended region around the lunar plasma wake. Geophys Res Lett 24:1427–1430

    Article  ADS  Google Scholar 

  • Bamford RA, Kellett B, Bradford WJ, Norberg C, Thornton A, Gibson KJ, Crawford IA, Silva L, Gargaté L, Bingham R (2012) Minimagnetospheres above the lunar surface and the formation of lunar swirls. Phys Rev Lett 109(8):081101

    Article  ADS  Google Scholar 

  • Blewett DT, Coman EI, Hawke BR, Gillis-Davis JJ, Purucker ME, Hughes CG (2011) Lunar swirls: examining crustal magnetic anomalies and space weathering trends. J Geophys Res (Planets) 116:2002

    Article  ADS  Google Scholar 

  • Clack D, Kasper JC, Lazarus AJ, Steinberg JT, Farrell WM (2004) Wind observations of extreme ion temperature anisotropies in the lunar wake. Geophys Res Lett 31:6812

    Article  ADS  Google Scholar 

  • Cladis JB, Francis WE, Vondrak RR (1994) Transport toward earth of ions sputtered from the Moon’s surface by the solar wind. J Geophys Res 99:53–64

    Article  ADS  Google Scholar 

  • Clark RN (2009) Detection of adsorbed water and hydroxyl on the Moon. Science 326:562

    Article  ADS  Google Scholar 

  • Colburn DS, Currie RG, Mihalov JD, Sonett CP (1967) Diamagnetic solar-wind cavity discovered behind Moon. Science 158:1040–1042

    Article  ADS  Google Scholar 

  • Colburn DS, Mihalov JD, Sonett CP (1971) Magnetic observations of the lunar cavity. J Geophys Res 76:2940

    Article  ADS  Google Scholar 

  • Criswell DR (1973) Horizon-glow and the motion of lunar dust. In: Grard RJL (ed) Photon and particle interactions with surfaces in space, volume 37 of Astrophysics and Space Science Library. D Reidel, Dordrecht, p 545

    Chapter  Google Scholar 

  • Criswell DR, de BR (1977) Intense localized photoelectric charging in the lunar sunset terminator region. I – development of potentials and fields. II – supercharging at the progression of sunset. J Geophys Res 82:999–1007

    Article  ADS  Google Scholar 

  • Deca J, Divin A (2016) Reflected charged particle populations around dipolar lunar magnetic anomalies. Astrophys J 829:60–68

    Article  ADS  Google Scholar 

  • Deca J, Divin A, Lapenta G, Lembège B, Markidis S, Horányi M (2014) Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies. Phys Rev Lett 112(15):151102

    Article  ADS  Google Scholar 

  • Deca J, Divin A, Lembège B, Horányi M, Markidis S, Lapenta G (2015) General mechanism and dynamics of the solar wind interaction with lunar magnetic anomalies from 3-d pic simulations. J Geophys Res Space Phys 120(8):6443–6463. 2015JA021070

    Google Scholar 

  • Deca J, Divin A, Lue C, Wang X, Horányi M (2017) Fully kinetic simulations of the solar wind interaction with lunar magnetic anomalies: Reiner Gamma and swirl formation. In: Lunar and planetary science conference. volume 48 of Lunar and Planetary Science Conference. p 2012. http://adsabs.harvard.edu/abs/2017LPI....48.2012D

  • Denevi BW, Robinson MS, Boyd AK, Blewett DT, Klima RL (2016) The distribution and extent of lunar swirls. Icarus 273:53–67

    Article  ADS  Google Scholar 

  • Dyal P, Parkin CW, Sonett CP (1970) Apollo 12 magnetometer: measurement of a steady magnetic field on the surface of the Moon. Science 169:762–764

    Article  ADS  Google Scholar 

  • Dyal P, Parkin CW, Daily WD (1974) Magnetism and the interior of the Moon. Rev Geophys Space Phys 12:568–591

    Article  ADS  Google Scholar 

  • Elphic RC, Funsten HO III, Barraclough BL, McComas DJ, Paffett MT, Vaniman DT, Heiken G (1991) Lunar surface composition and solar wind-induced secondary ion mass spectrometry. Geophys Res Lett 18:2165–2168

    Article  ADS  Google Scholar 

  • Farrell WM, Fitzenreiter RJ, Owen CJ, Byrnes JB, Lepping RP, Ogilvie KW, Neubauer F (1996) Upstream ULF waves and energetic electrons associated with the lunar wake: detection of precursor activity. Geophys Res Lett 23:1271–1274

    Article  ADS  Google Scholar 

  • Farrell WM, Kaiser ML, Steinberg JT, Bale SD (1998) A simple simulation of a plasma void: applications to wind observations of the lunar wake. J Geophys Res 103:23653–23660

    Article  ADS  Google Scholar 

  • Farrell WM, Stubbs TJ, Vondrak RR, Delory GT, Halekas JS (2007) Complex electric fields near the lunar terminator: the near-surface wake and accelerated dust. Geophys Res Lett 34:14201

    Article  ADS  Google Scholar 

  • Farrell WM, Stubbs TJ, Halekas JS, Killen RM, Delory GT, Collier MR, Vondrak RR (2010) Anticipated electrical environment within permanently shadowed lunar craters. J Geophys Res (Planets) 115:E03004

    Article  ADS  Google Scholar 

  • Farrell WM, Hurley DM, Zimmerman MI (2015) Solar wind implantation into lunar regolith: hydrogen retention in a surface with defects. Icarus 255:116–126

    Article  ADS  Google Scholar 

  • Farrell WM, Hurley DM, Esposito VJ, McLain JL, Zimmerman MI (2017) The statistical mechanics of solar wind hydroxylation at the Moon, within lunar magnetic anomalies, and at Phobos. J Geophys Res (Planets) 122:269–289

    Article  ADS  Google Scholar 

  • Fatemi S, Lue C, Holmström M, Poppe AR, Wieser M, Barabash S, De lory GT (2015) Solar wind plasma interaction with Gerasimovich lunar magnetic anomaly. J Geophys Res (Space Phys) 120:4719–4735

    Article  ADS  Google Scholar 

  • Fuller M (1974) Lunar magnetism. Rev Geophys 12(1):23–70

    Article  ADS  Google Scholar 

  • Futaana Y, Machida S, Saito Y, Matsuoka A, Hayakawa H (2001) Counterstreaming electrons in the near vicinity of the Moon observed by plasma instruments on board NOZOMI. J Geophys Res 106:18729–18740

    Article  ADS  Google Scholar 

  • Futaana Y, Machida S, Saito Y, Matsuoka A, Hayakawa H (2003) Moon-related nonthermal ions observed by Nozomi: species, sources, and generation mechanisms. J Geophys Res (Space Phys) 108:1025

    Article  ADS  Google Scholar 

  • Futaana Y, Barabash S, Wieser M, Lue C, Wurz P, Vorburger A, Bhardwaj A, Asamura K (2013) Remote energetic neutral atom imaging of electric potential over a lunar magnetic anomaly. Geophys Res Lett 40:262–266

    Article  ADS  Google Scholar 

  • Garrick-Bethell I, Weiss BP, Shuster DL, Buz J (2009) Early lunar magnetism. Science 323:356

    Article  ADS  Google Scholar 

  • Garrick-Bethell I, Head JW, Pieters CM (2011) Spectral properties, magnetic fields, and dust transport at lunar swirls. Icarus 212:480–492

    Article  ADS  Google Scholar 

  • Glotch TD, Bandfield JL, Lucey PG, Hayne PO, Greenhagen BT, Arnold JA, Ghent RR, Paige DA (2015) Formation of lunar swirls by magnetic field standoff of the solar wind. Nat Commun 6:6189

    Article  ADS  Google Scholar 

  • Gurevich AV, Pitaevskii LP (1975) Non-linear dynamics of a rarefied ionized gas. Prog Aerosp Sci 16:227–272

    Article  Google Scholar 

  • Gurevich AV, Pitaevskii LP, Smirnova VV (1969) Ionospheric aerodynamics. Space Sci Rev 9:805–871

    Article  ADS  Google Scholar 

  • Haakonsen CB, Hutchinson IH, Zhou C (2015) Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio. Phys Plasmas 22(3):032311

    Article  ADS  Google Scholar 

  • Halekas JS, Lin RP, Mitchell DL (2003) Magnetic fields of lunar multi-ring impact basins. Meteorit Planet Sci 38:565–578

    Article  ADS  Google Scholar 

  • Halekas JS, Delory GT, Brain DA, Lin RP, Fillingim MO, Lee CO, Mewaldt RA, Stubbs TJ, Farrell WM, Hudson MK (2007) Extreme lunar surface charging during solar energetic particle events. Geophys Res Lett 34:2111

    Article  ADS  Google Scholar 

  • Halekas JS, Delory GT, Brain DA, Lin RP, Mitchell DL (2008a) Density cavity observed over a strong lunar crustal magnetic anomaly in the solar wind: a mini-magnetosphere? Planet Space Sci 56:941–946

    Article  ADS  Google Scholar 

  • Halekas JS, Delory GT, Lin RP, Stubbs TJ, Farrell WM (2008b) Lunar prospector observations of the electrostatic potential of the lunar surface and its response to incident currents. J Geophys Res (Space Phys) 113:9102

    ADS  Google Scholar 

  • Halekas JS, Delory GT, Lin RP, Stubbs TJ, Farrell WM (2008c) Lunar prospector observations of the electrostatic potential of the lunar surface and its response to incident currents. J Geophys Res (Space Phys) 113:A09102

    ADS  Google Scholar 

  • Halekas JS, Delory GT, Lin RP, Stubbs TJ, Farrell WM (2009) Lunar surface charging during solar energetic particle events: measurement and prediction. J Geophys Res (Space Phys) 114:A05110

    ADS  Google Scholar 

  • Halekas JS, Saito Y, Delory GT, Farrell WM (2011) New views of the lunar plasma environment. Planet Space Sci 59:1681–1694

    Article  ADS  Google Scholar 

  • Harada Y, Machida S, Halekas J, Poppe AR, McFadden JP (2013) Artemis observations of lunar dayside plasma in the terrestrial magnetotail lobe. J Geophys Res Space Phys 118(6):3042–3054

    Article  ADS  Google Scholar 

  • Harnett EM, Winglee RM (2003) 2.5-D fluid simulations of the solar wind interacting with multiple dipoles on the surface of the Moon. J Geophys Res (Space Phys) 108:1088

    ADS  Google Scholar 

  • Hashimoto K, Hashitani M, Kasahara Y, Omura Y, Nishino MN, Saito Y, Yokota S, Ono T, Tsunakawa H, Shibuya H, Matsushima M, Shimizu H, Takahashi F (2010) Electrostatic solitary waves associated with magnetic anomalies and wake boundary of the Moon observed by KAGUYA. Geophys Res Lett 37:19204

    Article  ADS  Google Scholar 

  • Hemingway D, Garrick-Bethell I (2012) Magnetic field direction and lunar swirl morphology: insights from Airy and Reiner Gamma. J Geophys Res (Planets) 117:10012

    Article  ADS  Google Scholar 

  • Hendrix AR, Greathouse TK, Retherford KD, Mandt KE, Gladstone GR, Kaufmann DE, Hurley DM, Feldman PD, Pryor WR, Stern SA, Cahill JTS (2016) Lunar swirls: far-UV characteristics. Icarus 273:68–74

    Article  ADS  Google Scholar 

  • Hilchenbach M, Hovestadt D, Klecker B, Möbius E (1993) Observation of energetic lunar pick-up ions near earth. Adv Space Res 13:321–324

    Article  ADS  Google Scholar 

  • Hodges RR (2016) Methane in the lunar exosphere: implications for solar wind carbon escape. Geophys Res Lett 43:6742–6748

    Article  ADS  Google Scholar 

  • Holmström M, Wieser M, Barabash S, Futaana Y, Bhardwaj A (2010) Dynamics of solar wind protons reflected by the Moon. J Geophys Res (Space Phys) 115:6206

    ADS  Google Scholar 

  • Hood LL (2011) Central magnetic anomalies of Nectarian-aged lunar impact basins: probable evidence for an early core dynamo. Icarus 211:1109–1128

    Article  ADS  Google Scholar 

  • Hood LL, Artemieva NA (2008) Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations. Icarus 193:485–502

    Article  ADS  Google Scholar 

  • Hood LL, Huang Z (1991) Formation of magnetic anomalies antipodal to lunar impact basins – two-dimensional model calculations. J Geophys Res 96:9837–9846

    Article  ADS  Google Scholar 

  • Hood LL, Schubert G (1980) Lunar magnetic anomalies and surface optical properties. Science 208:49–51

    Article  ADS  Google Scholar 

  • Horányi M, Szalay JR, Kempf S, Schmidt J, Grün E, Srama R, Sternovsky Z (2015) A permanent, asymmetric dust cloud around the Moon. Nature 522:324–326

    Article  ADS  Google Scholar 

  • Howes CT, Wang X, Deca J, Horányi M (2015) Laboratory investigation of lunar surface electric potentials in magnetic anomaly regions. Geophys Res Lett 42:4280–4287. 2015GL063943

    Article  ADS  Google Scholar 

  • Jarvinen R, Alho M, Kallio E, Wurz P, Barabash S, Futaana Y (2014) On vertical electric fields at lunar magnetic anomalies. Geophys Res Lett 41:2243–2249

    Article  ADS  Google Scholar 

  • Kallio E, Jarvinen R, Dyadechkin S, Wurz P, Barabash S, Alvarez F, Fernandes VA, Futaana Y, Harri A-M, Heilimo J, Lue C, Mäkelä J, Porjo N, Schmidt W, Siili T (2012) Kinetic simulations of finite gyroradius effects in the lunar plasma environment on global, meso, and microscales. Planet Space Sci 74:146–155

    Article  ADS  Google Scholar 

  • Kramer GY, Besse S, Dhingra D, Nettles J, Klima R, Garrick-Bethell I, Clark RN, Combe J-P, Head JW III, Taylor LA, Pieters CM, Boardman J, McCord TB (2011a) M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies. J Geophys Res (Planets) 116:E00G18

    Google Scholar 

  • Kramer GY, Combe J-P, Harnett EM, Hawke BR, Noble SK, Blewett DT, McCord TB, Giguere TA (2011b) Characterization of lunar swirls at Mare Ingenii: a model for space weathering at magnetic anomalies. J Geophys Res (Planets) 116:E04008

    ADS  Google Scholar 

  • Kurata M, Tsunakawa H, Saito Y, Shibuya H, Matsushima M, Shimizu H (2005) Mini- magnetosphere over the Reiner Gamma magnetic anomaly region on the Moon. Geophys Res Lett 32:24205

    Article  ADS  Google Scholar 

  • Lin RP, Mitchell DL, Curtis DW, Anderson KA, Carlson CW, McFadden J, Acuna MH, Hood LL, Binder A (1998) Lunar surface magnetic fields and their interaction with the solar wind: results from lunar prospector. Science 281:1480

    Article  ADS  Google Scholar 

  • Lue C, Futaana Y, Barabash S, Wieser M, Holmström M, Bhardwaj A, Dhanya MB, Wurz P (2011) Strong influence of lunar crustal fields on the solar wind flow. Geophys Res Lett 38:3202

    Article  ADS  Google Scholar 

  • Mall U, Kirsch E, Cierpka K, Wilken B, Söding A, Neubauer F, Gloeckler G, Galvin A (1998) Direct observation of lunar pick-up ions near the Moon. Geophys Res Lett 25:3799–3802

    Article  ADS  Google Scholar 

  • Manka RH (1973) Plasma and potential at the lunar surface. In: Grard RJL (ed) Photon and particle interactions with surfaces in space, volume 37 of Astrophysics and Space Science Library. D. Reidel, Dordrecht, p 347

    Chapter  Google Scholar 

  • McComas DJ, Allegrini F, Bochsler P, Frisch P, Funsten HO, Gruntman M, Janzen PH, Kucharek H, Möbius E, Reisenfeld DB, Schwadron NA (2009) Lunar backscatter and neutralization of the solar wind: first observations of neutral atoms from the Moon. Geophys Res Lett 36:12104

    Article  ADS  Google Scholar 

  • McCoy JE (1976) Photometric studies of light scattering above the lunar terminator from Apollo solar corona photography. In: Merrill RB (ed) Lunar and planetary science conference proceedings. volume 7 of Lunar and Planetary Science Conference Proceedings. pp 1087–1112. http://adsabs.harvard.edu/abs/1976LPSC....7.1087M

  • Mitchell DL, Halekas JS, Lin RP, Frey S, Hood LL, Acuña MH, Binder A (2008) Global mapping of lunar crustal magnetic fields by lunar prospector. Icarus 194:401–409

    Article  ADS  Google Scholar 

  • Miyake Y, Nishino MN (2015) Electrostatic environment near lunar vertical hole: 3D plasma particle simulations. Icarus 260:301–307

    Article  ADS  Google Scholar 

  • Nakagawa T, Takahashi Y, Iizima M (2003) GEOTAIL observation of upstream ULF waves associated with lunar wake. Earth Planets Space 55:569–580

    Article  ADS  Google Scholar 

  • Ness NF (1972) Interaction of the solar wind with the Moon. In: Dyer ER, Roederer JG, Hundhausen AJ (eds) The interplanetary medium: part II of solar-terrestrial physics/1970. Springer Netherlands, pp 159–205

    Google Scholar 

  • Ness NF, Behannon KW, Taylor HE, Whang YC (1968) Perturbations of the interplanetary magnetic field by the lunar wake. J Geophys Res 73:3421

    Article  ADS  Google Scholar 

  • Nishino MN, Fujimoto M, Maezawa K, Saito Y, Yokota S, Asamura K, Tanaka T, Tsunakawa H, Matsushima M, Takahashi F, Terasawa T, Shibuya H, Shimizu H (2009a) Solar-wind proton access deep into the near-Moon wake. Geophys Res Lett 36:16103

    Article  ADS  Google Scholar 

  • Nishino MN, Maezawa K, Fujimoto M, Saito Y, Yokota S, Asamura K, Tanaka T, Tsunakawa H, Matsushima M, Takahashi F, Terasawa T, Shibuya H, Shimizu H (2009b) Pairwise energy gain-loss feature of solar wind protons in the near-Moon wake. Geophys Res Lett 36:12108

    Article  ADS  Google Scholar 

  • Nishino MN, Saito Y, Tsunakawa H, Takahashi F, Fujimoto M, Harada Y, Yokota S, Matsushima M, Shibuya H, Shimizu H (2015) Electrons on closed field lines of lunar crustal fields in the solar wind wake. Icarus 250:238–248

    Article  ADS  Google Scholar 

  • Nishino MN, Saito Y, Tsunakawa H, Harada Y, Tsugawa Y, Takahashi F, Yokota S, Matsushima M, Shibuya H, Shimizu H (2016) Kaguya observations of the lunar wake in the terrestrial foreshock. In: EGU general assembly conference abstracts. volume 18 of EGU General Assembly Conference Abstracts. p 3214. http://adsabs.harvard.edu/abs/2017Icar..293...45N

  • Owen CJ, Lepping RP, Ogilvie KW, Slavin JA, Farrell WM, Byrnes JB (1996) The lunar wake at 6.8 RL: WIND magnetic field observations. Geophys Res Lett 23:1263–1266

    Article  ADS  Google Scholar 

  • Pieters CM, Noble SK (2016) Space weathering on airless bodies. J Geophys Res (Planets) 121:1865–1884

    Article  ADS  Google Scholar 

  • Pieters CM, Goswami JN, Clark RN, Annadurai M, Boardman J, Buratti B, Combe J-P, Dyar MD, Green R, Head JW, Hibbitts C, Hicks M, Isaacson P, Klima R, Kramer G, Kumar S, Livo E, Lundeen S, Malaret E, McCord T, Mustard J, Nettles J, Petro N, Runyon C, Staid M, Sunshine J, Taylor LA, Tompkins S, Varanasi P (2009) Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326:568

    Article  ADS  Google Scholar 

  • Pinet PC, Shevchenko VV, Chevrel SD, Daydou Y, Rosemberg C (2000) Local and regional lunar regolith characteristics at Reiner Gamma formation: optical and spectroscopic properties from Clementine and Earth-based data. J Geophys Res 105:9457–9476

    Article  ADS  Google Scholar 

  • Poppe A, Horányi M (2010) Simulations of the photoelectron sheath and dust levitation on the lunar surface. J Geophys Res Space Phys (1978–2012) 115(A8):A08106

    Google Scholar 

  • Poppe A, Halekas JS, Horányi M (2011) Negative potentials above the day-side lunar surface in the terrestrial plasma sheet: evidence of non-monotonic potentials. Geophys Res Lett 38:2103

    Article  ADS  Google Scholar 

  • Poppe AR, Halekas JS, Delory GT, Farrell WM (2012) Particle-in-cell simulations of the solar wind interaction with lunar crustal magnetic anomalies: magnetic cusp regions. J Geophys Res (Space Phys) 117:9105

    ADS  Google Scholar 

  • Purucker ME (2008) A global model of the internal magnetic field of the Moon based on lunar prospector magnetometer observations. Icarus 197:19–23

    Article  ADS  Google Scholar 

  • Russell CT, Coleman PJ Jr, Lichtenstein BR, Schubert G, Sharp LR (1974) Apollo 15 and 16 subsatellite magnetometer measurements of the lunar magnetic field. In: Rycroft MJ, Reasenberg RD (eds) Space research XIV. Akademie Verlag, Berlin, pp 629–634

    Google Scholar 

  • Saito Y, Yokota S, Tanaka T, Asamura K, Nishino MN, Fujimoto M, Tsunakawa H, Shibuya H, Matsushima M, Shimizu H, Takahashi F, Mukai T, Terasawa T (2008) Solar wind proton reflection at the lunar surface: low energy ion measurement by MAP-PACE onboard SELENE (KAGUYA). Geophys Res Lett 35:24205

    Article  ADS  Google Scholar 

  • Saito Y, Yokota S, Asamura K, Tanaka T, Nishino MN, Yamamoto T, Terakawa Y, Fujimoto M, Hasegawa H, Hayakawa H, Hirahara M, Hoshino M, Machida S, Mukai T, Nagai T, Nagatsuma T, Nakagawa T, Nakamura M, Oyama K-I, Sagawa E, Sasaki S, Seki K, Shinohara I, Terasawa T, Tsunakawa H, Shibuya H, Matsushima M, Shimizu H, Takahashi F (2010) In-flight performance and initial results of plasma energy angle and composition experiment (PACE) on SELENE (Kaguya). Space Sci Rev 154:265–303

    Article  ADS  Google Scholar 

  • Saito Y, Nishino MN, Fujimoto M, Yamamoto T, Yokota S, Tsunakawa H, Shibuya H, Matsushima M, Shimizu H, Takahashi F (2012) Simultaneous observation of the electron acceleration and ion deceleration over lunar magnetic anomalies. Earth Planets Space 64:83–92

    Article  ADS  Google Scholar 

  • Samir U, Wright KH Jr, Stone NH (1983) The expansion of a plasma into a vacuum: basic phenomena and processes and applications to space plasma physics. Rev Geophys Space Phys 21:1631–1646

    Article  ADS  Google Scholar 

  • Schubert G, Lichtenstein BR (1974) Observations of Moon-plasma interactions by orbital and surface experiments. Rev Geophys Space Phys 12:592–626

    Article  ADS  Google Scholar 

  • Schultz PH, Srnka LJ (1980) Cometary collisions on the Moon and Mercury. Nature 284:22–26

    Article  ADS  Google Scholar 

  • Schwerer FC, Huffman GP, Fisher RM, Nagata T (1974) Electrical conductivity of lunar surface rocks – laboratory measurements and implications for lunar interior temperatures. In: Lunar and planetary science conference proceedings. volume 5 of Lunar and Planetary Science Conference Proceedings. pp 2673–2687. http://adsabs.harvard.edu/abs/1974LPSC....5.2673S

  • Shaikhislamov IF, Antonov VM, Zakharov YP, Boyarintsev EL, Melekhov AV, Posukh VG, Ponomarenko AG (2013) Mini-magnetosphere: laboratory experiment, physical model and hall MHD simulation. Adv Space Res 52:422–436

    Article  ADS  Google Scholar 

  • Sharp LR, Coleman PJ Jr, Lichtenstein BR, Russell CT, Schubert G (1973) Orbital mapping of the lunar magnetic field. Moon 7:322–341

    Article  ADS  Google Scholar 

  • Starukhina LV (2006) Polar regions of the Moon as a potential repository of solar-wind-implanted gases. Adv Space Res 37:50–58

    Article  ADS  Google Scholar 

  • Starukhina LV, Shkuratov YG (2000) NOTE: the lunar poles: water ice or chemically trapped hydrogen? Icarus 147:585–587

    Article  ADS  Google Scholar 

  • Starukhina LV, Shkuratov YG (2004) Swirls on the Moon and Mercury: meteoroid swarm encounters as a formation mechanism. Icarus 167:136–147

    Article  ADS  Google Scholar 

  • Stern SA (1999) The lunar atmosphere: history, status, current problems, and context. Rev Geophys 37:453–492

    Article  ADS  Google Scholar 

  • Stubbs TJ, Halekas JS, Farrell WM, Vondrak RR (2007) Lunar surface charging: a global perspective using lunar prospector data. Dust Planet Syst 643:181–184

    ADS  Google Scholar 

  • Sunshine JM, Farnham TL, Feaga LM, Groussin O, Merlin F, Milliken RE, A’Hearn MF (2009) Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 326:565

    Article  ADS  Google Scholar 

  • Tao JB, Ergun RE, Newman DL, Halekas JS, Andersson L, Angelopoulos V, Bonnell JW, McFadden JP, Cully CM, Auster H-U, Glassmeier K-H, Lar-son DE, Baumjohann W, Goldman MV (2012) Kinetic instabilities in the lunar wake: ARTEMIS observations. J Geophys Res (Space Phys) 117:A03106

    ADS  Google Scholar 

  • Tsunakawa H, Shibuya H, Takahashi F, Shimizu H, Matsushima M, Matsuoka A, Nakazawa S, Otake H, Iijima Y (2010) Lunar magnetic field observation and initial global mapping of lunar magnetic anomalies by MAP-LMAG onboard SELENE (Kaguya). Space Sci Rev 154:219–251

    Article  ADS  Google Scholar 

  • Tsunakawa H, Takahashi F, Shimizu H, Shibuya H, Matsushima M (2015) Surface vector mapping of magnetic anomalies over the Moon using Kaguya and lunar prospector observations. J Geophys Res (Planets) 120:1160–1185

    Article  ADS  Google Scholar 

  • Usui H, Miyake Y, Nishino MN, Matsubara T, Wang J (2017) Electron dynamics in the minimagnetosphere above a lunar magnetic anomaly. J Geophys Res Space Phys 122(2):1555–1571. 2016JA022927

    ADS  Google Scholar 

  • Walker JJ, Halekas JS, Horányi M, Szalay JR, Poppe AR (2017) Evidence for detection of energetic neutral atoms by LADEE. Planet Space Sci 139:31–36

    Article  ADS  Google Scholar 

  • Wang X, Horányi M, Sternovsky Z, Robertson S, Morfill GE (2007) A laboratory model of the lunar surface potential near boundaries between sunlit and shadowed regions. Geophys Res Lett 34:L16104

    ADS  Google Scholar 

  • Wang X, Horányi M, Robertson S (2012) Characteristics of a plasma sheath in a magnetic dipole field: implications to the solar wind interaction with the lunar magnetic anomalies. J Geophys Res (Space Phys) 117:6226

    ADS  Google Scholar 

  • Wang X, Howes CT, Horányi M, Robertson S (2013) Electric potentials in magnetic dipole fields normal and oblique to a surface in plasma: understanding the solar wind interaction with lunar magnetic anomalies. Geophys Res Lett 40:1686–1690

    Article  ADS  Google Scholar 

  • Wang X, Schwan J, Hsu H-W, Grün E, Horányi M (2016) Dust charging and transport on airless planetary bodies. Geophys Res Lett 43:6103–6110

    Article  ADS  Google Scholar 

  • Weiss BP, Tikoo SM (2014) The lunar dynamo. Science 346:1198

    Article  ADS  Google Scholar 

  • Whipple EC (1981) Potentials of surfaces in space. Rep Prog Phys 44:1197–1250

    Article  ADS  Google Scholar 

  • Wieser M, Barabash S, Futaana Y, Holmström M, Bhardwaj A, Sridharan R, Dhanya MB, Wurz P, Schaufelberger A, Asamura K (2009) Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space. Planet Space Sci 57:2132–2134

    Article  ADS  Google Scholar 

  • Wieser M, Barabash S, Futaana Y, Holmström M, Bhardwaj A, Sridharan R, Dhanya MB, Schaufelberger A, Wurz P, Asamura K (2010) First observation of a mini- magnetosphere above a lunar magnetic anomaly using energetic neutral atoms. Geophys Res Lett 37:5103

    Article  ADS  Google Scholar 

  • Yokota S, Saito Y, Asamura K, Tanaka T, Nishino MN, Tsunakawa H, Shibuya H, Matsushima M, Shimizu H, Takahashi F, Fujimoto M, Mukai T, Terasawa T (2009) First direct detection of ions originating from the Moon by MAP-PACE IMA onboard SELENE (KAGUYA). Geophys Res Lett 36:11201

    Article  ADS  Google Scholar 

  • Zimmerman MI, Farrell WM, Stubbs TJ, Halekas JS, Jackson TL (2011) Solar wind access to lunar polar craters: Feedback between surface charging and plasma expansion. Geophys Res Lett 38:L19202

    Article  ADS  Google Scholar 

  • Zimmerman MI, Farrell WM, Poppe AR (2015) Kinetic simulations of kilometer-scale minimagnetosphere formation on the Moon. J Geophys Res Planets 120(11):1893–1903. 2015JE004865

    Article  ADS  Google Scholar 

  • Zook HA, McCoy JE (1991) Large scale lunar horizon glow and a high altitude lunar dust exosphere. Geophys Res Lett 18:2117–2120

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author thanks Drs. W.M. Farrell, J.S. Halekas, D.J. Hemingway, M. Horányi and X. Wang for their valuable input during the preparation of the manuscript. This work was supported by NASA’s Solar System Exploration Research Virtual Institute (SSERVI): Institute for Modeling Plasmas, Atmosphere, and Cosmic Dust (IMPACT). Part of this work was inspired by discussions within International Team 336: “Plasma Surface Interactions with Airless Bodies in Space and the Laboratory” at the International Space Science Institute, Bern, Switzerland. As our understanding of the lunar plasma environment constantly evolves when new research areas are explored and old ones are revisited, the reader is encouraged to suggest to the author vital additions to the current living review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Deca .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Deca, J. (2017). Plasma Environment of the Moon. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_118-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_118-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics