Skip to main content
  • 391 Accesses

Abstract

Definitions in psychopharmacology have been coined by the activity of special compounds or chemical classes found in patients. This is not only true for the term “neuroleptic” but also for the term “anxiolytic.” Other terms have been “ataractic” or “psycholeptic.” Anxiolytics are derived from “tranquilizers,” such as meprobamate, which was used widely until the advent of benzodiazepines. The property which these drugs have in common is the alleviation of anxiety, thus explaining the term “anxiolytic.” These agents are used for the relatively minor disorders of the nonpsychotic or neurotic type, whereas the antipsychotic agents (phenothiazines, butyrophenones) are given mainly to combat the more severe psychotic or schizophrenic reactions. Thus, the terms “antianxiety” and “antipsychotic” indicate a qualitative distinction in the clinical use and mode of action of the drug. Pathological anxiety in man has been defined by its interference with normal functions, by manifestations of somatic disorders, emotional discomfort, interference with productivity at work, etc. This complex characterization of anxiety in man already indicates the difficulties to find appropriate pharmacological models. Therefore, several tests have to be performed to find a spectrum of activities which can be considered to be predictive for therapeutic efficacy in patients. For in vivo studies, most investigators use a battery of anticonvulsive tests, antiaggressive tests, and evaluation of conditioned behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

General Considerations

  • Boissier JR, Simon P (1969) Evaluation of experimental techniques in the psychopharmacology of emotion. Ann N Y Acad Sci 159:898–914

    CAS  PubMed  Google Scholar 

  • Costa E, Corda MG, Epstein B, Forchetti C, Guidotti A (1983) GABA-benzodiazepine interactions. In: Costa E (ed) The Benzodiazepines. From molecular biology to clinical practice. Raven Press, New York, pp 117–136

    Google Scholar 

  • Costall B, Naylor RJ, Tyers MB (1988) Recent advances in the neuropharmacology of 5-HT3 agonists and antagonists. Rev Neurosci 2:41–65

    CAS  Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 10:263–265

    CAS  Google Scholar 

  • Fonnum F (1987) Biochemistry, anatomy, and pharmacology of GABA neurons. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 173–182

    Google Scholar 

  • Lippa AS, Priscilla A, Nash BA, Greenblatt EN (1979) Preclinical neuropharmacological testing procedures for anxiolytic drugs. In: Fielding S, Lal H (eds) Anxiolytics. Futura Publishing, New York, pp 41–81

    Google Scholar 

  • Lloyd KG, Morselli PL (1987) Psychopharmacology of GABAergic drugs. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 183–195

    Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. Trends Neurosci 11:496–500

    CAS  PubMed  Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272

    CAS  Google Scholar 

  • Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci U S A 71:4801–4807

    Google Scholar 

GABA Receptor Binding

  • Bormann J (2000) The “ABC” of GABA receptors. Trends Pharmacol Sci 21:16–19

    CAS  PubMed  Google Scholar 

  • Chehib M (2004) GABAC receptor ion channels. Clin Exp Pharmacol Physiol 31:800–804

    Google Scholar 

  • Enna SJ, Möller H (1987) γ-Aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 265–272

    Google Scholar 

  • Fritschy JM, Brünig I (2003) Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 98:299–323

    CAS  PubMed  Google Scholar 

  • Matsumoto RR (1989) GABA receptors: are cellular differences reflected in function? Brain Res Rev 14:203–225

    CAS  PubMed  Google Scholar 

  • Möhler H (1992) GABAergic synaptic transmission. Arzneim Forsch/Drug Res 42:211–214

    Google Scholar 

  • Pan Y, Khalili P, Ripps H, Qian H (2005) Pharmacology of GABAC receptors: responses to agonists and antagonists distinguish A- and B-subtypes of homomeric ρ receptors expressed in Xenopus oocytes. Neurosci Lett 376:60–65

    CAS  PubMed  Google Scholar 

  • Qian H, Ripps H (2001) The GABAC receptors of retinal neurons. Prog Brain Res 131:295–308

    CAS  PubMed  Google Scholar 

  • Ragozzino D, Woodward RM, Murata Y, Eusebi F, Overman LE, Miledi R (1996) Design and in vitro pharmacology of a selective gamma-aminobutyric acidC receptor antagonist. Mol Pharmacol 50:1024–1030

    CAS  PubMed  Google Scholar 

  • Schlicker K, Boller M, Schmidt M (2004) GABAC receptor mediated inhibition of acutely isolated neurons of the rat dorsal lateral geniculate nucleus. Brain Res Bull 63:91–97

    CAS  PubMed  Google Scholar 

  • Urwyler S, Mosbacher J, Lingenhoehl K, Heid J, Hofstetter K, Froestl W, Bettler B, Kaupmann K (2001) Positive allosteric modulation of native and recombinant γ -amino butyric acidB receptors by 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Mol Pharmacol 60:963–971

    CAS  PubMed  Google Scholar 

  • Wang P, Slaughter MM (2005) Effects of GABA receptor antagonists on retinal glycine receptors and on homomeric glycine receptor alpha subunits. J Neurophysiol 93:3120–3126

    CAS  PubMed  Google Scholar 

  • Yang XL (2004) Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 73:127–159

    CAS  PubMed  Google Scholar 

In Vitro Assay for GABAergic Compounds: [3H]-GABA Receptor Binding

  • Enna SJ, Snyder SH (1975) Properties of γ-Aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res 100:81–97

    CAS  PubMed  Google Scholar 

  • Enna SJ, Snyder SH (1977) Influence of ions, enzymes, and detergents on γ-Aminobutyric acid-receptor binding in synaptic membranes of rat brain. Mol Pharmacol 13:442–453

    CAS  PubMed  Google Scholar 

  • Enna SJ, Collins JF, Snyder SH (1977) Stereo specificity and structure-activity requirements of GABA receptor binding in rat brain. Brain Res 124:185–190

    CAS  PubMed  Google Scholar 

  • Knott C, Bowery NG (1991) Pharmacological characterization of GABAA and GABAB receptors in mammalian CNS by receptor binding assays. In: Greenstein B (ed) Neuroendocrine Research Methods, vol 2. Harwood Academic Publications, Chur, pp 699–722

    Google Scholar 

  • Lüddens H, Korpi ER (1995) Biological function of GABAA/benzodiazepine receptor heterogeneity. J Psychiatry Res 29:77–94

    Google Scholar 

  • Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci U S A 71:4802–4807

    PubMed Central  CAS  PubMed  Google Scholar 

GABAA Receptor Binding

  • Alexander S, Peters J, Mathie A, MacKenzie G, Smith A (2001) TiPS nomenclature supplement 2001

    Google Scholar 

  • Barnard EA (1998) Multiple subtypes of the GABAA receptors. Naunyn Schmiedebergs Arch Pharmacol 358(Suppl 2):R 570

    Google Scholar 

  • Barnard EA (2000) The molecular architecture of GABAA receptors. In: Möhler H (ed) Handbook of experimental pharmacology, pharmacology of GABA and glycine neurotransmission, vol 150. Springer, Heidelberg, pp 79–100

    Google Scholar 

  • Barnard EA, Langer SZ (1998) GABAA receptors. NCIUPHAR subcommittee on GABAA receptors. The IUPHAR compendium of receptor characterization and classification 1998

    Google Scholar 

  • Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313

    CAS  PubMed  Google Scholar 

  • Beaumont K, Chilton WS, Yamamura HI, Enna SJ (1978) Muscimol binding in rat brain: association with synaptic GABA receptors. Brain Res 148:153–162

    CAS  PubMed  Google Scholar 

  • Boehm SL, Ponomarev I, Jennings AW, Withing PJ, Rosahl TW, Garrett EM, Blednow YA, Harris RA (2004) γ-Aminobutyric acid: a receptor subunit mutant mice: new perspectives on alcohol actions. Biochem Pharmacol 68:1581–1602

    CAS  PubMed  Google Scholar 

  • Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21:16–19

    CAS  PubMed  Google Scholar 

  • Bormann J, Feigenspan A (1995) GABAC receptors. Trends Neurosci 18:515–519

    CAS  PubMed  Google Scholar 

  • Chambon JP, Feltz P, Heaulme M, Restle S, Schlichter R, Biziere K, Wermuth CG (1985) An arylaminopyridazine derivative of γ-Aminobutyric acid (GABA) is a selective and competitive antagonist of the GABAA receptor site. Proc Natl Acad Sci U S A 82:1832–1836

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K i) and the concentration of inhibitor which causes 50 per cent inhibition (I 50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    CAS  PubMed  Google Scholar 

  • Costa E (1998) From GABAA receptor diversity emerges a unified vision of GABAergic inhibition. Ann Rev Pharmacol Toxicol 38:321–350

    CAS  Google Scholar 

  • Cromer BA, Morton CJ, Parker MW (2002) Anxiety over GABAA receptor structure relieved by AchBP. Trends Biochem Sci 27:180–287

    Google Scholar 

  • Enna SJ, Möller H (1987) γ-aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York

    Google Scholar 

  • Enna SJ, Snyder SH (1976) Influence of ions, enzymes, and detergents on γ-aminobutyric acid-receptor binding in synaptic membranes of rat brain. Mol Pharmacol 13:442–453

    Google Scholar 

  • Gusti P, Ducic I, Puia G, Arban R, Walser A, Guidotti A, Costa E (1993) Imidazenil: a new partial positive allosteric modulator of γ-aminobutyric acid (GABA) action at GABAA receptors. J Pharmacol Exp Ther 266:1018–1028

    Google Scholar 

  • Heaulme M, Chambon JP, Leyris R, Molimard JC, Wermuth CG, Biziere K (1986) Biochemical characterization of the interaction of three pyridazinyl-GABA derivatives with the GABAA receptor site. Brain Res 384:224–231

    CAS  PubMed  Google Scholar 

  • Heaulme M, Chambon JP, Leyris R, Wermuth CG, Biziere K (1987) Characterisation of the binding of [3H]SR 95531, a GABAA antagonist, to rat brain membranes. J Neurochem 48:1677–1686

    CAS  PubMed  Google Scholar 

  • Johnston GAR (1996) GABAC receptors: relatively simple transmitter-gated ion channels? Trends Pharmacol Sci 17:319–323

    CAS  PubMed  Google Scholar 

  • Kittler JT, Moss SJ (2003) Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition. Curr Opin Neurobiol 13:341–347

    CAS  PubMed  Google Scholar 

  • Kleingoor C, Ewert M, von Blankenfeld G, Seeburg PH, Kettenmann H (1991) Inverse but not full benzodiazepine agonists modulate recombinant α 6 β 2 γ 2 GABAA receptors in transfected human embryonic kidney cells. Neurosci Lett 130:169–172

    CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Frølund B, Jørgensen FS, Schousboe A (1994) GABAA receptor agonists, partial agonists, and antagonists. Design and therapeutic prospects. J Med Chem 37:2489–2505

    CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Frølund B, Liljefors T, Ebert B (2004) GABAA agonists and partial antagonists; THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem Pharmacol 68:1573–1580

    CAS  PubMed  Google Scholar 

  • Lambert JJ, Belelli D, Hill-Venning C, Peters JA (1995) Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 16:295–303

    CAS  PubMed  Google Scholar 

  • Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog Neurobiol 71:67–80

    CAS  PubMed  Google Scholar 

  • Lewin AH, de Costa BR, Rice KC, Solnick P (1989) meta- and para-Isothiocyanato-t-butylbicycloorthobenzoate: irreversible ligand of the γ-aminobutyric acid-regulated chloride ionophore. Mol Pharmacol 35:189–194

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lüscher B, Keller CA (2004) Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther 102:195–223

    PubMed  Google Scholar 

  • Macdonald RL, Gallagher MJ, Feng HJ, Kang J (2004) GABAA receptor epilepsy mutations. Biochem Pharmacol 68:1497–1506

    CAS  PubMed  Google Scholar 

  • Martini C, Rigacci T, Lucacchini A (1983) [3H]muscimol binding site on purified benzodiazepine receptor. J Neurochem 41:1183–1185

    CAS  PubMed  Google Scholar 

  • Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABAA receptors. Trends Neurosci 27:569–575

    CAS  PubMed  Google Scholar 

  • Mohler H, Malherbe P, Draguhn A, Richards JG (1990) GABAA-receptors: structural requirements and sites of gene expression in mammalian brain. Neurochem Res 15:199–207

    CAS  PubMed  Google Scholar 

  • Rudolph U, Mohler H (2004) Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 44:475–498

    CAS  PubMed  Google Scholar 

  • Rudolph U, Crestani F, Möhler H (2001) GABAA receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 22:188–194

    CAS  PubMed  Google Scholar 

  • Schwartz RD, Mindlin MC (1988) Inhibition of the GABA receptor-gated chloride ion channel in brain by noncompetitive inhibitors of the nicotinic receptor-gated cation channel. J Pharmacol Exp Ther 244:963–970

    CAS  PubMed  Google Scholar 

  • Sieghart W (2000) Unraveling the function of GABAA receptor subtypes. Trends Pharmacol Sci 21:411–416

    CAS  PubMed  Google Scholar 

  • Smith GB, Olsen RW (1995) Functional domains and GABAA receptors. Trends Pharmacol Sci 16:162–168

    CAS  PubMed  Google Scholar 

  • Snodgrass SR (1978) Use of 3H-muscimol for GABA receptor studies. Nature 273:392–394

    CAS  PubMed  Google Scholar 

  • Turner DM, Sapp DW, Olsen RW (1991) The benzodiazepine/alcohol antagonist Ro 15–4513: binding to a GABAA receptor subtype that is insensitive to diazepam. J Pharmacol Exp Ther 257:1236–1242

    CAS  PubMed  Google Scholar 

  • Vicini S (1991) Pharmacologic significance of the structural heterogeneity of the GABAA receptor-chloride ion channel complex. Neuropsychopharmacology 4:9–15

    CAS  PubMed  Google Scholar 

  • Williams M, Risley EA (1978) Characterization of the binding of [3H]muscimol, a potent γ-aminobutyric acid antagonist, to rat synaptosomal membranes using a filtration assay. J Neurochem 32:713–718

    Google Scholar 

  • Zhang D, Pan Z-H, Awobuluyi M, Lipton SA (2001) Structure and function of GABAC receptors: a comparison of native versus recombinant vectors. Trends Pharmacol Sci 22:121–132

    CAS  PubMed  Google Scholar 

GABAB Receptor Binding

  • Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2003) Molecular structure and physiological functions of GABAB receptors. Physiol Rev 84:835–867

    Google Scholar 

  • Bittiger H, Bernasconi R, Froestl W, Hall R, Jaekel J, Klebs K, Krueger L, Mickel SJ, Mondadori C, Olpe HR, Pfannkuch F, Pozza M, Probst A, van Riezen H, Schmutz M, Schuetz H, Steinmann MW, Vassout A, Waldmeyer P, Bieck P, Farger G, Gleiter C, Schmidt EK, Marescuax C (1992) GABAb antagonists: potential new drugs. Pharmacol Commun 2:70–74

    CAS  Google Scholar 

  • Bittiger H, Froestl W, Mickel SJ, Olpe HR (1993) GABAB receptor antagonists: from synthesis to therapeutic applications. Trends Pharmacol Sci 14:391–394

    CAS  PubMed  Google Scholar 

  • Bonanno G, Raiteri M (1992) Functional evidence for multiple γ-aminobutyric acidB receptor subtypes in the rat cerebral cortex. J Pharmacol Exp Ther 262:114–118

    CAS  PubMed  Google Scholar 

  • Bonanno G, Raiteri M (1993a) Multiple GABAB receptors. Trends Pharmacol Sci 14:259–261

    CAS  PubMed  Google Scholar 

  • Bonanno G, Raiteri M (1993b) γ-aminobutyric acid (GABA) autoreceptors in rat cerebral cortex and spinal cord represent pharmacologically distinct subtypes of the GABAB receptor. J Pharmacol Exp Ther 265:765–770

    CAS  PubMed  Google Scholar 

  • Bowery NG (1993) GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol 33:109–147

    CAS  PubMed  Google Scholar 

  • Bowery NG, Enna SJ (2000) γ-Aminobutyric acidB receptors: first of functional metabotropic heterodimers. J Pharmacol Exp Ther 292:2–7

    CAS  PubMed  Google Scholar 

  • Bowery G, Hill DR, Hudson AL (1983) Characterization of GABAB receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol 78:191–206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL (1985) (3H)(−)baclofen: an improved ligand for GABAB sites. Neuropharmacology 24:207–210

    CAS  PubMed  Google Scholar 

  • Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2003) International Union of Pharmacology. XXXIII. Mammalian γ-aminobutyric acidB receptors: structure and function. Pharmacol Rev 54:247–264

    Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    CAS  PubMed  Google Scholar 

  • Drew CA, Johnston GAR, Weatherby RP (1984) Bicucculineinsensitive GABA receptors: studies on the binding of (−)-baclofen to rat cerebellar membranes. Neurosci Lett 52:317–321

    CAS  PubMed  Google Scholar 

  • Enna SJ, Möller H (1987) γ-aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 265–272

    Google Scholar 

  • Froestl W, Mickel SJ, Schmutz M, Bittiger H (1996) Potent, orally active GABAB receptor antagonists. Pharmacol Commun 8:127–133

    CAS  Google Scholar 

  • Hill DR, Bowery NG (1981) 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290:149–152

    CAS  PubMed  Google Scholar 

  • Kato K, Goto M, Fukuda H (1983) Regulation by divalent cations of 3H-baclofen binding to GABAB sites in rat cerebellar membranes. Life Sci 32:879–887

    CAS  PubMed  Google Scholar 

  • Kaupmann K, Huggel K, Held J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froesti W, Bettler B (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic receptors. Nature 386:239–246

    CAS  PubMed  Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl J, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin AS, Bettler B (1998) GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    CAS  PubMed  Google Scholar 

  • Kerr DIB, Ong J, Prager RH, Gynther BD, Curtis DR (1987) Phaclofen: a peripheral and central baclofen antagonist. Brain Res 405:150–154

    CAS  PubMed  Google Scholar 

  • Kerr DIB, Ong J, Johnston GAR, Abbenante J, Prager RH (1988) 2-Hydroxy-saclofen: am improved antagonist at central and peripheral GABAB receptors. Neurosci Lett 92:92–96

    CAS  PubMed  Google Scholar 

  • Kerr DIB, Ong J, Johnston GAR, Abbenante J, Prager RH (1989) Antagonism of GABAB receptors by saclofen and related sulphonic analogues of baclofen and GABA. Neurosci Lett 107:239–244

    CAS  PubMed  Google Scholar 

  • Lanza M, Fassio A, Gemignani A, Bonanno G, Raiteri M (1993) CGP 52432: a novel potent and selective GABAB autoreceptor antagonist in rat cerebral cortex. Eur J Pharmacol 237:191–195

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Olpe HR, Karlsson G, Pozza MF, Brugger F, Steinman M, van Riezen H, Fagg G, Hall RG, Froestl W, Bittiger H (1990) CGP 35348: a centrally active blocker of GABAB receptors. Eur J Pharmacol 187:27–38

    CAS  PubMed  Google Scholar 

  • Paredes RG, Ågmo A (1992) GABA and behavior: the role of receptor subtypes. Neurosci Biobehav Rev 16:145–170

    CAS  PubMed  Google Scholar 

  • Robinson TM, Cross AJ, Green AR, Toczek JM, Boar BR (1989) Effects of the putative antagonists phaclofen and δ-aminovaleric acid on GABAB receptor biochemistry. Br J Pharmacol 98:833–840

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scherer RA, Ferkany JW, Enna SJ (1988) Evidence for pharmacologically distinct subsets of GABAB receptors. Brain Res Bull 21:439–443

    CAS  PubMed  Google Scholar 

  • Shank RP, Baldy WJ, Mattucci LC, Vilani FJ Jr (1990) Ion and temperature effects on the biding of γ-aminobutyrate to its receptors and the high-affinity transport system. J Neurochem 54:2007–2015

    CAS  PubMed  Google Scholar 

  • Shoulson I, Odoroff C, Oakes D, Behr J, Goldblatt D, Caine E, Kennedy J, Miller C, Bamford K, Rubin A, Plumb S, Kurlan R (1989) A controlled clinical trial of baclofen as protective therapy in early Huntington’s disease. Ann Neurol 25:252–259

    CAS  PubMed  Google Scholar 

  • Wilkin GP, Hudson AL, Hill DR, Bowery NG (1981) Autoradiographic localisation of GABAB receptors in rat cerebellum. Nature 294:584–587

    CAS  PubMed  Google Scholar 

Benzodiazepine Receptor: [3H]-Flunitrazepam Binding Assay

  • Byrnes JJ, Greenblatt DJ, Miller LG (1992) Benzodiazepine receptor binding of nonbenzodiazepines in vivo: Alpidem, Zolpidem and Zopiclone. Brain Res Bull 29:905–908

    CAS  PubMed  Google Scholar 

  • Chang RSL, Snyder SH (1978) Benzodiazepine receptors: labelling in intact animals with [3H]-flunitrazepam. Eur J Pharmacol 48:213–218

    CAS  PubMed  Google Scholar 

  • Damm HW, Müller WE, Schläfer U, Wollert U (1978) [3H]Flunitrazepam: its advantages as a ligand for the identification of benzodiazepine receptors in rat brain membranes. Res Commun Chem Pathol Pharmacol 22:597–600

    CAS  PubMed  Google Scholar 

  • Davies MF, Onaivi ES, Chen SW, Maguire PA, Tsai NF, Loew GH (1994) Evidence for central benzodiazepine receptor heterogeneity from behavior tests. Pharmacol Biochem Behav 49:47–56

    CAS  PubMed  Google Scholar 

  • Gardner CR (1988) Pharmacological profiles in vivo of benzo-diazepine receptor ligands. Drug Dev Res 12:1–28

    CAS  Google Scholar 

  • Griebel G, Perrault G, Letang V, Granger P, Avenet P, Schoemaker H, Sanger DJ (1999a) New evidence that the pharmacological effects of benzodiazepine receptor ligands can be associated with activities at different BZ (omega) receptor subtypes. Psychopharmacology (Berl) 146:205–213

    CAS  Google Scholar 

  • Griebel G, Perrault G, Tan S, Schoemaker H, Sanger DJ (1999b) Comparison of the pharmacological properties of classical and novel BZ-omega receptor ligands. Behav Pharmacol 10:483–495

    CAS  PubMed  Google Scholar 

  • Hafely WE, Martin JR, Richard JG, Schoch P (1993) The multiplicity of actions of benzodiazepine receptor ligands. Can J Psychiatry 38(Suppl 4):S102–S108

    Google Scholar 

  • Iversen LL (1983) Biochemical characterisation of benzodiazepine receptors. In: Trimble MR (ed) Benzodiazepines divided. Wiley, Chichester, pp 79–85

    Google Scholar 

  • Jacqmin P, Wibo M, Lesne M (1986) Classification of benzodiazepine receptor agonists, inverse agonists and antagonists using bicuculline in an in vitro test. J Pharmacol (Paris) 17:139–145

    CAS  Google Scholar 

  • Klepner CA, Lippa AS, Benson DI, Sano MC, Beer B (1979) Resolution in two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol Biochem Behav 11:457–462

    CAS  PubMed  Google Scholar 

  • Langer SZ, Arbilla S (1988) Limitations of the benzodiazepine receptor nomenclature: a proposal for a pharmacological classification as omega receptor subtypes. Fundam Clin Pharmacol 2:159–170

    CAS  PubMed  Google Scholar 

  • Langer SZ, Arbilla S, Tan S, Lloyd KG, George P, Allen J, Wick AE (1990) Selectivity of omega-receptor subtypes as a strategy for the development of anxiolytic drugs. Pharmacopsychiatry 23:103–107

    PubMed  Google Scholar 

  • Lüddens H, Korpi ER, Seeburg PH (1995) GABAA/benzodiazepine receptor heterogeneity: neurophysiological implications. Neuropharmacology 34:245–254

    PubMed  Google Scholar 

  • Mennini T, Garattini A (1982) Benzodiazepine receptors: correlation with pharmacological responses in living animals. Life Sci 31:2025–2035

    CAS  PubMed  Google Scholar 

  • Möhler H, Okada T (1977a) Benzodiazepine receptor: demonstration in the central nervous system. Science 198:849–851

    PubMed  Google Scholar 

  • Möhler H, Okada T (1977b) Properties of 3H-diazepam binding to benzodiazepine receptors in rat cerebral cortex. Life Sci 20:2101–2110

    PubMed  Google Scholar 

  • Möhler H, Richards JG (1983) Benzodiazepine receptors in the central nervous system. In: Costa E (ed) The benzodiazepines: from molecular biology to clinical practice. Raven Press, New York, pp 93–116

    Google Scholar 

  • Olsen RW (1981) GABA-benzodiazepine-barbiturate receptor interactions. J Neurochem 37:1–13

    CAS  PubMed  Google Scholar 

  • Schacht U, Baecker G (1982) Effects of clobazam in benzodiazepine-receptor binding assays. Drug Dev Res Suppl 1:83–93

    Google Scholar 

  • Sieghart W (1989) Multiplicity of GABAA-benzodiazepine receptors. Trends Pharmacol Sci 10:407–410

    CAS  PubMed  Google Scholar 

  • Speth RC, Wastek GJ, Johnson PC, Yamamura HI (1978) Benzodiazepine binding in human brain: characterization using [3H]flunitrazepam. Life Sci 22:859–866

    CAS  PubMed  Google Scholar 

  • Speth RC, Wastek GJ, Yamamura HI (1979) Benzodiazepine receptors: temperature dependence of 3H-diazepam binding. Life Sci 24:351–358

    CAS  PubMed  Google Scholar 

  • Squires RF, Braestrup C (1977) Benzodiazepine receptors in rat brain. Nature 266:732–734

    CAS  PubMed  Google Scholar 

  • Supavilai P, Karobath M (1980) Heterogeneity of benzodiazepine receptors in rat cerebellum and hippocampus. Eur J Pharmacol 64:91–93

    CAS  PubMed  Google Scholar 

  • Sweetnam PM, Tallman JF (1985) Regional difference in brain benzodiazepine receptor carbohydrates. Mol Pharmacol 29:299–306

    Google Scholar 

  • Takeuchi T, Tanaka S, Rechnitz GA (1992) Biotinylated 1012–S conjugate as a probe ligand for benzodiazepine receptors: characterization of receptor binding sites and receptor assay for benzodiazepine drugs. Anal Biochem 203:158–162

    CAS  PubMed  Google Scholar 

  • Tallman JF (1980) Interaction between GABA and benzodiazepines. Brain Res Bull 5:829–832

    CAS  Google Scholar 

Serotonin Receptor Binding

  • Allen AR, Singh A, Zhuang ZP, Kung MP, Kung HF, Lucki I (1997) The 5-HT1A receptor antagonist p-MPPI blocks responses mediated by postsynaptic and presynaptic 5-HT1A receptors

    Google Scholar 

  • Ansanay H, Sebben M, Bockaert J, Dumuis A (1996) Pharmacological comparisons between [3H]-GR113808 binding sites and functional 5-HT4 receptors in neurons. Eur J Pharmacol 298:165–174

    CAS  PubMed  Google Scholar 

  • Arranz B, Rosel P, San L, Sarro S, Navarro MA, Marcusson J (1998) Characterization of the 5-HT4 binding site in human brain. J Neural Transm 105:575–586

    CAS  PubMed  Google Scholar 

  • Bachy A, Héaulme M, Giudice A, Michaud JC, Lefevre IA, Souilhac J, Manara L, Emerit MB, Gozian H, Hamon M, Keane PE, Soubrié P, Le Fur G (1993) SR 57227A: a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur J Pharmacol 237:299–309

    CAS  PubMed  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    CAS  PubMed  Google Scholar 

  • Bockaert J, Fagni L, Dumuis A (1997) 5-HT4 receptors: an update. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors in the CNS, vol 129. Springer, Berlin/Heidelberg, pp 439–474

    Google Scholar 

  • Boess FG, Martin LL (1994) Molecular biology of 5-HT receptors. Neuropharmacology 33:275–317

    CAS  PubMed  Google Scholar 

  • Boess FG, Steward LJ, Steele JA, Liu D, Reid J, Glencorse TA, Martin IL (1997) Analysis of the ligand binding site of the 5-KT3 receptor using site direction mutagenesis: importance of glutamate 106. Neuropharmacology 36:637–647

    CAS  PubMed  Google Scholar 

  • Boess FG, Riemer C, Bos M, Bentley J, Bourson A, Sleight AJ (1998) The 5-hydroxytryptamine6 receptor-selective radioligand [3H]Ro 63–0563 labels 5-hydroxytryptamine receptor binding sites in rat and porcine striatum. Mol Pharmacol 54:577–583

    CAS  PubMed  Google Scholar 

  • Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka DB, Zuppan P, Chan HW, Eglen RM (1995) The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 115:622–628

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bourson A, Borroni E, Austin RH, Monsma FJ Jr, Sleight AJ (1995) Determination of the role of the 5-ht6 receptor in the rat brain: a study using antisense oligonucleotides. J Pharmacol Exp Ther 274:173–180

    CAS  PubMed  Google Scholar 

  • Branchek TA (1995) 5-HT4, 5-HT6, 5-HT7; molecular pharmacology of adenylate cyclase stimulating receptors. Neuroscience 7:375–382

    CAS  Google Scholar 

  • Branchek TA, Blackburn TP (2000) 5-HT6 receptors as emerging targets for drug discovery. Annu Rev Pharmacol Toxicol 40:119–134

    Google Scholar 

  • Branchek TA, Zgombick (1997) Molecular biology and potential role of 5-HT5, 5-HT6, and 5-HT7 receptors. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors in the CNS, vol 129. Springer, Berlin/Heidelberg, pp 475–498

    Google Scholar 

  • Brattelid T, Kvingedal AM, Krobert KA, Andressen KW, Bach T, Hystad ME, Kaumann AJ, Levy FO (2004) Cloning, pharmacological characterization and tissue distribution of an novel 5-HT4 receptor splice variant, 5-HT4i. Naunyn Schmiedebergs Arch Pharmacol 369:616–628

    CAS  PubMed  Google Scholar 

  • Briley M, Chopin P, Marien M, Moret C (1997) Functional neuropharmacology of compounds acting on 5-HT1B/1D receptors. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors in the CNS, vol 129. Springer, Berlin/Heidelberg, pp 269–306

    Google Scholar 

  • Bühlen M, Fink K, Böing C, Göthert M (1996) Evidence for presynaptic localization of inhibitory 5-HT1D β -like autoreceptors in the guinea-pig brain cortex. Naunyn Schmiedebergs Arch Pharmacol 353:281–289

    PubMed  Google Scholar 

  • Cappelli A, Donati A, Anzini M, Vomero S, de Benedetti PG, Menziani MC, Langer T (1996) Molecular structure and dynamics of some potent 5-HT3 receptor antagonists. Insight into the interaction with the receptor. Bioorg Med Chem 4:1255–1269

    CAS  PubMed  Google Scholar 

  • Carey JE, Wood MD, Blackburn TP, Browne MJ, Gale DG, Glen A, Flanigan TP, Hastwell C, Muir A, Robinson JH, Wilson S (1996) Pharmacological characterization of a recombinant human 5-HT2C receptor expressed in HEK293 cells. Pharmacol Commun 7:165–173

    CAS  Google Scholar 

  • Chagraoui A, Potais P, Fillpox T, Mocaer E (2003) Agomelatine (S20088) antagonizes the penile erections induced by the stimulation of 5-HT2C receptors in Wistar rats. Psychopharmacology (Berl) 170:17–22

    CAS  Google Scholar 

  • Chen K, Yang W, Grimsby J, Shih JC (1992) The human 5-HT2 receptor is encoded by a multiple intron-exon gene. Mol Brain Res 14:20–26

    CAS  PubMed  Google Scholar 

  • Clayton NM, Sargent R, Butler A, Gale J, Maxwell MP, Hunt AA, Barrett VJ, Cambridge D, Bountra C, Humphrey PP (1999) The pharmacological properties of the novel selective 5-HT3 receptor antagonist, alsosetron, and its effects on normal and perturbed small intestinal transit in the fasted rat. Neurogastroenterol Motil 11:207–217

    CAS  PubMed  Google Scholar 

  • Clitherow JW, Scopes DIC, Skingle M, Jordan CC, Feniuk W, Campbell IB, Carter MC, Collington EW, Connor HE, Higgins GA, Beattie D, Kelly HA, Mitchell WL, Oxford AW, Wadsworth AH, Tyers MB (1994) Evolution of a new series of [(N, N-dimethylamino)propyl]- and piperazinylbenzanilides as the first selective 5-HT1D antagonists. J Med Chem 37:2253–2257

    CAS  PubMed  Google Scholar 

  • Costal B, Naylor RJ (1997) Neuropharmacology of 5-HT3 receptor ligands. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors in the CNS, vol 129. Springer, Berlin/Heidelberg, pp 409–438

    Google Scholar 

  • Cushing DJ, Baez M, Kursar JD, Schenk K, Cohen ML (1994) Serotonin-induced contraction in canine coronary artery and saphenous vein: role of a 5-HT1D-like receptor. Life Sci 54:1671–1680

    CAS  PubMed  Google Scholar 

  • De la Vega L, Muñoz E, Calcado MA, Lieb K, Candelario-Jahil E, Gschaidmeier H, Färber L, Mueller W, Stratz T, Fiebich BL (2005) The 5-HT3 receptor antagonist tropisetron inhibits T cell activation by targeting the calcineurin pathway. Biochem Pharmacol 70:369–380

    Google Scholar 

  • De Vries P, Heilgers JPC, Villalón CM, Saxena PR (1996) Blockade of porcine carotid vascular responses to sumatripan by GR127935, a selective 5-HT1D receptor antagonist. Br J Pharmacol 118:85–92

    PubMed Central  PubMed  Google Scholar 

  • De Vries P, Apayadin S, Villalón CM, Heiligers JPC, Saxena PR (1997) Interactions of GR127935, a 5-HT1B/D receptor ligand, with functional 5-HT receptors. Naunyn Schmiedebergs Arch Pharmacol 355:423–430

    PubMed  Google Scholar 

  • de Vry J (1995) 5-HT1A receptor agonists: recent developments and controversial issues. Psychopharmacology (Berl) 121:1–26

    Google Scholar 

  • de Vry J, Glaser T, Schuurman T, Schreiber R, Traber J (1991) 5-HT1A receptors in anxiety. In: Briley M, File SE (eds) New concepts in anxiety. McMillan Press, London, pp 94–129

    Google Scholar 

  • Domenech T, Beleta J, Fernandez AG, Gristwood RW, Sanchez FC, Tolasa E, Palacios JM (1994) Identification and characterization of serotonin central 5-HT4 receptor binding sites in human brain: Comparison with other mammalian species. Mol Brain Res 21:176–180

    CAS  PubMed  Google Scholar 

  • Dumuis A, Gozian H, Sebben M, Ansanay H, Rizzi CA, Turconi M, Monferini E, Giraldo E, Schiantarelli P, Ladinky H (1992) Characterization of a novel 5-HT4 receptor antagonist of the azabicycloalkyl benzamidazolone class: DAU 6285. Naunyn Schmiedebergs Arch Pharmacol 345:264–269

    CAS  PubMed  Google Scholar 

  • Eglen RM (1967) 5-Hydroxytryptamine (5-HT)4 receptors and central nervous system function: an update. Prog Drug Res 49:9–24

    Google Scholar 

  • Eglen RM, Hegde SS (1966) 5-Hydroxytryptamine (5-HT)4 receptors: physiology, pharmacology and therapeutic potential. Exp Opin Invest Drugs 5:373–388

    Google Scholar 

  • Eglen RM, Wong EHF, Dumuis A, Bockaert J (1995) Central 5-HT4 receptors. Trends Pharmacol Sci 16:391–398

    CAS  PubMed  Google Scholar 

  • Endo T, Minami M, Kitamura N, Teramoto Y, Ogawa T, Nemoto M, Hamaue N, Hirafuji M, Yasuda E, Blower PR (1999) Effects of various 5-HT3 receptor antagonists, granisetron, ondansetron, ramosetron and azasetron on serotonin (5-HT) release from the ferret isolated ileum. Res Commun Med Pathol Pharmacol 104:145–155

    CAS  Google Scholar 

  • Fink K, Zentner J, Göthert M (1995) Subclassification of presynaptic 5-HT autoreceptors in the human cerebral cortex as 5-HT1Dβ receptors. Naunyn Schmiedebergs Arch Pharmacol 352:451–454

    CAS  PubMed  Google Scholar 

  • Fitzpatrick LR, Lambert RM, Pendley CE, Martin GE, Bostwick JF, Gessner GW, Airey JE, Youssefyeh RD, Pendleton RG, Decktor DL (1990) RG 12915: a potent 5-hydroxytryptamine-3 antagonist that is an orally effective inhibitor of cytotoxic drug-induced emesis in the ferret and dog. J Pharmacol Exp Ther 254:450–455

    PubMed  Google Scholar 

  • Ford APDW, Clarke DW (1993) The 5-HT4 receptor. Med Res Rev 13:633–662

    CAS  PubMed  Google Scholar 

  • Foreman MM, Fuller RW, Rasmussen K, Nelson DL, Calligaro DO, Zhang L, Barrett JE, Booher RN, Paget CJ Jr, Flaugh ME (1994) Pharmacological characterization of LY293284: a 5-HT1A receptor agonist with high potency and selectivity. J Pharmacol Exp Ther 270:1270–1291

    CAS  PubMed  Google Scholar 

  • Gaster LM, Joiner GF, King FD, Wyman PA, Sutton JM, Bingham S, Ellis ES, Sanger GJ, Wardle KA (1995) N-[(1-Butyl-4-piperidinyl)methyl]-3,4-dihydro-2H-[1,3]oxazino[3,2-α]-indole-10-carboxamide hydrochloride: the first potent and selective 5-HT4 receptor antagonist amide with oral activity. J Med Chem 38:4760–4763

    CAS  PubMed  Google Scholar 

  • Gerald C, Adham N, Kao HT, Olsen MA, Laz TM, Schechter LE, Bard JA, Vaysse PJJ, Hartig PR, Branchek TA, Weinshank RL (1995) The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants. EMBO J 14:2806–2815

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gershon MD (2004) Review article: serotonin receptors and transporters – roles in normal and abnormal gastrointestinal motility. Aliment Pharmacol Ther 20(Suppl 7):3–14

    CAS  PubMed  Google Scholar 

  • Glennon RA, Dukat M (1997) 5-HT1 receptor ligands: update 1997. Serotonin ID Res Alert 2:351–372

    Google Scholar 

  • Glennon RA, Dukat M, Westkaemper RB, Ismaiel AM, Izzarelli DG, Parker EM (1996) The binding of propranolol at 5-hydroxytryptamine1Dβ T355N mutant receptors may involve formation of two hydrogen bonds to asparagine. Mol Pharmacol 49:198–206

    CAS  PubMed  Google Scholar 

  • Gobbi M, Parotti L, Mennini T (1996) Are 5-hydroxytryptamine7 receptors involved in [3H]5-hydroxytryptamine binding to 5-hydroxytryptamine1nonA−nonB receptors in rat hypothalamus? Mol Pharmacol 49:556–559

    CAS  PubMed  Google Scholar 

  • Göthert M, Schlicker E (1997) Regulation of 5-HT release in the CNS by presynaptic 5-HT autoreceptors and by 5-HT heteroreceptors. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors in the CNS, vol 129. Springer, Berlin/Heidelberg, pp 307–350

    Google Scholar 

  • Grossman CJ, Kilpatrick GJ, Bunce KT (1993) Development of a radioligand binding assay for 5-HT4 receptors in guineapig and rat brain. Br J Pharmacol 109:618–624

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gustafson EL, Durkin MM, Bard JA, Zgombick J, Branchek TA (1996) A receptor autoradiographic and hybridization analysis of the distribution of the 5-HT7 receptor in rat brain. Br J Pharmacol 117:657–666

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hamon M (1997) The main features of central 5-HT1A receptor. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors in the CNS, vol 129. Springer, Berlin/Heidelberg, pp 239–268

    Google Scholar 

  • Hartig PR (1997) Molecular biology and transductional characteristics of 5-HT receptors. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors in the CNS, vol 129. Springer, Berlin/Heidelberg, pp 175–212

    Google Scholar 

  • Hartig PR, Hoyer D, Humphrey PPA, Martin GR (1996) Alignment of receptor nomenclature with the human genome: classification of 5-HT1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci 17:103–105

    CAS  PubMed  Google Scholar 

  • Hedlund PB, Sutcliffe JG (2004) Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol Sci 25:481–486

    CAS  PubMed  Google Scholar 

  • Heidempergher F, Pillan A, Pinciroli V, Vaghi F, Arrigoni C, Bolis G, Caccia C, Dho L, McArthur R, Varsi M (1997) Phenylimidazolin-2-one derivatives as selective 5-HT3 receptor antagonists and refinement of the pharmacophore model for 5-HT3 receptor binding. J Med Chem 40:3369–3380

    CAS  PubMed  Google Scholar 

  • Hoyer D, Martin GR (1997) 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology 36:419–428

    CAS  PubMed  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) VII. International Union of Pharmacology classification of receptors for 5-Hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203

    CAS  PubMed  Google Scholar 

  • Humphrey PPA, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14:233–236

    CAS  PubMed  Google Scholar 

  • Ishizuka J, Hsieh AC, Townsend CM, Thompson JC (1993) The effect of 5-HT3 receptor antagonist (ondansetron) on functioning human pancreatic carcinoids cells. Surg Oncol 2:221–225

    CAS  PubMed  Google Scholar 

  • Ito H, Hidaka K, Miyata K, Kamato T, Nishida A, Honda K (1992) Characterization of YM060, a potent and selective 5-hydroxytryptamine3 receptor antagonist, in rabbit nodose ganglion and N1E-115 neuroblastoma cells. J Pharmacol Exp Ther 263:1127–1132

    CAS  PubMed  Google Scholar 

  • Ito H, Akuzawa SA, Tsutsumi R, Kiso T, Kamato T, Nishida A, Yamano M, Miyata K (1995) Comparative study of the 5-HT3 receptor antagonists, YM060, YM114 (KAE-393) granisetron and ondansetron in rat vagus nerve and cerebral cortex. Neuropsychopharmacology 34:631–637

    CAS  Google Scholar 

  • Jacobs BL, Fornal CA (1997) Physiology and pharmacology of brain serotoninergic neurons. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors in the CNS, vol 129. Springer, Berlin/Heidelberg, pp 91–116

    Google Scholar 

  • Johnson MP, Baez M, Kursar JD, Nelson DL (1995) Species differences in 5-HT2A receptors: cloned pig and monkey 5-HT2A receptors reveal conserved transmembrane homology to the human rather than rat sequence. Biochem Biophys Acta 1236:201–206

    PubMed  Google Scholar 

  • Karim F, Roerig SC, Saphier D (1996) Role of 5-hydroxytryptamine3 (5-HT3) antagonists in the prevention of emesis caused by anticancer therapy. Biochem Pharmacol 52:685–692

    CAS  PubMed  Google Scholar 

  • Katayama K, Morio Y, Haga K, Fukuda T (1995) Cisapride, a gastroprokinetic agent, binds to 5-HT4 receptors. Folia Pharmacol Jpn 105:461–468

    CAS  Google Scholar 

  • Kaumann AJ (1994) Do human atrial 5-HT4 receptors mediate arrhythmias? Trends Pharmacol Sci 15:451–455

    CAS  PubMed  Google Scholar 

  • Kebabian JW, Neumeyer JL (1994) The handbook of receptor classification. Research Biochemicals International, Natick, pp 58–61

    Google Scholar 

  • Kidd E, Bouchelet de Vendegies I, Levy JC, Harmon M, Gozian H (1992) The potent 5-HT3 receptor antagonist (R)-zacopride labels an additional high affinity site in the central nervous system. Eur J Pharmacol 211:133–136

    CAS  PubMed  Google Scholar 

  • Koulu M, Lapppalainen J, Hietala J, Sjoholm B (1990) Effects of chronic administration of ondansetron (GR38032F), a selective 5-HT3 receptor antagonist, on monoamine metabolism in mesolimbic and nigrostriatal dopaminergic neurons and on striatal D2 receptor binding. Psychopharmacology (Berl) 101:166–171

    Google Scholar 

  • López-Rodíguez ML, Benhamú B, Viso A, Morcollo MJ, Murcia M, Orensanz L, Alfaro MJ, Martín MI (1999) Benzimidazole derivatives. Part 1: synthesis and structure-activity relationships of new benzimidazole-4-carboxamides and carboxylates as potent and selective 5-HT4 receptor antagonists. Bioorg Med Chem 7:2271–2281

    Google Scholar 

  • Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW, Danielson PE, Sutcliffe JG, Erlander MG (1993) A novel adenyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 11:449–458

    CAS  PubMed  Google Scholar 

  • Lucaites VL, Krushinski JH, Schaus JM, Audia JE, Nelson DE (2005) [3H]Y334370, a novel radioligand for the 5-HT1F receptor. II. Autoradiographic localization in rat, guinea pig, monkey and human brain. Naunyn Schmiedebergs Arch Pharmacol 371:178–184

    CAS  PubMed  Google Scholar 

  • Macor JE, Blank DH, Fox CB, Lebel LA, Newman ME, Post RJ, Ryan K, Schmidt AW, Schulz DW, Koe BK (1994) 5-[(3-Nitropyrid-2-yl)amino]indoles: novel serotonin antagonists with selectivity for the 5-HT1D receptor. Variation of the C3 substituent on the indole template leads to increased 5-HT1D receptor selectivity. J Med Chem 37:2509–2512

    CAS  PubMed  Google Scholar 

  • Macor JE, Gurley D, Lanthorn T, Loch J, Mack RA, Mullen G, Tran O, Wright N, Gordon JC (2001) The 5-HT3 antagonist tropisetron (ICS 205–930) is a potent and selective α 7 nicotinic receptor partial agonist. Bioorg Med Chem Lett 11:319–321

    CAS  PubMed  Google Scholar 

  • Malone HM, Peters JA, Lambert JJ (1991) Physiological and pharmacological properties of 5-HT3 receptors a patchclamp study. Neuropeptides 19(Suppl):S25–S30

    Google Scholar 

  • Martin GR (1998) 5-Hydroxytryptamine receptors. NCIUPHAR subcommittee for 5-hydroxytryptamine (serotonin) receptors. In: Gridlestone D (ed) The IUPHAR compendium of receptor characterization and classification. IUPHAR Media, London, pp 167–184

    Google Scholar 

  • Martin GR, Eglen RM (1998) 5-Hydroxytryptamine receptors. Trends Pharmacol Sci: Receptor Ion Channel Nomencl Suppl

    Google Scholar 

  • Martin GR, Humphrey PPA (1994) Classification review. Receptors for 5-hydroxytryptamine: current perspectives on classification and nomenclature. Neuropharmacology 33:261–273

    CAS  PubMed  Google Scholar 

  • Miyata K, Yamano M, Kamato T, Akuzawa S (1995) Effect of serotonin (5-HT)3 – receptor antagonists, YM060, YM114 (KAE-393), ondansetron and granisetron on 5-HT4 receptors and gastric emptying in rodents. Jpn J Pharmacol 69:205–214

    CAS  PubMed  Google Scholar 

  • Modica M, Romeo G, Materia L, Russo F, Cagnotto A, Mennini T, Gáspár R, Falkay G, Fülöp F (2004) Synthesis and binding properties of several novel selective 5-HT3 receptor ligands. Bioorg Med Chem 12:3891–3901

    CAS  PubMed  Google Scholar 

  • Murphy DL, Wichems C, Li Q, Heils A (1999) Molecular manipulations as tools for enhancing our understanding of 5-HT neurotransmission. Trends Pharmacol Sci 20:246–252

    CAS  PubMed  Google Scholar 

  • Nelson DL (2004) 5-HT5 receptors. CNS Neurol Disord Drug Targets 3:53–58

    CAS  Google Scholar 

  • Pauwels PJ (2000) Diverse signaling by 5-hydroxytryptamine (5-HT) receptors. Biochem Pharmacol 60:1743–1750

    CAS  PubMed  Google Scholar 

  • Peroutka SH (1993) 5-Hydroxytryptamine receptors. J Neurochem 60:408–418

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Lenègre A, Caignard DH, Pfeiffer B, Mocaër E, Gardiola-Lemaître B (1992) Pharmacological profile of a new chroman derivative with 5-hydroxytryptamine1A agonist properties: S20499(+). Drug Dev Res 27:389–402

    CAS  Google Scholar 

  • Price GW, Roberts C, Watson J, Burton M, Mulholland K, Middlemiss DN, Jones BJ (1996) Species differences in 5-HT autoreceptors. Behav Brain Res 73:79–82

    CAS  PubMed  Google Scholar 

  • Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelson M, Mann JJ, Brunner D, Hen R (1998) Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci U S A 95:14476–14481

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rival Y, Hoffmann R, Didier B, Rybaltchenko V, Bourguignon JJ, Wermuth CG (1998) 5-HT3 antagonists derived from aminopyridazine-type muscarinic M1 agonists. J Med Chem 41:311–317

    CAS  PubMed  Google Scholar 

  • Roberts C, Watson J, Burton M, Price GW, Jones BJ (1996) Functional characterization of the 5-HT terminal autoreceptor in the guinea-pig brain cortex. Br J Pharmacol 117:384–388

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roila F, Ballatori E, Tonato M, Favero D (1997) 5-HT3 Receptor antagonists: differences and similarities. Eur J Cancer 33:1364–1370

    CAS  PubMed  Google Scholar 

  • Rollema H, Clarke T, Sprouse JS, Schulz DW (1996) Combined administration of a 5-hydroxytryptamine (5-HT)1D antagonist and a 5-HT reuptake inhibitor synergistically increases 5-HT release in guinea pig hypothalamus in vivo. J Neurochem 67:2204–2207

    CAS  PubMed  Google Scholar 

  • Rosen T, Seeger TF, McLean S, Nagel AA, Ives JL, Guarino KJ, Bryce D, Furman J, Roth RW, Chalabi PM (1990) Synthesis, in vitro binding profile, and central nervous system penetrability of the highly potent 5-HT3 receptor antagonist [3H]-4-(2-methoxyphenly)-2[4(5)-methyl-5(4)-imidazolylmethyl]thiazole. J Med Chem 33:3020–3023

    CAS  PubMed  Google Scholar 

  • Roth BL, Hyde EG (1997) Pharmacology of 5-HT2 receptors. In: Baumgarten HG, Göthert M (eds) Handbook of experimental pharmacology. Serotoninergic neurons and 5-HT receptors in the CNS, vol 129. Springer, Berlin/Heidelberg, pp 367–394

    Google Scholar 

  • Roth BL, Craigo SC, Choudhary MS, Uluer A, Monsma FJ, Shen YX, Meltzer HY, Sibley DR (1994) Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 268:1403–1410

    CAS  PubMed  Google Scholar 

  • Rousselle JC, Massot O, Delepierre M, Zifa M, Rousseau B, Fillion G (1996) Isolation and characterization of an endogenous peptide from rat brain interacting specifically with the serotonergic 1B receptor subtypes. J Biol Chem 271:726–735

    CAS  PubMed  Google Scholar 

  • Routledge C, Bromidge SM, Moss SF, Price GW, Hirst W, Newman H, Riley G, Gager T, Staen J, Upton N, Clarke SE, Brown AM, Middlemiss DM (2000) Characterization of SB-271046, a potent, selective and orally active 5-HT6 receptor antagonist. Br J Pharmacol 130:1606–1612

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruat M, Traiffort E, Arrang JM, Tradivel-Lacombe J, Diaz J, Leurs R, Schwartz CJ (1993) A novel rat serotonin (5-HT6) receptor: molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun 193:268–276

    CAS  PubMed  Google Scholar 

  • Sanger GJ, Nelson DR (1989) Selective and functional 5-hydroxytryptamine3 receptor antagonism by BRL 43694 (granisetron). Eur J Pharmacol 159:113–124

    CAS  PubMed  Google Scholar 

  • Saucler C, Albert PE (1997) Identification of an endogenous 5-hydroxytryptamine2A receptor in NIH-3 T3 cells: agonist-induced down-regulation involves decrease in receptor RNA and number. J Neurochem 68:1989–2011

    Google Scholar 

  • Saxena PR (1994) Modern 5-HT receptor classification and 5-HT based drugs. Exp Opin Invest Drugs 3:513–523

    CAS  Google Scholar 

  • Saxena PR, de Vries P, Villalón CM (1998) 5-HTa-like receptors: a time to bid goodbye. Trends Pharmacol Sci 19:311–316

    CAS  PubMed  Google Scholar 

  • Schiavi GB, Brunet S, Rizzi CA, Ladinsky H (1994) Identification of serotonin 5-HT4 recognition sites in the porcine caudate nucleus by radioligand binding. Neuropharmacology 33:543–549

    CAS  PubMed  Google Scholar 

  • Shen Y, Monsma FJ Jr, Metcalf MA, Jose PA, Hamblin MW, Sibley DR (1993) Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 268:18200–18204

    CAS  PubMed  Google Scholar 

  • Shi H, Chen K, Gallaher TK (1994) Structure and function of serotonin 5-HT2 receptors. NIDA Res Monogr Ser 146:284–297

    Google Scholar 

  • Sills MA, Wolfe BB, Frazer A (1984) Determination of selective and nonselective compounds for the 5-HT1A and 5-HT1B receptor subtypes in rat frontal cortex. J Pharmacol Exp Ther 231:480–487

    CAS  PubMed  Google Scholar 

  • Silverstone PH, Greenshaw AJ (1996) 5-HT3 receptor antagonists. Expert Opin Ther Pat 6:471–481

    CAS  Google Scholar 

  • Sleight AJ, Boess FG, Bourson A, Sibley DR, Monsma FJ (1995) 5-HT6 and 5-HT7 serotonin receptors: molecular biology and pharmacology. Neurotransmissions 11(3):1–5

    Google Scholar 

  • Starke K, Göthert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69:864–989

    CAS  PubMed  Google Scholar 

  • Stowe RL, Barnes NM (1998) Selective labelling of receptor recognition sites in rat brain using [3H]5-carboxamidotryptamine. Neuropharmacology 37:1611–1619

    CAS  PubMed  Google Scholar 

  • Swain CJ, Baker K, Kneen C, Moseley J, Saunders J, Seward EM, Stevenson G, Beer M, Stanton J, Watling K (1991) Novel 5-HT3 antagonists: indole oxadiazoles. J Med Chem 34:140–151

    CAS  PubMed  Google Scholar 

  • Tricklebank MD (1996) The antipsychotic potential of subtypeselective 5-HT-receptor ligands based on interactions with mesolimbic dopamine systems. Behav Brain Res 73:15–17

    CAS  PubMed  Google Scholar 

  • Uphouse L (1997) Multiple serotonin receptors: too many, not enough, or just the right number? Neurosci Biobehav Rev 5:679–698

    Google Scholar 

  • Valentin JP, Bonnafous R, John GW (1996) Influence of the endothelium and nitric oxide on the contractile response evoked by 5-HT1D receptor agonists in the rabbit isolated saphenous vein. Br J Pharmacol 119:35–42

    PubMed Central  CAS  PubMed  Google Scholar 

  • Van Lommen G, de Bruyn M, Schroven M, Verschueren W, Jansses W, Verrelst J, Leysen J (1995) The discovery of a series of new non-indole 5-HT1D agonists. Bioorgan Med Chem Lett 5:2649–2654

    Google Scholar 

  • Vanhoenacker P, Haegeman G, Leysen JE (2000) The 5-HT7 receptors: current knowledge and future prospects. Trends Pharmacol Sci 21:70–77

    CAS  PubMed  Google Scholar 

  • Villalón CM, Centurión D, Luján-Estrada M, Terrón JA, Sánchez-López A (1997) Mediation of 5-HT-induced external carotid vasodilatation in GR 127935-pretreated vagosympathectomized dogs by the putative 5-HT7 receptor. Br J Pharmacol 120:1319–1327

    PubMed Central  PubMed  Google Scholar 

  • Waeber C, Pinkus LM, Palacios JM (1990) The (S) isomer of [3H]zacopride labels 5-HT3 receptors with high affinity in rat brain. Eur J Pharmacol 181:283–287

    CAS  PubMed  Google Scholar 

  • Wainscott DB, Krushinski JH, Audia JE, Schaus JM, Zgombick JM, Lucaites VL, Nelson DL (2005) 3H]Y334370, a novel radioligand for the 5-HT1F receptor. I. In vitro characterization of binding properties. Naunyn Schmiedebergs Arch Pharmacol 371:169–177

    CAS  PubMed  Google Scholar 

  • Wardle KA, Ellis ES, Baxter GS, Kennett GA, Gaster LM, Sanger GJ (1994) The effects of SB 204070, a highly potent and selective 5-HT4 receptor antagonist, on guinea-pig distal colon. Br J Pharmacol 112:789–794

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watts SW, Cohen ML (1999) Vascular 5-HT receptors: pharmacology and pathophysiology of 5-HT1B, 5-HT1D, 5-HT1F, 5-HT2B, and 5-HT7 receptors. Neurotransmissions 15:3–15

    Google Scholar 

  • Wolf WA, Schutz LJ (1997) The serotonin 5-HT2C receptor is a prominent serotonin receptor in basal ganglia. Evidence from functional studies on serotonin-mediated phosphoinositide hydrolysis. J Neurochem 69:1449–1458

    CAS  PubMed  Google Scholar 

  • Wolff MC, Benvenga MJ, Calligaro DO, Fuller RW, Gidda JS, Hemrick-Luecke S, Lucot JB, Nelson DL, Overshiner CD, Leander JD (1997) Pharmacological profile of LY301317, a potent and selective 5-HT1A agonist. Drug Dev Res 40:17–34

    CAS  Google Scholar 

  • Wooley ML, Marsden CA, Sleight AJ, Fone KCF (2003) Reversal of cholinergic-induced deficit in a rodent model of recognition memory by the selective 5-HT6 receptor antagonist, Ro 04–6790. Psychopharmacology (Berl) 170:358–367

    Google Scholar 

  • Wooley ML, Marsden CA, Fone KCF (2004) 5-HT6 receptors. CNS Neurol Disord Drug Targets 3:59–79

    Google Scholar 

  • Yan D, White MM (2005) Spatial orientation of the antagonist granisetron in the ligand-binding site of the 5-HT3 receptor. Mol Pharmacol 68:365–371

    CAS  PubMed  Google Scholar 

Serotonin (5-HT1A) Receptor: Binding of [3H]-8-Hydroxy-2-(di-n-Propylamino)-Tetralin ([3H]-DPAT)

  • Alper RH, Nelson DL (1998) Characterization of 5-HT1A receptor-mediated [35S]-GTPγS binding in rat hippocampal membranes. Eur J Pharmacol 343:303–312

    CAS  PubMed  Google Scholar 

  • Alper RH, Nelson DL (2000) Inactivation of 5-HT1A receptors in hippocampal and cortical homogenates. Eur J Pharmacol 390:67–73

    CAS  PubMed  Google Scholar 

  • Artais I, Romero G, Zazpe A, Monge A, Caldero JM, Roca J, Lasheras B, del Rio J (1995) The pharmacology of VA21B7: an atypical 5-HT3 receptor antagonist with anxiolytic-like properties in animal models. Psychopharmacology (Berl) 117:137–148

    Google Scholar 

  • Bel N, Romero L, Celada P, De Mantigny C, Blier P, Artigas F (1994) Neurobiological basis for the potentiation of the antidepressant effect of 5-HT reuptake inhibitors by the 5-HT1A antagonist pindolol. In: Durkin T, Spampinato U, Cador M (eds) Monitoring molecules in neuroscience. Proceedings of the 6th international conference on in vivo methods, 17–20 September 1994. INSERM, Bordeaux, pp 209–210

    Google Scholar 

  • Bjorvatn B, Neckelmann D, Ursin R (1992) The 5-HT1A antagonist (−)-alprenolol fails to modify sleep or zimeldineinduced sleep-waking effects in rats. Pharmacol Biochem Behav 42:49–56

    CAS  PubMed  Google Scholar 

  • Bradley PB (1991) Serotonin: receptors and subtypes. In: Idzikowski C, Cowen PJ (eds) Serotonin, sleep and mental disorder. Wrightson Biomedical Publishing, Petersfield, pp 9–22

    Google Scholar 

  • Briley M, Chopin P, Moret C (1991) The role of serotonin in anxiety: behavioural approaches. In: Briley M, File SE (eds) New concepts in anxiety. McMillan Press, London, pp 56–73

    Google Scholar 

  • Cao BJ, Rodgers RJ (1998) Comparative effects of novel 5-HT1A receptor ligands, LY293284, LY315712 and LY297996 on plus-maze anxiety in mice. Psychopharmacology (Berl) 139:185–194

    CAS  Google Scholar 

  • Cowen PJ (1991) Serotonin receptor subtypes: implications for psychopharmacology. Br J Psychiatry 159(Suppl 12):7–14

    Google Scholar 

  • Deakin JFW (1991) Serotonin subtypes and affective disorders. In: Idzikowski C, Cowen PJ (eds) Serotonin, sleep and mental disorder. Wrightson Biomedical Publishing, Petersfield, pp 161–178

    Google Scholar 

  • Deans C, Leathley M, Goudie A (1989) In vivo interactions of NAN-190, a putative selective 5-HT1A receptor antagonist with ipsapirone. Pharmacol Biochem Behav 34:927–929

    CAS  PubMed  Google Scholar 

  • Dourish CT, Hutson PH, Curzon G (1986) Putative anxiolytics 8-OH-DPAT, buspirone and TVX Q 7821 are agonists at 5-HT1A autoreceptors in the raphe nucleus. TIPS 7:212–214

    CAS  Google Scholar 

  • Dreshfield LJ, Wong DT, Perry KW, Engelman EA (1996) Enhancement of fluoxetine-dependent increase of extracellular serotonin (5-HT) levels by (−)-pindolol, an antagonist at 5-HT1A receptors. Neurochem Res 21:557–562

    CAS  PubMed  Google Scholar 

  • Dugovic C, Leysen JE, Wauquier A (1991) Serotonin and sleep in the rat: the role of 5-HT2 receptors. In: Idzikowski C, Cowen PJ (eds) Serotonin, sleep and mental disorder. Wrightson Biomedical Publishing, Petersfield, pp 77–88

    Google Scholar 

  • Elmendorf JS, Chen D, Pessin JE (1998) Guanosine 5′-O-(3-thiotriphosphate) (GPTγS) stimulation of GLUT4 translocation is tyrosine kinase-dependent. J Biol Chem 273:13289–13296

    CAS  PubMed  Google Scholar 

  • Fabre V, Boni C, Mocaer E, Lesourd M, Hamon M, Laporte AM (1997) [3H]Alnespirone: a novel specific radioligand for 5-HT1A receptors in the rat brain. Eur J Pharmacol 337:297–308

    CAS  PubMed  Google Scholar 

  • Fletcher A, Pike VW, Cliffe IA (1995) Visualization and characterization of 5-HT receptors and transporters in vivo and in man. Semin Neurosci 7:421–431

    CAS  Google Scholar 

  • Fletcher A, Forster EA, Bill DJ, Brown G, Cliffe IA, Hartley JE, Jones DE, McLenachen A, Stanhope KJ, Critchley DJP, Childs KJ, Middlefell VC, Lanfumey L, Corradetti R, Laporte AM, Gozian H, Hamon M, Dourish CT (1996) Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1A receptor antagonist. Behav Brain Res 73:337–353

    CAS  PubMed  Google Scholar 

  • Fozard JR (1984) MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn Schmiedebergs Arch Pharmacol 326:36–44

    CAS  PubMed  Google Scholar 

  • Frazer A, Maayani S, Wolfe BB (1990) Subtypes of receptors for serotonin. Annu Rev Pharmacol Toxicol 30:307–348

    CAS  PubMed  Google Scholar 

  • Fuller RW (1990) Serotonin receptors and neuroendocrine responses. Neuropsychopharmacology 3:495–502

    CAS  PubMed  Google Scholar 

  • Gilbert AM, Stack GP, Nilakantan R, Kodah J, Tran M, Scerni R, Shi X, Smith DL, Andree TH (2004) Modulation of selective serotonin uptake inhibitor and 5-HT1A antagonist activity in 8-aza-bicyclo [3.2.1]octane derivatives of 2,3-dihydro-1,4-benzodioxane. Bioorg Med Chem Lett 14:515–518

    CAS  PubMed  Google Scholar 

  • Glennon RA (1991) Serotonin receptors and site-selective agents. J Physiol Pharmacol 42:49–60

    CAS  PubMed  Google Scholar 

  • Göthert M (1990) Presynaptic serotonin receptors in the central nervous system. Ann N Y Acad Sci 604:102–112

    PubMed  Google Scholar 

  • Gozlan H, El Mestikawy S, Pichat L, Glowinsky J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305:140–142

    CAS  PubMed  Google Scholar 

  • Gozlan H, Thibault S, Laporte AM, Lima L, Hamon M (1995) The selective 5-HT1A antagonist radioligand [3H]WAY-100635 labels both G-protein-coupled and free 5-HT1A receptors in rat brain membranes. Eur J Pharmacol Mol Pharmacol Sect 288:173–186

    CAS  Google Scholar 

  • Grahame-Smith DG (1991) The neuropharmacology of 5-HT in anxiety. In: Briley M, File SE (eds) New concepts in anxiety. McMillan Press, London, pp 46–55

    Google Scholar 

  • Grasby PM, Sharp T, Allen T, Grahame-Smith DG (1992) The putative 5-HT1A antagonist BMY 7378 blocks 8-OHDPAT-induced changes in local cerebral glucose utilization in the conscious rat. Neuropharmacology 31:547–551

    CAS  PubMed  Google Scholar 

  • Griebel G (1996) Variability in the effects of 5-HT-related compounds in experimental models of anxiety: evidence for multiple mechanisms of 5-HT in anxiety or never ending story? Pol J Pharmacol 48:129–136

    CAS  PubMed  Google Scholar 

  • Griebel G, Misslin R, Pawlowski M, Lemaître BG, Guillaumet G, Bizot-Espiard J (1992) Anxiolytic-like effects of a selective 5-HT1A agonist, S20244, and its enantiomers in mice. Neuroreport 3:84–86

    CAS  PubMed  Google Scholar 

  • Hall MD, El Mestikawy S, Emerit MB, Pichat L, Hamon M, Gozlan H (1985) [3H]-8-Hydroxy-2-(di-n-propylamino)-tetralin binding to pre- and postsynaptic 5-hydroxytryptamine sites in various regions of rat brain. J Neurochem 44:1685–1696

    CAS  PubMed  Google Scholar 

  • Handley SL (1991) Serotonin in animal models of anxiety: the importance of stimulus and response. In: Idzikowski C, Cowen PJ (eds) Serotonin, sleep and mental disorder. Wrightson Biomedical Publishing, Petersfield, pp 89–115

    Google Scholar 

  • Handley SL, McBlane JM (1993) 5-HT drugs in animal models of anxiety. Psychopharmacology (Berl) 112:13–20

    CAS  Google Scholar 

  • Harder JA, Ridley RM (2000) The 5-HT1A antagonist, WAY 100 635, alleviates cognitive impairments induced by dizocilpine (MK-801) in monkeys. Neuropharmacology 39:547–552

    CAS  PubMed  Google Scholar 

  • Hascoet M, Bourin M, Todd KG, Couetoux du Tertre A (1994) Anti-conflict effect of 5-HT1A receptor agonists in rats: a new model for evaluating anxiolytic-like activity. J Psychopharmacol 8:227–237

    CAS  PubMed  Google Scholar 

  • Heuring RE, Peroutka SJ (1987) Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci 7:894–903

    CAS  PubMed  Google Scholar 

  • Hughes ZA, Starr KR, Langmead CJ, Hill M, Bartoszyk GD, Hagan JJ, Middlemiss DN, Dawson LA (2005) Neurochemical evaluation of the novel 5-HT1A receptor partial agonist/serotonin reuptake inhibitor, vilazodone. Eur J Pharmacol 510:49–57

    CAS  PubMed  Google Scholar 

  • Hume SP, Ashworth S, Opacka-Juffry J, Ahier RG, Lammertsma AA, Pike VW, Cliffe IA, Fletcher A, White AC (1995) Evaluation of [O-methyl-3H]WAY-100635 as an in vivo radioligand for 5-HT1A receptors in rat brain. Eur J Pharmacol 271:515–523

    Google Scholar 

  • Iversen SD (1984) 5-HT and anxiety. Neuropharmacology 23:1553–1560

    CAS  PubMed  Google Scholar 

  • Jenck F, Bos M, Wichmann J, Stadler H, Martin JR, Moreau JL (1998) The role of 5-HT2C receptors in affective disorders. Expert Opin Invest Drugs 7:1587–1599

    CAS  Google Scholar 

  • Jerning E, Svantesson GT, Mohell N (1998) Receptor binding characteristics of [3H]NAD-299, a new selective HT1A receptor antagonist. Eur J Pharmacol 360:219–225

    CAS  PubMed  Google Scholar 

  • Johansson L, Sohn D, Thorberg SO, Jackson DM, Kelder D, Larsson LG, Renyi L, Ross SB, Wallsten C, Erikson H, Hu PS, Jerning E, Mohell N, Westlind-Danielsson A (1997) The pharmacological characterization of a novel selective 5-hydroxytryptamine1A receptor antagonist, NAD 299. J Pharmacol Exp Ther 283:216–225

    CAS  PubMed  Google Scholar 

  • Jolas T, Haj-Damane S, Lanfumey L, Fattaccini CM, Kidd EJ, Adrien J, Gozian H, Guardiola-Lemaitre B, Hamon M (2004) (−)Tertatolol is a potent antagonist at pre- and postsynaptic serotonin 5-HT1A receptors in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 347:453–463

    Google Scholar 

  • Kennett GA, Bright F, Trail B, Blackburn TB, Sanger GJ (1997) Anxiolytic-like actions of the selective 5-HT4 receptor antagonists SB204070A and SB207266A in rats. Neuropharmacology 36:707–712

    CAS  PubMed  Google Scholar 

  • Khawaja X (1995) Quantitative autoradiographic characterization of the binding of [3H]WAY-100635, a selective 5-HT1A receptor antagonist. Brain Res 673:217–225

    CAS  PubMed  Google Scholar 

  • Khawaja X, Ennis C, Minchin MCW (1997) Pharmacological characterization of recombinant human 5-hydroxytryptamine1A receptors using a novel antagonist ligand [3H]WAY-100635. Life Sci 60:653–665

    CAS  PubMed  Google Scholar 

  • Kleven MS, Assié MB, Koek W (1997) Pharmacological characterization of in vivo properties of putative mixed 5-HT1A agonist/5-HT2A/2C antagonist anxiolytics. II. Drug discrimination and behavioral observation studies in rats. J Pharmacol Exp Ther 282:747–759

    CAS  PubMed  Google Scholar 

  • Kung HF, Kung MP, Clarke W, Maayani S, Zhuang ZP (1994a) A potential 5-HT1A receptor antagonist: p-MPPI. Life Sci 55:1459–1462

    CAS  PubMed  Google Scholar 

  • Kung MP, Zhuang ZP, Frederick D, Kung HF (1994b) In vivo binding of [123I]4-(2′-Methoxyphenyl)-1-[2′-(N-2″pyridinyl)-p-iodobenzamido]-ethyl-piperazine, p-MPPI, to 5-HT1A receptors in rat brain. Synapse 18:359–366

    CAS  PubMed  Google Scholar 

  • Kung MP, Frederick D, Mu M, Zhuang ZP, Kung HF (1995) 4-(2′-Methoxyphenyl)-1-[2′-(n-2″-pyridinyl)-p-iodobenzamido]-ethyl-piperazine ([125I]p-MPPI) as a new selective radioligand on serotonin-1A sites in rat brain: in vitro binding and autoradiographic studies. J Pharmacol Exp Ther 272:429–437

    CAS  PubMed  Google Scholar 

  • Kung MP, Mu M, Zhuang ZP, Kung HF (1996) NCS-MPP (4-(2′-methoxy-phenyl)-1-[2′ -(N-2″-pyridinyl)-p-isothiocyanobenz amido]-ethyl-piperazine): a high affinity and irreversible 5-HT1A receptor ligand. Life Sci 58:179–186

    Google Scholar 

  • Laporte AM, Lima L, Gozlan H, Hamon M (1994) Selective in vivo labelling of brain HT1A receptors by [3H]WAY-100635 in the mouse. Eur J Pharmacol 271:505–514

    CAS  PubMed  Google Scholar 

  • Larkman PM, Rainnie DG, Kelly JS (1991) Serotonin receptor electrophysiology and the role of potassium channels in neuronal excitability. In: Idzikowski C, Cowen PJ (eds) Serotonin, sleep and mental disorder. Wrightson Biomedical Publishing, Petersfield, pp 41–64

    Google Scholar 

  • Lee CH, Oh JI, Park HD, Kim HJ, Park TK, Kim JS, Hong CY, Lee SJ, Ahn KH, Kim YZ (1999) Pharmacological characterization of LB50016, N-(4-amino)butyl-3-phenylpyrrolidine derivative, as a new 5-HT1A receptor agonist. Arch Pharm Res 22:157–164

    CAS  PubMed  Google Scholar 

  • Mattson RJ, Catt JD, Sloan CP, Gao Q, Carter RB, Gentile A, Mahle CD, Matos FF, McGovern R, Vander Maelen CP, Yocca FD (2003) Development of a presynaptic 5-HT1A antagonist. Bioorg Med Chem Lett 13:285–288

    CAS  PubMed  Google Scholar 

  • Meert TF, Awouters F (1991) Serotonin 5-HT2 antagonists: a preclinical evaluation of possible therapeutic effects. In: Idzikowski C, Cowen PJ (eds) Serotonin, sleep and mental disorder. Wrightson Biomedical Publishing, Petersfield, pp 65–76

    Google Scholar 

  • Middlemiss DN, Fozard JR (1983) 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol 90:151–153

    CAS  PubMed  Google Scholar 

  • Millan MJ, Brocco M, Gobert A, Schreiber R, Dekeyne A (1999) S-16924 [(fi)-2-1-2-(2,3-dihydro-benzo[1,4]dioxin5-yloxy)-ethy[l]-pyrrolidin-3yl-1-(4-fluorophenyl) ethanone], a novel, potential antipsychotic with marked serotonin1A agonist properties: III Anxiolytic actions in comparison with clozapine and haloperidol. J Pharmacol Exp Ther 288:1002–1014

    CAS  PubMed  Google Scholar 

  • Millan MJ, Gobert A, Lejeune F, Newman-Tancredi A, Rivet JM, Auclair A, Peglion JL (2001) S33005, a novel ligand of both serotonin and norepinephrine transporters: I Receptor binding, electrophysiological, and neurochemical profile in comparison with reboxetine, citalopraa, and clomipramine. J Pharmacol Exp Ther 298:565–580

    CAS  PubMed  Google Scholar 

  • Misslin R, Griebel G, Saffroy-Spittler M, Vogel E (1990) Anxiolytic and sedative effects of 5-HT1A ligands, 8-OH-DPAT and MDL 73005EF, in mice. Neuroreport 1:267–270

    CAS  PubMed  Google Scholar 

  • Neckelmann D, Bjørkum AA, Bjorvatn B, Ursin R (1996) Sleep and EEG power spectrum of the 5-HT1A receptor antagonist NAN-190 alone and in combination with citalopram. Behav Brain Res 75:159–168

    CAS  PubMed  Google Scholar 

  • New JS (1990) The discovery and development of buspirone: a new approach to the treatment of anxiety. Med Res Rev 10:283–326

    CAS  PubMed  Google Scholar 

  • Newman ME, Lerer B, Shapira B (1992) 5-HT-1A receptor-mediated effects of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 17:1–19

    Google Scholar 

  • Newman-Tancredi A, Verrièle L, Chaput C, Millan MJ (1998a) Labelling of recombinant human and native rat serotonin HT1A receptors by a novel, selective radioligand, [3H]S 15535: definition of its binding profile using agonists, antagonists and inverse agonists. Naunyn Schmiedebergs Arch Pharmacol 357:205–217

    CAS  PubMed  Google Scholar 

  • Newman-Tancredi A, Chaput C, Touzart M, Verrièle L, Millan MJ (1998b) Parallel evaluation of 5-HT1A receptor localization and functionality: autoradiographic studies with [35S]-GTPγS and the novel, selective radioligand [3H]S 15535. In: Martin GR, Eglen RM, Hoyer D, Hamblin MW, Yocca F (eds) Advances in serotonin research. Molecular biology, signal transduction, and therapeutics. Annals of the New York Academy of Sciences, vol 861. New York Academy of Sciences, New York, pp 263–264

    Google Scholar 

  • Pazos A, Hoyer D, Palacios JM (1984) The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol 106:539–546

    CAS  PubMed  Google Scholar 

  • Pedigo NW, Yammamura HI, Nelson DL (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36:220–226

    CAS  PubMed  Google Scholar 

  • Peroutka SJ (1985) Selective interaction of novel anxiolytics with 5-hydroxytryptamine1A receptors. Biol Psychiatry 20:971–979

    CAS  PubMed  Google Scholar 

  • Peroutka SJ (1986) Pharmacological differentiation and characterization of 5-HT1A, 5-HT1B and 5-HT1C binding sites in rat frontal cortex. J Neurochem 47:529–540

    CAS  PubMed  Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. Trends Neurosci 11:496–500

    CAS  PubMed  Google Scholar 

  • Pike VW, Halldin C, McCarron JA, Lundkvist C, Hirani E, Olsson H, Hume SP, Karlsson P, Osman S, Swahn CG, Hall H, Wikstrom H, Mensonidas M, Poole KG, Farde L (1998) [Carbonyl11 C]-Desmethyl-WAY 100635 (DWAY) is a potent and selective radioligand for central 5-HT1A receptors in vitro and in vivo. Eur J Nucl Med 25:338–346

    CAS  PubMed  Google Scholar 

  • Raymond JR, El Mestikawy S, Fargin A (1992) The 5-HT1A receptor: from molecular characteristics to clinical correlates. In: Brann MR (ed) Molecular biology of G-Protein-coupled receptors. Birkhäuser, Böston/Basel/Berlin, pp 113–141

    Google Scholar 

  • Roca J, Artaiz I, del Rio J (1995) 5-HT3 receptor antagonists in development of anxiolytics. Expert Opin Invest Drugs 4:333–342

    CAS  Google Scholar 

  • Rydelek-Fitzgerald L, Tietler M, Fletcher PW, Ismaiel AM, Glennon RA (1990) NAN-190: agonist and antagonist interactions with brain 5-HT1A receptors. Brain Res 532:191–196

    CAS  PubMed  Google Scholar 

  • Sanell J, Halldin C, Hall H, Thorberg SO, Werner T, Sohn D, Sedvall G, Farde L (1999) Radiosynthesis and autoradiographic evaluation of [11C]NAD-299, a radioligand for visualisation of the 5-HT1A receptor. Nucl Med Biol 26:159–164

    Google Scholar 

  • Saxena PR, Lawang A (1985) A comparison of cardiovascular and smooth muscle effects of 5-hydroxytryptamine and 5-carboxamidotryptamine, a selective agonist of 5-HT1 receptors. Arch Int Pharmacodyn 277:235–252

    CAS  PubMed  Google Scholar 

  • Schlegel JR, Peroutka SJ (1986) Nucleotide interactions with 5-HT1A binding sites directly labeled by [3H]-8-hydroxy-2(di-n-propylamino)tetralin ([3H]-8-OH-DPAT). Biochem Pharmacol 35:1943–1949

    CAS  PubMed  Google Scholar 

  • Seifritz E, Stahl SM, Gillin JC (1997) Human sleep EEG following the 5-HT1A antagonist pindolol: possible disinhibition of raphe neuron activity. Brain Res 759:84–91

    CAS  PubMed  Google Scholar 

  • Sharp T, Backus LI, Hjorth S, Bramwell SR, Grahame-Smith DG (1990) Further investigation of the in vivo pharmacological properties of the putative 5-HT1A antagonist BMY 7378. Eur J Pharmacol 176:331–340

    CAS  PubMed  Google Scholar 

  • Smart CM, Biello SM (2001) WAY-100635, a specific 5-HT1A antagonist, can increase the responsiveness of the mammalian circadian pacemaker to photic stimuli. Neurosci Lett 305:33–36

    CAS  PubMed  Google Scholar 

  • Standaert M, Bandyopadhyay G, Galloway L, Ono Y, Mukai H, Farese R (1998) Comparative effects of GPTy S and insulin of rho, phosphatidylinositol 3-kinase, and protein kinase N in rat adipocytes. J Biol Chem 273:7470–7477

    CAS  PubMed  Google Scholar 

  • Stanhope KJ, Dourish CT (1996) Effects of 5-HT1A receptor agonists, partial agonists and a silent antagonists on the performance of the conditioned emotional response test in the rat. Psychopharmacology (Berl) 128:293–303

    CAS  Google Scholar 

  • Sundaram H, Turner JD, Strang PG (1995) Characterization of recombinant serotonin 5-HT1A receptors expressed in Chinese hamster ovary cells: the agonist [3H]lisuride labels free receptor and receptor coupled to G protein. J Neurochem 65:1909–1916

    CAS  PubMed  Google Scholar 

  • Traber J, Glaser T (1987) 5-HT1A receptor-related anxiolytics. TIPS 8:432–437

    CAS  Google Scholar 

  • Trillat AC, Malagié I, Allainmat MM, Anmela MC, Jacquot C, Langlois M, Gardier AM (1998) Effects of WAY 100635 and (−)-5-Me-8-OH-DPAT, a novel 5-HT1A receptor antagonist on 8-OH-DPAT responses. Eur J Pharmacol 147:41–49

    Google Scholar 

  • Verge D, Daval G, Marcinkiewicz M, Patey A, El Mestikawy H, Gozlan Hamon M (1986) Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control of 5,7-dihydroxytryptamine-treated rats. J Neurosci 6:3474–3482

    CAS  PubMed  Google Scholar 

  • Yocca FD, Hyslop DK, Smith DW, Maayani S (1987) BMY 7378, a buspirone analog with high affinity, selectivity and low intrinsic activity at the 5-HT1A receptor in rat and guinea pig hippocampal membranes. Eur J Pharmacol 137:293–294

    CAS  PubMed  Google Scholar 

Serotonin (5-HT1B) Receptors in Brain: Binding of [3H]5-Hydroxytryptamine ([3H]5-HT)

  • Boulenguez P, Chauveau J, Segu L, Morel A, Lanoir J, Delaage M (1992) Biochemical and pharmacological characterization of serotonin-O-carboxymethylglycyl[125I]iodotyrosinamide, a new radioligand probe for 5-HT1B and 5-HT1D binding sites. J Neurochem 58:951–959

    CAS  PubMed  Google Scholar 

  • Domenech T, Beleta J, Palacios JM (1997) Characterization of human serotonin 1D and 1B receptors using [3H]-GR125743, a novel radiolabelled serotonin 5-HT1D/1B receptor antagonist. Naunyn Schmiedebergs Arch Pharmacol 356:328–334

    CAS  PubMed  Google Scholar 

  • Hartig PR, Branchek TA, Weinshank RL (1992) A subfamily of 5-HT1D receptor genes. Trends Pharmacol Sci 13:152–159

    CAS  PubMed  Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985) Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8OH-DPAT, (−)I[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. Eur J Pharmacol 118:13–23

    CAS  PubMed  Google Scholar 

  • Hoyer D, Schoeffter P, Waeber C, Palacios JM (1990) Serotonin 5-HT1D receptors. Ann N Y Acad Sci 600:168–181

    CAS  PubMed  Google Scholar 

  • Humphrey PPA, Feniuk W, Marriott AS, Tanner RJN, Jackson MR, Tucker ML (1991) Preclinical studies on the antimigraine drug, Sumatriptan. Eur Neurol 31:282–290

    CAS  PubMed  Google Scholar 

  • Jenck F, Moreau JL, Mutel V, Martin JR, Haefely WE (1993) Evidence for a role of 5-HT1C receptors in the antiserotoninergic properties of some antidepressant drugs. Eur J Pharmacol 231:223–229

    CAS  PubMed  Google Scholar 

  • Jenck F, Moreau JL, Mutel V, Martin JR (1994) Brain 5-HT1C receptors and antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 18:563–574

    CAS  PubMed  Google Scholar 

  • Koe BK, Lebel LA, Fox CB, Macor JE (1992) Characterization of [3H]CP-96,501 as a selective radioligand for the serotonin 5-HT1B receptor: binding studies in rat brain membranes. J Neurochem 58:1268–1276

    CAS  PubMed  Google Scholar 

  • Lebel LA, Koe BK (1992) Binding studies with the 5-HT1B receptor agonist [3H]CP-96,501 in brain tissues. Drug Dev Res 27:253–264

    CAS  Google Scholar 

  • Mahle CD, Nowak HP, Mattson RJ, Hurt SD, Yocca FD (1991) [3H]-carboxamidotryptamine labels multiple high affinity 5-HT1D-like sites in guinea pig brain. Eur J Pharmacol 205:323–324

    CAS  PubMed  Google Scholar 

  • Massot O, Rousselle JC, Grimaldi B, Cloët-Tayarani I, Fillion MP, Plantefol M, Bonnin A, Prudhomme N, Fillion G (1998) Molecular, cellular and physiological characteristics of 5-HT-moduline, a novel endogenous modulator of 5-HT1B receptor subtype. In: Martin GR, Eglen RM, Hoyer D, Hamblin MW, Yocca F (eds) Advances in serotonin research Molecular biology, signal transduction, and therapeutics. Annals of the New York Academy of Sciences, vol 861. New York Academy of Sciences, New York, pp 174–182

    Google Scholar 

  • Middlemiss DN (1984) Stereoselective blockade at [3H]5-HT binding sites and at the 5-HT autoreceptor by propranolol. Eur J Pharmacol 101:289–293

    CAS  PubMed  Google Scholar 

  • Middlemiss DN, Fozard JR (1983) 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol 90:151–153

    CAS  PubMed  Google Scholar 

  • Nowak HP, Mahle CD, Yocca FD (1993) [3H]-carboxamidotryptamine labels 5-HT1D binding sites in bovine substantia nigra. Br J Pharmacol 109:1206–1211

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palacios JM, Waeber C, Bruinvels AT, Hoyer D (1992) Direct visualisation of serotonin1D receptors in the human brain using a new iodinated ligand. Mol Brain Res 346:175–179

    Google Scholar 

  • Pedigo NW, Yammamura HI, Nelson DL (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36:220–226

    CAS  PubMed  Google Scholar 

  • Peroutka SJ (1986) Pharmacological differentiation and characterization of 5-HT1A, 5-HT1B and 5-HT1C binding sites in rat frontal cortex. J Neurochem 47:529–540

    CAS  PubMed  Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. Trends Neurosci 11:496–500

    CAS  PubMed  Google Scholar 

  • Peroutka S, Snyder SH (1979) Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol 16:687–699

    CAS  PubMed  Google Scholar 

  • Price GW, Burton MJ, Collin LJ, Duckworth M, Gaster L, Göthert M, Jones BJ, Roberts C, Watson JM, Middlemiss DN (1997) SB-216641 and BL-15572 compounds to pharmacologically discriminate h5-HT1B and h5-HT1D receptors. Naunyn Schmiedebergs Arch Pharmacol 356:312–320

    CAS  PubMed  Google Scholar 

  • Schlicker E, Werner U, Hamon M, Gozlan H, Nickel B, Szelenyi I, Göthert M (1992) Anpirtoline, a novel highly potent 5-HT1B receptor agonist with antinociceptive/antidepressant-like actions in rodents. Br J Pharmacol 105:732–738

    PubMed Central  CAS  PubMed  Google Scholar 

  • Segu L, Chauveau J, Boulenguez P, Morel A, Lanoir J, Delaage M (1991) Synthesis and pharmacological study of radioiodinated serotonin derivative specific for 5-HT1B and 5-HT1D binding sites in the central nervous system. C R Acad Sci (Paris) 312:655–661

    CAS  Google Scholar 

  • Selkirk JV, Scott C, Ho M, Burton MJ, Watson J, Gaster LM, Collin L, Jones BJ, Middlemiss DN, Price GW (1998) SB-224289 – a novel selective (human) 5-HT1B receptor antagonist with negative intrinsic activity. Br J Pharmacol 125:202–208

    PubMed Central  CAS  PubMed  Google Scholar 

5-HT3 Receptor in Rat Entorhinal Cortex Membranes: Binding of [3H]GR 65630

  • Azukawa S, Miyata K, Fukutomi H (1995) Characterization of [3H]YM060, a potent and selective 5-HT3 receptor radioligand, in the cerebral cortex of rats. Eur J Pharmacol 281:37–42

    Google Scholar 

  • Barnes NM, Costall B, Naylor RJ (1988) [3H]Zacopride: ligand for the identification of 5-HT3 recognition sites. J Pharm Pharmacol 40:548–551

    CAS  PubMed  Google Scholar 

  • Barnes JM, Barnes NM, Champaneria S, Costall B (1990) Characterization and autoradiographic localization of 5-HT3 receptor recognition sites identified with [3H]-(S)-zacopride in the forebrain of the rat. Neuropharmacology 29:1037–1045

    CAS  PubMed  Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Jagger SM, Naylor RJ, Robertson DW, Roe SY (1992) Agonist interactions with 5-HT3 receptor recognition sites in the rat entorhinal cortex labelled by structurally diverse radioligands. Br J Pharmacol 105:500–504

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonhaus DW, Loury DN, Jakeman LB, To Z, deSouza A, Eglen RM, Wong EHF (1993) [3H]BIMU-1, a 5-hydroxytryptamine3 receptor ligand in NG 108 cells, selectively labels sigma-2 binding sites in guinea pig hippocampus. J Pharmacol Exp Ther 267:961–970

    CAS  PubMed  Google Scholar 

  • Bönisch H, Barann M, Graupner J, Göthert M (1993) Characterization of 5-HT3 receptors of N1E-115 mouse neuroblastoma cells by the use of the influx of the organic cation [14C]-guanidinium. Br J Pharmacol 108:436–442

    PubMed Central  PubMed  Google Scholar 

  • Butler A, Hill JM, Ireland SJ, Jordan CD, Tyres MB (1988) Pharmacological properties of GR38032F, a novel antagonist at 5-HT3 receptors. Br J Pharmacol 94:397–412

    PubMed Central  CAS  PubMed  Google Scholar 

  • Costall B, Naylor RJ, Tyers MB (1988) Recent advances in the neuropharmacology of 5-HT3 agonists and antagonists. Rev Neurosci 2:41–65

    CAS  Google Scholar 

  • Costall B, Naylor RT, Tyers MB (1990) The psychopharmacology of 5-HT3 receptors. Pharmacol Ther 47:181–202

    CAS  PubMed  Google Scholar 

  • Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF (1999) The 5-HT3B subunit is a major determinant of serotonin receptor function. Nature 397:359–363

    CAS  PubMed  Google Scholar 

  • Dunn RW, Carlezon WA Jr, Corbett R (1991) Preclinical anxiolytic versus antipsychotic profiles of the 5-HT3 antagonists ondansetron, zacopride, 3α-tropanyl-1H-indole-3-carboxylic ester, and 1αH, 3αH, 5αH-tropan-3-yl-3,5-dihydrochlorobenzoate. Drug Dev Res 23:289–300

    CAS  Google Scholar 

  • Emerit MB, Riad M, Fattacini CM, Hamon M (1993) Characteristics of [14C]guanidium accumulation in NG 108–15 cells exposed to serotonin 5-HT3 receptor ligands and substance P. J Neurochem 60:2059–2067

    CAS  PubMed  Google Scholar 

  • Gehlert DR, Schober DA, Gackenheimer SL, Mais DE, Ladouceur G, Robertson DW (1993) Synthesis and evaluation of [125I]-(S)-iodozacopride, a high affinity radioligand for 5-HT3 receptors. Neurochem Int 23:373–383

    CAS  PubMed  Google Scholar 

  • Hewlett WA, Fridman S, Trivedi BL, Schmidt DE, de Paulis T, Ebert MH (1998) Characterization of desamino5-[125I]iodo-3-methoxy-zacopride, ([125I]MIZAK) binding to 5-HT3 receptors in the rat brain. Prog Neuro Psychopharmacol Biol Psychol 22:397–410

    CAS  Google Scholar 

  • Hewlett WA, Trivedi BL, Zhang ZJ, de Paulis T, Schmidt DE, Lovinger DM, Sib Ansari M, Ebert MH (1999) Characterization of (S)-des-4-amino-3-[125I]iodozacopride ([125I]DAIZAC), a selective high affinity ligand for 5-hydroxytryptamine3 receptors. J Pharmacol Exp Ther 288:221–231

    CAS  PubMed  Google Scholar 

  • Hovius R, Schmid EL, Tairi AP, Blasey H, Bernard AR, Lundstrom K, Vogel H (1999) Fluorescence techniques for fundamental and applied studies of membrane protein receptors: the serotonin 5-HT3 receptor. J Recept Signal Transduct 19:533–545

    CAS  Google Scholar 

  • Hoyer D (1990) Serotonin 5-HT3, 5-HT4 and 5-HT-M receptors. Neuropsychopharmacology 3:371–383

    CAS  PubMed  Google Scholar 

  • Hoyer D, Neijt HC (1988) Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Mol Pharmacol 33:303–309

    CAS  PubMed  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) VII. International Union of Pharmacology classification of receptors for 5-Hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203

    CAS  PubMed  Google Scholar 

  • Jansen FP, Wu TS, Voss HP, Steinbusch HWM, Vollinga RC, Rademaker B, Bast A, Timmerman H (1994) Characterization of the binding of the first selective radiolabelled histamine H3 receptor antagonist, [125I]iodophenpropit. Br J Pharmacol 113:355–362

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748

    CAS  PubMed  Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1989) Binding of the 5-HT3 ligand, [3H]-GR 65630, to rat area postrema, vagus nerve and the brains of several species. Eur J Pharmacol 159:157–164

    CAS  PubMed  Google Scholar 

  • Kilpatrick GJ, Bunce KT, Tyer MB (1990) 5-HT3 Receptors. Med Res Rev 10:441–475

    CAS  PubMed  Google Scholar 

  • Kilpatrick GJ, Butler A, Hagan RM, Jones BJ, Tyers MB (1990) [3H]GR67330, a very high affinity ligand for 5-HT3 receptors. Naunyn Schmiedebergs Arch Pharmacol 342:22–30

    CAS  PubMed  Google Scholar 

  • Kooyman AR, Zwart R, Vanderheijden PML, van Hooft JA, Vijverberg HPM (1994) Interaction between enatiomers of mianserin and ORG3770 at 5-HT3 receptors in cultured mouse neuroblastoma cells. Neuropharmacology 33:501–507

    CAS  PubMed  Google Scholar 

  • Leurs R, Vollinga RC, Timmerman H (1995) The medicinal chemistry and therapeutic potentials of ligands of the histamine H3 receptor. Prog Drug Res 45:107–165

    CAS  PubMed  Google Scholar 

  • Leurs R, Blandina P, Tedford C, Timmerman H (1998) Therapeutic potentials of histamine H3 receptor agonists and antagonists. Trends Pharmacol Sci 19:177–183

    CAS  PubMed  Google Scholar 

  • Ligneau X, Garbag M, Vizueta ML, Diaz J, Purand K, Stark H, Schunack W, Schwartz JC (1994) [125I]Iodoproxyfan, a new antagonist to label and visualize cerebral histamine H3 receptors. J Pharmacol Exp Ther 271:452–459

    CAS  PubMed  Google Scholar 

  • Martin GR, Humphrey PPA (1994) Classification review. Receptors for 5-hydroxytryptamine: current perspectives on classification and nomenclature. Neuropharmacology 33:261–273

    CAS  PubMed  Google Scholar 

  • Mason NS, Hewlett WA, Ebert MH, Schmidt DE, de Paulis T (1996) Labeling of (S)-Des-4-amino-3-[125I]iodozacopride (DAIZAC), a high affinity radioligand for the 5-HT3 receptor. J Label Compd Radiopharm 38:955–961

    CAS  Google Scholar 

  • Miller K, Weisberg E, Fletcher PW, Teitler M (1992) Membrane bound and solubilized 5-HT3 receptors: improved radioligand binding assays using bovine area postrema or rat cortex and the radioligands [3H]-GR 65630, [3H]-BRL43694, and [3H]-Ly278584. Synapse 11:58–66

    CAS  PubMed  Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. Trends Neurosci 11:496–500

    CAS  PubMed  Google Scholar 

  • Peroutka SJ (1991) Serotonin receptor subtypes and neuropsychiatric diseases: focus on 5-HT1D and 5-HT3 receptor agents. Pharmacol Rev 43:579–586

    CAS  PubMed  Google Scholar 

  • Perry DC (1990) Autoradiography of [3H]quipazine in rat brain. Eur J Pharmacol 187:75–85

    CAS  PubMed  Google Scholar 

  • Pinkus LM, Sarbin NS, Barefoot DS, Gordon JC (1989) Association of [3H]zacopride with 5-HT3 binding sites. Eur J Pharmacol 168:355–362

    CAS  PubMed  Google Scholar 

  • Reiser G, Hamprecht B (1989) Substance P and serotonin act synergistically to activate a cation permeability in a neuronal cell line. Brain Res 479:40–48

    CAS  PubMed  Google Scholar 

  • Robertson DW, Bloomquist W, Cohen ML, Reid LR, Schenk K, Wong DT (1990) Synthesis and biochemical evaluation of tritium-labeled 1-methyl-N-[8-methyl-8azabicyclo[3.2.1]oct-3-yl)-1H-indazole-3-carboxamide, a useful radioligand for 5-HT3 receptors. J Med Chem 33:3176–3181

    CAS  PubMed  Google Scholar 

  • Saxena PR (1994) Modern 5-HT receptor classification and 5-HT based drugs. Exp Opin Invest Drugs 3:513–523

    CAS  Google Scholar 

  • Stark H, Schlicker E, Schunack W (1996) Development of histamine H3 receptor antagonists. Drugs Fut 21:507–520

    CAS  Google Scholar 

  • Steward LJ, Ge J, Bentley KR, Barber PC, Hope FG, Lambert FJ, Peters JA, Blackburn TP, Barnes NM (1995) Evidence that the atypical 5-HT3 receptor ligand, [3H]-BRL46470, labels additional 5-HT3 binding sites compared to [3H]-granisetron. Br J Pharmacol 116:1781–1788

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tairi AP, Hovius R, Pick H, Blasey H, Bernard A, Surprenant A, Lundstrom K, Vogel H (1998) Ligand binding to the serotonin 5-HT3 receptor studied with a novel fluorescent ligand. Biochemistry 37:15850–15864

    CAS  PubMed  Google Scholar 

  • Thompson AJ, Price KL, Reeves DC, Chan SL, Chau PI, Lummis SCR (2005) Locating an antagonist in the 5-HT3 receptor binding site using modeling and radioligand binding. J Biol Chem 280:20476–20482

    CAS  PubMed  Google Scholar 

  • Watling KJ (1989) 5-HT3 receptor agonists and antagonists. Neurotransmissions 3:1–4

    Google Scholar 

  • Watling KJ, Aspley S, Swain CJ, Saunders J (1988) [3H]Quaternised ICS 205–930 labels 5-HT3 receptor binding sites in rat brain. Eur J Pharmacol 149:397–398

    CAS  PubMed  Google Scholar 

Histamine H3 Receptor Binding in Brain

  • Arrang JM, Garbarg M, Schwartz JC (1985) Autoregulation of histamine release in brain by presynaptic H3-receptors. Neuroscience 15:533–562

    Google Scholar 

  • Arrang JM, Garbarg M, Lancelot JC, Lecomte JM, Pollard H, Robba M, Schunack W, Schwartz JC (1987) Highly potent and selective ligands for histamine H3-receptors. Nature 327:117–123

    CAS  PubMed  Google Scholar 

  • Arrang JM, Roy J, Morgat JL, Schunack W, Schwartz JC (1990) Histamine H3-receptor binding sites in rat brain membranes: modulation by guanine nucleotides and divalent cations. Eur J Pharmacol 188:219–227

    CAS  PubMed  Google Scholar 

  • Haaksma EEJ, Leurs R, Timmerman H (1990) Histamine receptors: subclasses and specific ligands. Pharmacol Ther 47:73–104

    CAS  PubMed  Google Scholar 

  • Hew KWS, Hodgkinson CR, Hill SJ (1990) Characterization of histamine H3-receptors in guinea-pig ileum with H3-selective ligands. Br J Pharmacol 101:621–624

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hill SJ (1990) Distribution, properties, and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42:45–83

    CAS  PubMed  Google Scholar 

  • Hill SJ (1992) Histamine receptor agonists and antagonists. Neurotransmissions 8(1):1–5

    Google Scholar 

  • Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL (1997) International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49:253–278

    CAS  PubMed  Google Scholar 

  • Jansen FP, Rademaker B, Bast A, Timmerman H (1992) The first radiolabeled histamine H3 receptor antagonist, [125I]iodophenpropit: saturable and reversible binding to rat cortex membranes. Eur J Pharmacol 217:203–205

    CAS  PubMed  Google Scholar 

  • Korte A, Myers J, Shih NY, Egan RW, Clark MA (1990) Characterization and tissue distribution of H3 histamine receptors in guinea pigs by Nα-methylhistamine. Biochem Biophys Res Commun 168:979–986

    CAS  PubMed  Google Scholar 

  • Leurs R, van der Goot H, Timmerman H (1991) Histaminergic agonists and antagonists. Recent developments. Adv Drug Res 20:217–304

    CAS  Google Scholar 

  • Leurs R, Blandina P, Tedford C, Timmerman H (1998) Therapeutic potential of histamine H3 receptor agonists and antagonists. Trends Pharmacol Sci 19:177–183

    CAS  PubMed  Google Scholar 

  • Leurs R, Bakker RA, Timmerman H, de Esch IJP (2005) The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat Rev Drug Discov 4:107–120

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Passani MB, Lin JS, Hanccck A, Crochet S, Blandina P (2004) The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol Sci 25:618–625

    CAS  PubMed  Google Scholar 

  • Schlicker E, Betz R, Göthert M (1988) Histamine H3-receptormediated inhibition of serotonin release in the rat brain cortex. Naunyn Schmiedebergs Arch Pharmacol 337:588–590

    CAS  PubMed  Google Scholar 

  • Timmerman H (1990) Histamine H3 ligands: just pharmacological tools or potential therapeutic agents? J Med Chem 33:4–11

    CAS  PubMed  Google Scholar 

  • Van der Goot H, Schepers MJP, Sterk GJ, Timmerman H (1992) Isothiourea analogues of histamine as potent agonists or antagonists of the histamine H3-receptor. Eur J Med Chem 27:511–517

    Google Scholar 

  • Van der Werf JF, Timmerman H (1989) The histamine H3 receptor: a general presynaptic regulatory system? Trends Pharmacol Sci 10:159–162

    PubMed  Google Scholar 

  • West RE Jr, Zweig A, Shih NY, Siegel MI, Egan RW, Clark MA (1990) Identification of two H3-histamine receptor subtypes. Mol Pharmacol 38:610–613

    CAS  PubMed  Google Scholar 

Pentylenetetrazole (Metrazol) Induced Convulsions

  • Bastian JW, Krause WE, Ridlon SA, Ercoli N (1959) CNS drug specificity as determined by the mouse intravenous pentylenetetrazole technique. J Pharmacol Exp Ther 127:75–80

    CAS  PubMed  Google Scholar 

  • Domino EF (1964) Centrally acting skeletal muscle relaxants. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 313–324

    Google Scholar 

  • Lippa AS, PristiHa A, Nash BA, Greenblatt EN (1979) Preclinical neuropsychopharmacological testing procedures for anxiolytic drugs. In: Fielding S, Lal H (eds) Anxiolytics. Futura Publishing, New York, pp 41–81

    Google Scholar 

  • Löscher W, Hönack D, Fassbender CP, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylentetrazole seizure models. Epilepsy Res 8:171–189

    PubMed  Google Scholar 

  • Starzl TE, Niemer WT, Dell M, Forgrave PR (1953) Cortical and subcortical electrical activity in experimental seizures induced by Metrazol. J Neuropathol Exp Neurol 12:262–276

    PubMed Central  CAS  PubMed  Google Scholar 

Strychnine-Induced Convulsions

  • Bigler ED (1977) Comparison of effects of bicuculline, strychnine, and picrotoxin with those of pentylenetetrazol on photically evoked after discharges. Epilepsia 18:465–470

    CAS  PubMed  Google Scholar 

  • Costa E, Guidotti A, Mao CC (1975) New concepts in the mechanism of action of benzodiazepines. Life Sci 17:167–186

    CAS  PubMed  Google Scholar 

  • Lambert DM, Poupaert JH, Maloteaux JM, Dumont P (1994) Anticonvulsant activities of N-benzyloxycarbonylglycine after parenteral administration. Neuroreport 5:777–780

    CAS  PubMed  Google Scholar 

  • McAllister KH (1992) N-Methyl-d-aspartate receptor antagonists and channel blockers have different effects upon a spinal seizure model in mice. Eur J Pharmacol 211:105–108

    CAS  PubMed  Google Scholar 

Picrotoxin-Induced Convulsions

  • Buckett WR (1981) Intravenous bicuculline test in mice: characterisation with Gabaergic drugs. J Pharmacol Methods 5:35–41

    CAS  PubMed  Google Scholar 

  • Costa E, Guidotti A, Mao CC, Suria A (1975) New concepts in the mechanism of action of benzodiazepines. Life Sci 17:167–186

    CAS  PubMed  Google Scholar 

  • Enna SJ, Möller H (1987) γ-aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 265–272

    Google Scholar 

  • Usunoff G, Atsev E, Tchavdarov D (1969) On the mechanisms of picrotoxin epileptic seizure (macro- and microelectrode investigations). Electroencephalogr Clin Neurophysiol 27:444

    CAS  PubMed  Google Scholar 

Isoniazid-Induced Convulsions

  • Costa E, Guidotti A, Mao CC (1975) Evidence for involvement of GABA in the action of benzodiazepines: studies on rat cerebellum. In: Costa E, Greengard P (eds) Mechanisms of action of benzodiazepines. Advances in biochemical psychopharmacology, vol 14. Raven Press, New York, pp 113–151

    Google Scholar 

Yohimbine-Induced Convulsions

  • Dunn RW, Corbett R (1992) Yohimbine-induced convulsions involve NMDA and GABAergic transmission. Neuropharmacology 31:389–395

    CAS  PubMed  Google Scholar 

  • Dunn R, Fielding S (1987) Yohimbine-induced seizures in mice: a model predictive of potential anxiolytic and GABAmimetic agents. Drug Dev Res 10:177–188

    CAS  Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel noncompetitive NMDA antagonists. In: Current and future trends in anticonvulsant, anxiety, and stroke therapy. Wiley-Liss, pp 495–512

    Google Scholar 

  • Litchfield J, Wilcoxon F (1949) A simplified method of evaluating dose effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  PubMed  Google Scholar 

Foot-Shock-Induced Aggression

  • Blanchard RJ, Blanchard DC (1977) Aggressive behavior in the rat. Behav Biol 21:197–224

    CAS  PubMed  Google Scholar 

  • Brady JV, Nauta WJH (1953) Subcortical mechanisms in emotional behavior: affective changes following septal forebrain lesions in the albino rat. J Comp Physiol Psychol 46:339–346

    CAS  PubMed  Google Scholar 

  • Chen G, Bohner B, Bratten AC (1963) The influence of certain central depressants on fighting behavior of mice. Arch Int Pharmacodyn 142:30–34

    CAS  PubMed  Google Scholar 

  • Heise GA, Boff E (1961) Taming action of chlordiazepoxide. Fed Proc 20:393–397

    Google Scholar 

  • Hotchkiss AK, Ostby JS, Vandenbergh JG, Gray LE Jr (2003) An environmental antiandrogen, vinclozolin, alters the organization of play behavior. Physiol Behav 79:151–156

    CAS  PubMed  Google Scholar 

  • Irwin S, Kinohi R, Van Sloten M, Workman MP (1971) Drug effects on distress-evoked behavior in mice: methodology and drug class comparisons. Psychopharmacologia (Berl) 20:172–185

    CAS  Google Scholar 

  • Kruk MR, van der Poel AM, de Vos-Frerichs TP (1979) The induction of aggressive behaviour by electrical stimulation in the hypothalamus of male rats. Behaviour 70:292–322

    CAS  PubMed  Google Scholar 

  • Mos J, Olivier B (1991) Concepts in animal models for pathological aggressive behaviour in humans. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 297–316

    Google Scholar 

  • Pellis SM (2002) Sex differences in play fighting revisited: traditional and nontraditional mechanisms of sexual differentiation in rats. Arch Sex Behav 31:17–26

    PubMed  Google Scholar 

  • Pellis SM, McKenna M (1995) What do rats find rewarding in play fighting? – an analysis using drug-induced non-playful partners. Behav Brain Res 68:65–73

    CAS  PubMed  Google Scholar 

  • Pellis SM, Pellis VC (1998) Play fighting in comparative perspective: a schema for neurobehavioral analyses. Neurosci Behav Rev 23:87–101

    CAS  Google Scholar 

  • Pellis SM, Field EF, Smith LK, Pellis VC (1997) Multiple differences in the play fighting of male and female rats. Implications for the causes and functions pf play. Neurosci Biobehav Rev 21:105–120

    CAS  PubMed  Google Scholar 

  • Randall LO, Heise GA, Schalleck W, Bagdon RE, Banziger R, Boris A, Moe A, Abrams WB (1961) Pharmacological and clinical studies on Valium(T.M.). A new psychotherapeutic agent of the benzodiazepine class. Curr Ther Res 9:405–425

    Google Scholar 

  • Rudzik AD, Hester JB, Tang AH, Straw RN, Friis W (1973) Triazolobenzazepines, a new class of central nervous system-depressant compounds. In: Garattini S, Mussini E, Randall LO (eds) The benzodiazepines. Raven Press, New York, pp 285–297

    Google Scholar 

  • Schneider M, Koch M (2005) Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: effects of chronic pubertal cannabinoid treatment. Neuropsychopharmacology 30:944–957

    CAS  PubMed  Google Scholar 

  • Siviy SM, Line BS, Darcy EA (1995) Effects of MK-8o1 on rough-and-tumble play in juvenile rats. Physiol Behav 57:843–847

    CAS  PubMed  Google Scholar 

  • Tedeschi RE, Tedeschi DH, Mucha A, Cook L, Mattis PA, Fellows EJ (1959) Effects of various centrally acting drugs on fighting behavior of mice. J Pharmacol Exp Ther 125:28–34

    CAS  PubMed  Google Scholar 

  • Tedeschi DH, Fowler PJ, Miller RB, Macko E (1969) Pharmacological analysis of footshock-induced fighting behaviour. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 245–252

    Google Scholar 

  • Ulrich R, Symannek B (1969) Pain as a stimulus for aggression. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 59–69

    Google Scholar 

Isolation-Induced Aggression

  • Anrade ML, Benton D, Brain PF, Ramirez JM, Walmsley SV (1988) A reexamination of the hypoglycemia-aggression hypothesis in laboratory mice. Int J Neurosci 41:179–186

    Google Scholar 

  • Caharperntier J (1969) Analysis and measurement of aggressive behaviour in mice. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 86–100

    Google Scholar 

  • Davbanzo JP (1969) Observations related to drug-induced alterations in aggressive behaviour. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 263–272

    Google Scholar 

  • Francès H (1988) New animal model of social behavioral deficit: reversal by drugs. Pharmacol Biochem Behav 29:467–470

    PubMed  Google Scholar 

  • Francès H, Monier C (1991) Tolerance to the behavioural effect of serotonergic (5-HT1B) agonists in the isolation induced social behavioural deficit test. Neuropharmacology 30:623–627

    PubMed  Google Scholar 

  • Francès H, Khidichian F, Monier C (1990) Increase in the isolation-induced social behavioural deficit by agonists at 5-HT1A receptors. Neuropharmacology 29:103–107

    PubMed  Google Scholar 

  • Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E (2001) The socially-isolated mouse: a model to study the putative role of allopregnenolone and 5α-dihydroxy progesterone in psychiatric disorders. Brain Res Rev 37:110–115

    CAS  PubMed  Google Scholar 

  • Hoffmeister F, Wuttke W (1969) On the actions of psychotropic drugs on the attack- and aggressive-defensive behaviour of mice and cats. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 273–280

    Google Scholar 

  • Krsiak M (1974) Behavioral changes and aggressivity evoked by drugs in mice. Res Commun Chem Pathol Pharmacol 7:237–257

    CAS  PubMed  Google Scholar 

  • Krsiak M (1975) Timid singly-house mice: their value in prediction of psychotropic activity of drugs. Br J Pharmacol 55:141–150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krsiak M (1979) Effects of drugs on behaviour of aggressive mice. Br J Pharmacol 65:525–533

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krsiak M, Janku I (1969) The development of aggressive behaviour in mice by isolation. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 101–105

    Google Scholar 

  • Lagerspetz KMJ (1969) Aggression and aggressiveness in laboratory mice. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 77–85

    Google Scholar 

  • Le Douarec JC, Broussy L (1969) Dissociation of the aggressive behaviour in mice produced by certain drugs. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 281–295

    Google Scholar 

  • McMillen BA, Scott SM, Williams HL, Sanghera MK (1987) Effects of gespirone, an aryl-piperazine anxiolytic drug, on aggressive behavior and brain monoaminergic neurotransmission. Naunyn Schmiedebergs Arch Pharmacol 335:454–464

    CAS  PubMed  Google Scholar 

  • McMillen BA, Wooten MH, King SW, Scott SM, Williams HL (1992) Interaction between subchronic administration of alprazolam and aryl-piperazine anxiolytic drugs in aggressive mice. Biog Amines 9:131–140

    CAS  Google Scholar 

  • Oliver B, Mos J (1992) Rodent models of aggressive behavior and serotonergic drugs. Prog Neuro Psychopharm Biol Psychiatry 16:847–870

    Google Scholar 

  • Olivier B, van Dalen D (1982) Social behaviour in rats and mice: an ethologically based model for differentiating psychoactive drugs. Aggress Behav 8:163–168

    CAS  Google Scholar 

  • Sánchez C, Arnt J, Moltzen EK (1996) The antiaggressive potency of (−)-penbutolol involves both 5-HT1A and 5-HT1B receptors and β-adrenoceptors. Eur J Pharmacol 297:1–8

    PubMed  Google Scholar 

  • Scriabine A, Blake M (1962) Evaluation of centrally acting drugs in mice with fighting behavior induced by isolation. Psychopharmacologia 3:224–226

    CAS  PubMed  Google Scholar 

  • Valzelli L (1967) Drugs and aggressiveness. In: Garratini S, Shore PA (eds) Advances in pharmacology, vol 5. Academic, New York, pp 79–108

    Google Scholar 

  • Valzelli L (1969) Aggressive behaviour induced by isolation. In: Garattini S, Sigg EB (eds) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 70–76

    Google Scholar 

  • White SM, Kucharik RF, Moyer JA (1991) Effects of serotoninergic agents on isolation-induced aggression. Pharmacol Biochem Behav 39:729–736

    CAS  PubMed  Google Scholar 

  • Yen CY, Stanger RL, Millman N (1959) Ataractic suppression of isolation-induced aggressive behavior. Arch Int Pharmacodyn 123:179–185

    CAS  PubMed  Google Scholar 

Resident-Intruder Aggression Test

  • Brain PF, Howell PA, Benton D, Jones SE (1979) Studies on responses by “residents” rats housed in different ways to intruders of differing endocrine status. J Endocrinol 81:135–136

    Google Scholar 

  • Flannelly K, Lore R (1975) Dominace-subordinance in cohabitating pairs of adult rats: effects on aggressive behavior. Aggress Behav 1:331–340

    Google Scholar 

  • Mos J, Olivier B, Poth M, van Aken H (1992) The effects of intraventricular administration of eltoprazine, 1-(3-trifluoromethylphenyl)piperazine hydrochloride and 8-hydroxy-2-(di-n-propylamino)tetralin on resident intruder aggression in the rat. Eur J Pharmacol 212:295–298

    CAS  PubMed  Google Scholar 

  • Muehlenkamp F, Lucion A, Vogel WH (1995) Effects of selective serotonergic agonists on aggressive behavior in rats. Pharmacol Biochem Behav 50:671–674

    CAS  PubMed  Google Scholar 

  • Sijbesma H, Schipper J, de Kloet ER, Mos J, van Aken H, Olivier B (1991) Postsynaptic 5-HT1 receptors and offensive aggression in rats: a combined behavioural and autoradiographic study with eltoprazine. Pharmacol Biochem Behav 38:447–458

    CAS  PubMed  Google Scholar 

Water Competition Test

  • Baenninger LP (1970) Social dominance orders in the rat: “Spontaneous” food and water competition. J Comp Physiol Psychol 71:202–209

    Google Scholar 

  • Muehlenkamp F, Lucion A, Vogel WH (1995) Effects of selective serotonergic agonists on aggressive behavior in rats. Pharmacol Biochem Behav 50:671–674

    CAS  PubMed  Google Scholar 

  • Syme GJ (1974) Competitive orders a measures of social dominance. Anim Behav 22:931–940

    Google Scholar 

Maternal Aggression in Rats

  • Kruk MR, Zethof T (1987) Postpartum aggression in rats does not influence threshold currents for EBS-induced aggression. Brain Res 404:263–266

    PubMed  Google Scholar 

  • Mos J, Olivier B, Van Oorschot R (1984) Different test situations for measuring offensive aggression in male rats do not result in the same wound pattern. Physiol Behav 32:453–456

    CAS  PubMed  Google Scholar 

  • Mos J, Olivier B, Lammers JHCM, van der Poel AM, Kruk MR, Zethof T (1987a) Postpartum aggression in rats does not influence threshold currents for EBS-induced aggression. Brain Res 404:263–266

    CAS  PubMed  Google Scholar 

  • Mos J, Olivier B, van Oorschot R (1987b) Maternal aggression towards different sized male opponents: effect of chlordiazepoxide treatment of the mothers and d-amphetamine treatment of the intruders. Pharmacol Biochem Behav 26:577–584

    CAS  PubMed  Google Scholar 

  • Mos J, Olivier B, van Oorschot R, van Aken H, Zethof T (1989) Experimental and ethological aspect of maternal aggression in rats: five years of observations. In: Blanchard RJ, Brain PF, Blanchard DC, Parmigiani S (eds) Ethoexperimental approaches to the study of behavior. Kluwer Academic Publication, Dordrecht/Boston/London, pp 385–398

    Google Scholar 

  • Mos J, Olivier B, van Oorschot R (1990) Behavioural and neuropharmacological aspects of maternal aggression in rodents. Aggress Behav 16:145–163

    CAS  Google Scholar 

  • Olivier B (1981) Selective antiaggressive properties of DU27725: ethological analysis of intermale and territorial aggression in the male rat. Pharmacol Biochem Behav 14(Suppl 1):61–77

    CAS  PubMed  Google Scholar 

  • Olivier B, Mos J (1986) A female aggression paradigm for use in psychopharmacology: maternal agonistic behavior in rats. In: Brain PF, Ramirez JM (eds) Cross-disciplinary studies on aggression. University of Seville Press, Seville, pp 73–111

    Google Scholar 

  • Olivier B, Mos J (1992) Rodent models of aggressive behavior and serotonergic drugs. Prog Neuro Psychopharm Biol Psychiatry 16:847–870

    CAS  Google Scholar 

  • Olivier B, Mos J, van Oorschot R (1985) Maternal aggression in rats: effects of chlordiazepoxide and fluprazine. Psychopharmacology (Berl) 86:68–76

    CAS  Google Scholar 

  • Olivier B, Rasmussen D, Raghoebar M, Mos J (1990) Ethopharmacology: a creative approach to identification and characterization of novel psychotropics. Drug Metabol Drug Interact 8:11–29

    CAS  PubMed  Google Scholar 

  • Olivier B, Mos J, van Oorschot R, Hen R (1995) Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28(Suppl):80–90

    PubMed  Google Scholar 

  • Palanza P, Rodgers RJ, Ferrari PF, Parmigiani S (1996) Effects of chlordiazepoxide on maternal aggression in mice depend on experience of resident and sex of intruder. Pharmacol Biochem Behav 54:175–182

    CAS  PubMed  Google Scholar 

Rage Reaction in Cats

  • Glusman M (1974) The hypothalamic ‘savage’ syndrome. Res Publ Assoc Res Nerv Ment Dis 52:52–92

    CAS  PubMed  Google Scholar 

  • Malick JB (1970) Effects of selected drugs on stimulus-bound emotional behaviour elicited by hypothalamic stimulation in the cat. Arch Int Pharmacodyn Ther 186:137–141

    CAS  PubMed  Google Scholar 

  • Murasaki M, Hara T, Oguchi T, Inami M, Ikeda Y (1976) Action of enpiprazole on emotional behaviour induced by hypothalamic stimulation in rats and cats. Psychopharmacologia 49:271–274

    CAS  Google Scholar 

  • Pieri L (1983) Preclinical pharmacology of midazolam. Br J Clin Pharmacol 16:17S–27S

    PubMed Central  PubMed  Google Scholar 

  • Siegel A, Schubert K (1995) Neurotransmitters regulating feline aggression. Rev Neurosci 6:47–61

    CAS  PubMed  Google Scholar 

  • Siegel A, Shaikh MB (1997) The neural bases of aggression and rage in the cat. Aggress Violent Behav 1:241–271

    Google Scholar 

  • Siegel A, Schubert K, Shaikh MB (1997) Neurotransmitters regulating defensive rage behavior in the cat. Neurosci Biobehav Rev 21:733–742

    CAS  PubMed  Google Scholar 

  • Siegel A, Schubert KL, Shaikh MB (1998) Neurotransmitters regulating defensive rage behavior in the cat. Neurosci Biobehav Rev 21:733–742

    Google Scholar 

  • Siegel A, Roeling TAP, Gregg TR, Kruk MR (1999) Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev 23:359–389

    CAS  PubMed  Google Scholar 

Anti-Anxiety Test (Light–dark Model)

  • Barnes NM, Costall B, Domeney AM, Gerrard PA, Kelly ME, Krähling H, Naylor RJ, Tomkins DM, Williams TJ (1991) The effects of umespirone as a potential anxiolytic and antipsychotic agent. Pharmacol Biochem Behav 40:89–96

    CAS  PubMed  Google Scholar 

  • Barnes NM, Cheng CHK, Costall B, Ge J, Kelly ME, Naylor RJ (1992a) Profiles of R(+)/S(−)-Zacopride and anxiolytic agents in a mouse model. Eur J Pharmacol 218:91–100

    CAS  PubMed  Google Scholar 

  • Barnes NM, Costal B, Ge J, Kelly ME, Naylor RJ (1992b) The interaction of R(+)-and S(−)-zacopride with PCPA to modify rodent aversive behavior. Eur J Pharmacol 218:15–25

    CAS  PubMed  Google Scholar 

  • Blumstein LK, Crawley JN (1983) Further characterisation of a simple, automated exploratory model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 18:37–40

    CAS  PubMed  Google Scholar 

  • Broekkamp CLE, Berendsen HHG, Jenk F, van Delft AML (1989) Animal models for anxiety and response to serotonergic drugs. Psychopathology 22(Suppl 1):2–12

    PubMed  Google Scholar 

  • Costall B, Hendrie CA, Kelly ME, Naylor RJ (1987) Actions of sulpiride and tiapride in a simple model of anxiety in mice. Neuropharmacology 26:195–200

    CAS  PubMed  Google Scholar 

  • Costall B, Kelley ME, Naylor RJ, Onaivi ES (1988) Actions of buspirone in a putative model of anxiety in the mouse. J Pharm Pharmacol 40:494–500

    CAS  PubMed  Google Scholar 

  • Costall B, Jones BJ, Kelly ME, Naylor RJ, Tomkins DM (1989) Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacol Biochem Behav 32:777–785

    CAS  PubMed  Google Scholar 

  • Crawley JN (1981) Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol Biochem Behav 15:695–699

    CAS  PubMed  Google Scholar 

  • Crawley J, Goodwin KK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13:167–170

    CAS  PubMed  Google Scholar 

  • Griebel G (1995) 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years research. Pharmacol Ther 65:319–395

    CAS  PubMed  Google Scholar 

  • Hascoët M, Bourin M (1998) A new approach to the light/dark test procedure in mice. Pharmacol Biochem Behav 60:645–653

    PubMed  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel α2-adrenoreceptor antagonist, in open-field, plus-maze, two compartment exploratory, and forced swimming tests in rats. Eur J Pharmacol 205:177–182

    CAS  PubMed  Google Scholar 

  • Kilfoil T, Michel A, Montgomery D, Whithing RL (1989) Effects of anxiolytic and anxiogenic drugs on exploratory activity in a simple model of anxiety in mice. Neuropharmacology 28:901–905

    CAS  PubMed  Google Scholar 

  • Manser CE, Elliott H, Morriss TH, Broom DM (1996) The use of a novel operant test to determine the strength of preference for flooring in laboratory rats. Lab Anim 30:1–6

    CAS  PubMed  Google Scholar 

  • Sanchez C (1995) Serotonergic mechanisms involved in the exploratory behaviour of mice in a fully automated two compartment black and white test box. Pharmacol Toxicol 77:71–78

    CAS  PubMed  Google Scholar 

  • Schipper J, Tulp MTM, Berkelmans B, Mos J, Van der Heijden JAM, Olivier B (1991) Preclinical pharmacology of Flesinoxan: a potential anxiolytic and antidepressant drug. Hum Psychopharmacol 6:53–61

    Google Scholar 

  • Treit D (1985) Animal models for the study of anti-anxiety agents: a review. Neurosci Biobehav Rev 9:203–222

    CAS  PubMed  Google Scholar 

Anticipatory Anxiety in Mice

  • Borsini F, Lecci A, Volterra G, Meli A (1989) A model to measure anticipatory anxiety in mice? Psychopharmacology (Berl) 98:207–211

    CAS  Google Scholar 

  • Lecci A, Borsini F, Mancinelli A, D’Aranno V, Stasi MA, Volterra G, Meli A (1990a) Effects of serotoninergic drugs on stress-induced hyperthermia (SIH) in mice. J Neural Transm 82:219–230

    CAS  Google Scholar 

  • Lecci A, Borsini F, Volterra G, Meli A (1990b) Pharmacological validation of a novel animal model of anticipatory anxiety in mice. Psychopharmacology (Berl) 101:255–261

    CAS  Google Scholar 

  • Tulp M, Olivier B, Schipper J, van der Pel G, Mos J, van der Heyden J (1991) Serotonin reuptake blockers: is there preclinical evidence for their efficacy in obsessive-compulsive disorder? Hum Psychopharmacol 6:S63–S71

    CAS  Google Scholar 

  • Van der Heyden JASM, Zethof TKK, Olivier B (1997) Stress-induced hyperthermia in singly housed mice. Physiol Behav 62:463–470

    PubMed  Google Scholar 

  • Zelthof TJJ, van der Heyden JAM, Olivier B (1991) A new animal model for anticipatory anxiety? In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 65–68

    Google Scholar 

  • Zelthof TJJ, van der Heyden JAM, Tolboom JTBM, Olivier B (1995) Stress-induced hyperthermia as a putative anxiety model. Eur J Pharmacol 294:125–135

    Google Scholar 

Social Interaction in Rats

  • Angelis L, File SE (1979) Acute and chronic effects of three benzodiazepines in the social interaction test in mice. Psychopharmacology (Berl) 64:127–129

    Google Scholar 

  • Barnes NM, Costall B, Domeney AM, Gerrard PA, Kelly ME, Krähling H, Naylor RJ, Tomkins DM, Williams TJ (1991) The effects of umespirone as a potential anxiolytic and antipsychotic agent. Pharmacol Biochem Behav 40:89–96

    CAS  PubMed  Google Scholar 

  • Blackburn TP, Baxter GS, Kennett GA, King FD, Piper DC, Sanger GJ, Thomas DR, Upton N, Wood MD (1993) BRL 46470A: a highly potent, selective and long acting 5-HT3 receptor antagonist with anxiolytic-like properties. Psychopharmacology (Berl) 110:257–264

    CAS  Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutaminergic and monoaminergic systems within the basal ganglia: implications for schizophrenia and Parkinson’s disease. Trends Neural Sci 13:272–276

    CAS  Google Scholar 

  • Corbett R, Dunn RW (1991) Effects of HA-966 on conflict, social interaction, and plus maze behaviors. Drug Dev Res 24:201–205

    CAS  Google Scholar 

  • Corbett R, Fielding S, Cornfeldt M, Dunn RW (1991) GABAmimetic agents display anxiolytic-like effects in the social interaction and elevated plus maze procedures. Psychopharmacology 104:312–316

    CAS  PubMed  Google Scholar 

  • Corbett R, Hartman H, Kerman LL, Woods AT, Strupczewski JT, Helsley GC, Conway PC, Dunn RW (1993) Effects of atypical antipsychotic agents on social behavior in rodents. Pharmacol Biochem Behav 45:9–17

    CAS  PubMed  Google Scholar 

  • Corbett R, Camacho F, Woods AT, Kerman LL, Fishkin RJ, Brooks K, Dunn RW (1995) Antipsychotic agents antagonize non-competitive N-methyl-d-aspartate antagonist-induced behaviors. Psychopharmacology (Berl) 120:67–74

    CAS  Google Scholar 

  • Costall B, Naylor RJ (1992) Anxiolytic potential of 5-HT3 receptor antagonists. Pharmacol Toxicol 70:157–162

    CAS  PubMed  Google Scholar 

  • Costall B, Naylor RJ (1995) Behavioural interactions between 5-hydroxytryptophan, neuroleptic agents and 5-HT receptor antagonists in modifying rodent response to adverse situations. Br J Pharmacol 116:2989–2999

    PubMed Central  CAS  PubMed  Google Scholar 

  • Costall B, Kelly ME, Onaivi ES, Naylor RJ (1990) The effect of ketotifen in rodent models of anxiety and on the behavioural consequences of withdrawing from treatment with drugs of abuse. Naunyn Schmiedebergs Arch Pharmacol 341:547–551

    CAS  PubMed  Google Scholar 

  • Costall B, Domeney AM, Hughes J, Kelly ME, Naylor RJ, Woodruff GN (1991) Anxiolytic effects of CCKB antagonists. Neuropeptides 19(Suppl):65–73

    CAS  PubMed  Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel noncompetitive NMDA antagonists. In: Current and future trends in anticonvulsant, anxiety, and stroke therapy. WileyLiss, pp 495–512

    Google Scholar 

  • File SE (1980) The use of social interactions as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. J Neurosci Methods 1:219–238

    Google Scholar 

  • File SE, Hyde RJ (1979) A test of anxiety that distinguishes between the actions of benzodiazepines and those of other minor tranquilizers and stimulants. Pharmacol Biochem Behav 11:65–69

    CAS  PubMed  Google Scholar 

  • File SE, Johnston AL (1989) Lack of effects of 5-HT3 receptor antagonists in the social interaction and elevated plus-maze tests in the rat. Psychopharmacology (Berl) 99:248–251

    CAS  Google Scholar 

  • Gardner C, Guy A (1984) A social interaction model of anxiety sensitive to acutely administered benzodiazepines. Drug Dev Res 4:207–216

    Google Scholar 

  • Gheusi G, Bluthe RM, Goodall G, Dantzer R (1994) Ethological study of the effects of tetrahydroaminoacridine (THA) on social recognition in rats. Psychopharmacology (Berl) 114:644–650

    CAS  Google Scholar 

  • Hughes J, Boden P, Costall B, Domeney A, Kelly E, Horwell DC, Hunter JC, Pinnock RD, Woodruff GN (1990) Development of a class of selective cholecystokinin type B receptor antagonists having a potent anxiolytic activity. Proc Natl Acad Sci U S A 87:6728–6732

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kennett GA (1992) 5-HT1C Receptors antagonists have anxiolytic-like actions in the rat social interaction model. Psychopharmacology (Berl) 107:379–384

    CAS  Google Scholar 

  • Kennett GA, Whitton P, Shah K, Curzon G (1989) Anxiogeniclike effects of mCPP and TFMPP in animal models are opposed by 5-HT1C receptor antagonists. Eur J Pharmacol 164:445–454

    CAS  PubMed  Google Scholar 

  • Kennett GA, Wood MD, Glen A, Grewal S, Forbes I, Gadre A, Blackburn TP (1994) In vivo properties of SB 200646A, a 5-HT2C/2B receptor antagonist. Br J Pharmacol 111:797–802

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kennett GA, Bailey F, Piper DC, Blackburn TP (1995) Effect of SB 200646A, a 5-HT2C/5-HT2B receptor antagonist, in two conflict models of anxiety. Psychopharmacology (Berl) 118:178–182

    CAS  Google Scholar 

  • Kennett GA, Bright F, Trail B, Baxter GS, Blackburn TP (1996a) Effects of the 5-HT2B receptor antagonist, BW 723C86, on three rat models of anxiety. Br J Pharmacol 117:1443–1448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T, Thomas D, Baxter GS, Forbes IT, Ham P, Blackburn TP (1996b) In vitro and in vivo profile of SE 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolyticlike properties. Br J Pharmacol 117:427–434

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kennett GA, Wood MD, Bright F, Trail B, Riley G, Holland V, Avenell KY, Stean TT, Upton N, Bromidge S, Forbes IT, Brown AM, Middlemiss DN, Blackburn TP (1997a) SE 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology 36:609–620

    CAS  PubMed  Google Scholar 

  • Kennett GA, Bright F, Trail B, Blackburn TP, Sanger GJ (1997b) Anxiolytic-like actions of the 5-HT4 receptor antagonists SB 204070A and SB 207266A in rats. Neuropharmacology 36:707–712

    CAS  PubMed  Google Scholar 

  • Sams-Dodd F (1995) Automation of the social interaction test by a video-tracking system: behavioural effects of repeated phencyclidine treatment. J Neurosci Methods 59:157–167

    CAS  PubMed  Google Scholar 

  • Sams-Dodd F (1997) Effect of novel antipsychotic drugs on phencyclidine-induced stereotyped behaviour and social isolation in the rat social interaction test. Behav Pharmacol 8:196–215

    CAS  PubMed  Google Scholar 

  • Singh L, Field MJ, Hughes J, Menzies R, Oles RJ, Vass CA, Woodruff GN (1991) The behavioural properties of CI-998, a selective cholecystokininB receptor antagonist. Br J Pharmacol 104:239–245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szewczak MR, Cornfeldt ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11:157–168

    CAS  Google Scholar 

  • Treit D (1985) Animal models for the study of anti-anxiety agents: a review. Neurosci Biobehav Rev 9:203–222

    CAS  PubMed  Google Scholar 

  • Volke V, Soosaar A, Koks S, Bourin M, Mannisto PT, Vasar E (1997) 7-Nitroindazole, a nitric oxide synthase inhibitor, has anxiolytic-like properties in exploratory models of anxiety. Psychopharmacology (Berl) 131:399–405

    CAS  Google Scholar 

  • Winslow JT, Camacho F (1995) Cholinergic modulation of a decrement in social investigation following repeated contacts between mice. Psychopharmacology (Berl) 121:164–172

    CAS  Google Scholar 

  • Wongwitdecha N, Marsden CA (1996) Social isolation increases aggressive behaviour and alters the effects of diazepam in the rat social interaction test. Behav Brain Res 75:27–32

    CAS  PubMed  Google Scholar 

  • Woodall KL, Domeney AM, Kelly ME (1996) Selective effects of 8-OH-DPAT on social competition in the rat. Pharmacol Biochem Behav 54:169–173

    CAS  PubMed  Google Scholar 

Elevated Plus Maze Test

  • Brakebusch C, Seidenbecher CI, Asztely F, Rauch U, Matthies H, Meyer H, Krug M, Böckers TM, Zhou X, Kreutz MR, Montag D, Gundelfinger ED, Fässler R (2002) Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol Cell Biol 22:7417–7427

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brett RR, Pratt JA (1990) Chronic handling modifies the anxiolytic effect of diazepam in the elevated plus-maze. Eur J Pharmacol 178:135–138

    CAS  PubMed  Google Scholar 

  • Corbett R, Fielding St, Cornfeldt M, Dunn RW (1991) GABAmimetic agents display anxiolytic-like effects in the social interaction and elevated plus maze procedures. Psychopharmacology 104:312–316

    CAS  PubMed  Google Scholar 

  • Cryan JF, Kelly PH, Chaperon F, Gentsch C, Mombereau C, Lingenhoehl K, Froestl W, Bettler B, Kaupmann K, Spooren PJM (2004) Behavioral characterization of the novel GABAB receptor positive modulator GS39783 (N, N′-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine): anxiolytic-like activity without side effects associated with baclofen or benzodiazepines. J Pharmacol Exp Ther 310:952–963

    CAS  PubMed  Google Scholar 

  • Danks AM, Oestreicher AB, Spruijt Gispen WH, Isaakson RL (1991) Behavioral and anatomical consequences of unilateral fornix lesions and the administration of nimodipine. Brain Res 557:308–312

    CAS  PubMed  Google Scholar 

  • Di Cicco D, Antal S, Ammassari-Teule M (1991) Prenatal exposure to gamma/neutron irradiation: sensorimotor alterations and paradoxical effects on learning. Teratology 43:61–70

    PubMed  Google Scholar 

  • Dunn RW, Carlezon WA, Corbett R (1991) Preclinical anxiolytic versus antipsychotic profiles of the 5-HT3 antagonists ondansetron, zacopride, 3α-tropanyl-1H-indole-3carboxylic acid ester, and 1αH, 3α, 5αH-Tropan-3-yl-3,5- dichlorobenzoate. Drug Dev Res 23:289–300

    CAS  Google Scholar 

  • File SE, Mabbutt PS, Hitchcott PH (1990) Characterisation of the phenomenon of “one-trial tolerance” to the anxiolytic effect of chlordiazepoxide in the elevated plus-maze. Psychopharmacology (Berl) 102:98–101

    CAS  Google Scholar 

  • Handley SL, McBlane JW (1993) An assessment of the elevated X-maze for studying anxiety and anxiety-modulating drugs. J Pharmacol Toxicol Methods 29:129–138

    CAS  PubMed  Google Scholar 

  • Harro J, Pöld M, Vasar E (1990) Anxiogenic-like action of caerulein, a CCK-8 receptor agonist, in the mouse: influence of acute and subchronic diazepam treatment. Naunyn Schmiedebergs Arch Pharmacol 341:62–67

    CAS  PubMed  Google Scholar 

  • Ho YJ, Eichemdorff J, Schwarting RKW (2002) Individual response profiles of male Wistar rats in animal models for anxiety and depression. Behav Brain Res 136:1–12

    PubMed  Google Scholar 

  • Jardim MC, Nogueira RL, Graeff FG, Nunes-de-Souza RL (1999) Evaluation of the elevated T-maze as an animal model of anxiety in the mouse. Brain Res Bull 48:407–411

    CAS  PubMed  Google Scholar 

  • Karl T, Hoffmann T, Pabst R, von Hörsten S (2003) Behavioral effects of neuropeptide γ in F344 rat substrains with reduced dipeptidyl-peptidase IV activity. Pharmacol Biochem Behav 75:869–879

    CAS  PubMed  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel α2-adrenoreceptor antagonist, in open field, plus-maze, two compartment exploratory, and forced swimming tests in rats. Eur J Pharmacol 205:177–182

    CAS  PubMed  Google Scholar 

  • Keck ME, Welt T, Wigger A, Renner U, Engelmann M, Holsboer F, Landgraf R (2001) The anxiolytic effect of CRH1 receptor antagonist R121919 depends on innate emotionality in rats. Eur J Neurosci 13:373–380

    CAS  PubMed  Google Scholar 

  • Korsgaard MPG, Hartz BP, Brown WD, Ahring PK, Strøbœk D, Mirza NR (2005) Anxiolytic effects of Maxipost (BMS-204352) and Retigabine via activation of neuronal Kv7 channels. J Pharmacol Exp Ther 314:282–292

    CAS  PubMed  Google Scholar 

  • Korte SM, De Boer SF (2003) A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plusmaze. Eur J Pharmacol 463:163–175

    PubMed  Google Scholar 

  • Landgraf R, Wigger A, Holsboer A, Neumann ID (1999) Hyperactive hypothalamo-pituitary-adrenocortical (HPA) axis in rats bred for high anxiety-related behavior. Neuroendocrinology 11:405–407

    CAS  Google Scholar 

  • Lapin IP (1995) Only controls: effect of handling, sham injection, and intraperitoneal injection of saline on behavior of mice in an elevated plus-maze. J Pharmacol Toxicol Methods 34:73–77

    CAS  PubMed  Google Scholar 

  • Liebisch G, Montkowski A, Holsboer F, Landgraf R (1998) Behavioral profiles of two Wistar rat lines selectively bred for high or low anxiety-related behavior. Behav Brain Res 94:301–310

    Google Scholar 

  • Montag-Sallaz M, Montag D (2003) Severe cognitive and motor coordination deficits in Tenascin-R-deficient mice. Genes Brain Behav 2:20–31

    CAS  PubMed  Google Scholar 

  • Montgomery KC (1958) The relation between fear induced by novel stimulation and exploratory behaviour. J Comp Physiol Psychol 48:254–260

    Google Scholar 

  • Munn NL (1950) The role of sensory processes in maze behavior. In: Handbook of psychological research in the rat. Houghton Mifflin, Boston, pp 181–225

    Google Scholar 

  • Pellow S (1986) Anxiolytic and anxiogenic drug effects in a novel test of anxiety: are exploratory models of anxiety in rodents valid? Methods Find Exp Clin Pharmacol 8:557–565

    CAS  PubMed  Google Scholar 

  • Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 25:525–529

    Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    CAS  PubMed  Google Scholar 

  • Pokk P, Liljequist S, Zharkovsky A (1996) Ro 15–4513 potentiates, instead of antagonizes, ethanol-induced sleep in mice exposed to small platform stress. Eur J Pharmacol 317:15–20

    CAS  PubMed  Google Scholar 

  • Schwarzberg H, Kalbacher H, Hoffmann W (1999) Differential behavioral effects of TFF peptides: injections of synthetic TFF3 into the rat amygdala. Pharmacol Biochem Behav 62:173–178

    CAS  PubMed  Google Scholar 

  • Shepherd JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT (1994) Behavioral and pharmacologic characterization of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology (Berl) 116:56–65

    CAS  Google Scholar 

  • Silva RH, Frussa-Filho R (2000) The plus-maze discriminative avoidance task: a new model to study memory-anxiety interactions. Effects of chlordiazepoxide and caffeine. J Neurosci Methods 102:117–125

    CAS  PubMed  Google Scholar 

  • Silverman P (1978) Approach to a conditioned stimulus: mazes. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 110–119

    Google Scholar 

  • Toubas PL, Abla KA, Cao W, Logan LG, Seale TW (1990) Latency to enter a mirrored chamber: a novel behavioral assay for anxiolytic agents. Pharmacol Biochem Behav 35:121–126

    CAS  PubMed  Google Scholar 

Water Maze Test

  • Bane A, Rojas D, Indermaur K, Bennett T, Avery D (1996) Adverse effects of dextromorphan on the spatial learning of rats in the Morris water maze. Eur J Pharmacol 302:7–12

    CAS  PubMed  Google Scholar 

  • Connor DJ, Langlais PJ, Thal LJ (1991) Behavioral impairments after lesions in the nucleus basalis by ibotenic acid and quisqualic acid. Brain Res 555:84–90

    CAS  PubMed  Google Scholar 

  • McNaughton N, Morris RGM (1987) Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats. Behav Brain Res 24:39–46

    CAS  PubMed  Google Scholar 

  • Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    CAS  PubMed  Google Scholar 

  • Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319:774–776

    CAS  PubMed  Google Scholar 

  • Rowan MJ, Culle WK, Moulton B (1990) Buspirone impairment of performance of passive avoidance and spatial learning tasks in the rat. Psychopharmacology (Berl) 100:393–398

    CAS  Google Scholar 

  • Schmitt U, Hiemke C (2002) Tiagabine, a γ-amino-butyric acid transport inhibitor impairs spatial learning in the Morris water maze. Behav Brain Res 133:391–394

    CAS  PubMed  Google Scholar 

  • Van der Staay FJ (2000) Effects of the size of the Morris water tank on spatial discrimination learning in the CFW1 mouse. Physiol Behav 68:599–602

    PubMed  Google Scholar 

  • Winter B, Bert B, Fink H, Dirnagl U, Endres M (2004) Dysexecutive syndrome after mild cerebral ischemia? Mice learn normally but have deficits in strategic switching. Stroke 35:191–195

    PubMed  Google Scholar 

Staircase Test

  • Emmanouil D, Quock RM (1990) Effects of benzodiazepine antagonist, inverse agonist and antagonist drugs in mouse staircase test. Psychopharmacology (Berl) 102:95–97

    CAS  Google Scholar 

  • Houri D (1985) Staircase test of central nervous system drugs. Pharmacometrics 30:467–479

    CAS  Google Scholar 

  • Keane PE, Simiand J, Morre M, Biziere K (1988) Tetrazepam: a benzodiazepine which dissociates sedation from other benzodiazepine activities. I. Psychopharmacological profile in rodents. J Pharmacol Expert Ther 245:692–698

    CAS  Google Scholar 

  • Porsolt RD, Lenègre A, Avril I, Doumont G (1988) Antagonism by exifone, a new cognitive enhancing agent, of the amnesias induced by four benzodiazepines in mice. Psychopharmacology (Berl) 95:291–297

    CAS  Google Scholar 

  • Simiand J, Keane PE, Morre M (1984) The staircase test in mice: a simple and efficient procedure for primary screening of anxiolytic agents. Psychopharmacology (Berl) 84:48–53

    CAS  Google Scholar 

  • Simiand J, Keane PE, Barnouin MC, Keane M, Soubrié P, Le Fur G (1993) Neurospychopharmacological profile in rodents of SR 57746A, a new, potent 5-HT1A receptor agonist. Fundam Clin Pharmacol 7:413–427

    CAS  PubMed  Google Scholar 

  • Steru L, Thierry B, Chermat R, Millet B, Simon P, Porsolt RD (1987) Comparing benzodiazepines using the staircase test in mice. Psychopharmacology (Berl) 92:106–109

    CAS  Google Scholar 

  • Thiébot MH, Soubrié P, Simon P, Boissier JR (1973) Dissociation de deux composantes du comportement chez le Rat sous l’effet de psychotropes. Application à l’etude des anxiolytiques. Psychopharmacologia 31:77–90

    PubMed  Google Scholar 

Cork Gnawing Test in the Rat

  • Pollard GT, Howard JL (1991) Cork gnawing in the rat as a screening method for buspirone-like anxiolytics. Drug Dev Res 22:179–187

    CAS  Google Scholar 

  • Pollard GT, Nanry KP, Howard JL (1992) Effects of tandospirone in three behavioral tests for anxiolytics. Eur J Pharmacol 221:297–305

    CAS  PubMed  Google Scholar 

Distress Vocalization in Rat Pups

  • Gardner CR (1985) Distress vocalisation in rat pups: a simple screening method for anxiolytic drugs. J Pharmacol Methods 14:181–187

    CAS  PubMed  Google Scholar 

  • Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Maffrand JP, Soubrié P (2002) 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S5)2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)1,3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophinreleasing factor1 receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 301:332–345

    Google Scholar 

  • Insel TR, Winslow JT (1991) Rat pup ultrasonic vocalizations: an ethologically relevant behaviour response to anxiolytics. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 15–36

    Google Scholar 

  • Kehne JH, Coverdale S, McCloskey TC, Hoffman DC, Cassella JV (2000) Effect of the CRF1 receptor antagonist, CP 154,526, in the separation-induced vocalization anxiolytic test in rat pups. Neuropharmacology 39:1357–1367

    CAS  PubMed  Google Scholar 

  • Lister RG (1990) Ethologically-based animal models of anxiety disorders. Pharmacol Ther 46:321–340

    CAS  PubMed  Google Scholar 

  • Molewijk HE, Hartog K, van der Poel AM, Mos J, Olivier B (1996) Reduction of guinea pig pup isolation calls by anxiolytic and antidepressant drugs. Psychopharmacology (Berl) 128:31–38

    CAS  Google Scholar 

  • Rupniak NMJ, Carlson EC, Harrison T, Oates B, Seward E, Owen S, de Felipe C, Hunt S, Wheeldon A (2000) Pharmacological blockade of substance P (NK1) receptors attenuates neonatal vocalization in guinea-pigs and mice. Neuropharmacology 39:1413–1421

    CAS  PubMed  Google Scholar 

  • Schipper J, Tulp MTM, Berkelmans B, Mos J, Van der Heijden JAM, Olivier B (1991) Preclinical pharmacology of flesinoxan: a potential anxiolytic and antidepressant drug. Hum Psychopharmacol 6:53–61

    Google Scholar 

  • Siemiatkowski M, Maciejak P, Sienkiewicz-Jarosz H, Czlonkowska AI, Szyndler J, Gryczymńska A, Plazńik A (2001) Opposite effects of olanzapine and haloperidol in rat ultrasonic vocalization test. Pol J Pharmacol 53:669–673

    CAS  PubMed  Google Scholar 

  • Steinberg R, Alonso R, Rouquier L, Desvignes C, Michaud JC, Cudennec A, Jung M, Simiand J, Griebel G, Emonds-Alt X, Le Fur G, Soubrie P (2002) SSR240600 [(R)-2-(1-[2-[4-[2-[3,5-bis(trifluoromethyl)phenyl]acetyl]-2-(3,4-dichlorophenyl)-2-morpholinyl]ethyl]-4-piperidinyl)2-methyl-propanamide], a centrally active nonpeptide antagonist of the tachykinin neurokinin 1 receptor: II. Neurochemical and behavioral characterization. J Pharmacol Exp Ther 303(3):1180–1188

    CAS  PubMed  Google Scholar 

  • Tulp M, Olivier B, Schipper J, van der Poel G, Mos J, van der Heyden J (1991) Serotonin reuptake blockers: Is there preclinical evidence for their efficacy in obsessive-compulsive disorder? Hum Psychopharmacol 6:S63–S71

    CAS  Google Scholar 

  • van der Poel AM, Molewijk E, Mos J, Olivier B (1991) Is clonidine anxiogenic in rat pups? In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 107–116

    Google Scholar 

Schedule Induced Polydipsia in Rats

  • Bös M, Jenck F, Martin JR, Moreau JL, Sleight AJ, Wichmann J, Widmer U (1997) Novel agonists of 5-HT2C receptors. Synthesis and biological evaluation of substituted 2-(indol-1-yl)-1-methylethylamines and 2-(indeno[1,2-b]pyrrol-1-yl)1-methylethylamines. Improved therapeutics for obsessive compulsive disorder. J Med Chem 40:2762–2769

    PubMed  Google Scholar 

  • Didriksen M, Olsen GM, Christensen AV (1993) Effect of clozapine upon schedule-induced polydipsia (SIP) resembles neither the actions of dopamine D1 nor D2 receptor blockade. Psychopharmacology (Berl) 113:28–34

    Google Scholar 

  • Falk JL (1971) The nature and determinants of adjunctive behavior. Physiol Behav 6:577–588

    CAS  PubMed  Google Scholar 

  • Martin JR, Bös M, Jenck F, Moreau JL, Mutel V, Sleight AJ, Wichmann J, Andrews SJ, Berendsen HHG, Broekkamp CLE, Ruigt GSF, Köhler C, van Delft AML (1998) 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. J Pharmacol Exp Ther 286:913–924

    CAS  PubMed  Google Scholar 

  • Pellon R, Blackman DE (1992) Effects of drugs on the temporal distribution of schedule-induced polydipsia in rats. Pharmacol Biochem Behav 43:689–695

    CAS  PubMed  Google Scholar 

  • Pitman RK (1989) Animal models of compulsive behavior. Biol Psychiatry 26:189–198

    CAS  PubMed  Google Scholar 

  • Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R (1993) Selective re-uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology (Berl) 112:195–198

    CAS  Google Scholar 

  • Woods-Kettelberger AT, Smith CP, Corbett R, Szewczak MR, Roehr JE, Bores GM, Klein JT, Kongsamut S (1996) Besipirdine (HP 749) reduces schedule-induced polydipsia in rats. Brain Res Bull 41:125–130

    CAS  PubMed  Google Scholar 

  • Yadin E, Friedman E, Bridger WH (1991) Spontaneous alternation behavior: an animal model for obsessive-compulsive disorder? Pharmacol Biochem Behav 40:311–315

    CAS  PubMed  Google Scholar 

Four Plate Test in Mice

  • Aron C, Simon P, Larousse C, Boissier JR (1971) Evaluation of a rapid technique for detecting minor tranquilizers. Neuropharmacology 10:459–469

    CAS  PubMed  Google Scholar 

  • Boissier JR, Simon P, Aron C (1968) A new method for rapid screening of minor tranquilizers in mice. Eur J Pharmacol 4:145–151

    CAS  PubMed  Google Scholar 

  • Hascoe M, Bourin M, du Tertre C (1997) Influence of prior experience on mice behavior using the four-plate test. Pharmacol Biochem Behav 58:1131–1138

    Google Scholar 

  • Lenègre A, Chermat R, Avril I, Stéru L, Porsolt RD (1988) Specificity of Piracetam’s anti-amnesic activity in three models of amnesia in the mouse. Pharmacol Biochem Behav 29:625–629

    PubMed  Google Scholar 

  • Simon P (1970) Les Anxiolytiques. Possibilités d’étude chez l’animal. Actual Pharmacol 23:47–78

    CAS  Google Scholar 

  • Stephens DN, Schneider HH, Kehr W, Andrews JS, Rettig KJ, Turski L, Schmiechen R, Turner JD, Jensen LH, Petersen EN, Honore T, Bondo Jansen J (1990) Abecarnil, a metabolically stable, anxioselective β-carboline acting at benzodiazepine receptors. J Pharmacol Expert Ther 253:334–343

    CAS  Google Scholar 

Foot-shock-Induced Freezing Behavior in Rats

  • Conti LH, Maciver CR, Ferkany JW, Abreu ME (1990) Footshock-induced freezing behavior in rats as a model for assessing anxiolytics. Psychopharmacology (Berl) 102:492–497

    CAS  Google Scholar 

  • De Vry J, Benz U, Traber J (1993) Shock-induced ultrasonic vocalization in young adult rats: a model for testing putative anti-anxiety drugs. Eur J Pharmacol 249:331–339

    PubMed  Google Scholar 

  • Kaltwasser MT (1990) Startle-inducing stimuli evoke ultrasonic vocalization in the rat. Physiol Behav 48:13–17

    CAS  PubMed  Google Scholar 

  • Miczek KA, Tornatzky W, Vivian J (1991) Ethology and neuropharmacology: rodent ultrasounds. In: Oliver B, Mos J, Sangar J (eds) Animal Models in Psychopharmacology. Birkhäuser Verlag, Basel, pp 409–427

    Google Scholar 

  • Nielsen CK, Sánchez C (1995) Effect of chronic diazepam treatment on footshock-induced ultrasonic vocalization in adult male rats. Pharmacol Toxicol 77:177–181

    CAS  PubMed  Google Scholar 

  • Schreiber R, Melon C, De Vry J (1998) The role of 5-HT receptor subtypes in the anxiolytic effects of selective serotonin reuptake inhibitors in the rat ultrasonic vocalization test. Psychopharmacology 135:383–391

    CAS  PubMed  Google Scholar 

  • Tonoue T, Ashida A, Makino H, Hata H (1986) Inhibition of shock-elicited ultrasonic vocalization by opioid peptides in the rat: a psychotropic effect. Psychoneuroendocrinology 11:177–184

    CAS  PubMed  Google Scholar 

Experimental Anxiety in Mice

  • Ogawa N, Kuwahara K (1966) Psychophysiology of emotion: communication of emotion. Jpn J Psychosom Med 6:352–357

    Google Scholar 

  • Ogawa N, Hara C, Ishikawa M (1990) Characteristic of sociopsychological stress induced by the communication box method in mice and rats. In: Manninen O (ed) Environmental stress. ACES Publishing, Tampele, pp 417–427

    Google Scholar 

  • Ogawa N, Hara C, Takaki S (1993) Anxiolytic activity of SC-48274 compared with those of buspirone and diazepam in experimental anxiety models. Jpn J Pharmacol 61:115–121

    CAS  PubMed  Google Scholar 

mCPP-Induced Anxiety in Rats

  • Aulakh CS, Mazzola-Pomietto P, Murphy DL (1995) Longterm antidepressant treatments alter 5-HT2A and 5-HT2C receptor mediated hyperthermia in Fawn-Hooded rats. Eur J Pharmacol 282:65–70

    CAS  PubMed  Google Scholar 

  • Beckett SRG, Aspley S, Graham M, Marsden CA (1996) Pharmacological manipulation of ultrasound induced defense behaviour in the rat. Psychopharmacology 127:384–390

    CAS  PubMed  Google Scholar 

  • Bilkei-Gorzo A, Gyertyan I, Szabados T (1996) mCPP-induced anxiety – a potential new method for screening anxiolytic drugs. Neurobiology 4:253–255

    CAS  PubMed  Google Scholar 

  • Bilkei-Gorzo A, Gyertyan I, Levay G (1998) mCPP-induced anxiety in the light–dark box in rats – a new method for screening anxiolytic activity. Psychopharmacology (Berl) 136:291–298

    CAS  Google Scholar 

  • Curzon G, Gibson EL, Kennedy AJ, Kennett GA, Sarna GS, Whitton P (1991) Anxiogenic and other effects of mCPP, a 5-HT1C agonist. In: Briley M, File SE (eds) New concepts in anxiety. McMillan Press, London, pp 154–167

    Google Scholar 

  • Czyrak A, Skuza G, Rogóz Z, Frankiewicz T, Maij J (1994) Pharmacological action of zotepine and other antipsychotics on central 5-hydroxytryptamine receptor subtypes. Arzneim Forsch/Drug Res 44:113–118

    CAS  Google Scholar 

  • Dryden S, Wang Q, Frankish HM, Williams G (1996) Differential effects of the 5-HT1B/2C receptor agonist mCPP and the 5-HT1A agonist flexinoxan on neuropeptide Y in the rat: evidence that NPY may mediate serotonin’s effects on food intake. Peptides 17:943–949

    CAS  PubMed  Google Scholar 

  • Gibson EL, Barnfield AMC, Curzon G (1996) Dissociation of effects of chronic diazepam treatment and withdrawal on hippocampal dialysate 5-HT and mCPP-induced anxiety in rats. Behav Pharmacol 7:185–193

    CAS  PubMed  Google Scholar 

  • Griebel G, Misslin R, Pawloaski M, Vogel E (1991) m-Chlorophenylpiperazine enhances neophobic and anxious behaviour in mice. NeuroReport 2:627–629

    CAS  PubMed  Google Scholar 

  • Kennett GA, Whitton P, Shah K, Curzon G (1989) Anxiogeniclike effects of mCPP and TFMPP in animal models are opposed by 5-HT1C receptor antagonists. Eur J Pharmacol 164:445–454

    CAS  PubMed  Google Scholar 

  • Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T, Thomas D, Baxter GS, Forbes LT, Ham P, Blackburn TP (1996) In vitro and in vivo profile of SB 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolyticlike properties. Br J Pharmacol 117:427–434

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kennett GA, Wood MD, Bright F, Trail B, Riley G, Holland V, Avenell KY, Stean T, Upton N, Bromidge S, Forbes IT, Brown AM, Middlemiss DN, Blackburn TP (1997a) SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacol 36:609–620

    CAS  Google Scholar 

  • Kennett GA, Ainsworth K, Trail B, Blackburn TP (1997b) BW 723C86, a 5-HT2B receptor agonist, causes hyperphagia and reduced grooming in rats. Neuropharmacol 36:233–239

    CAS  Google Scholar 

  • Meert TF, Melis W, Aerts N, Clinke G (1997) Antagonism of meta-chlorphenylpiperazine-induced inhibition of exploratory activity in an emergence procedure, the open field test, in rats. Behav Pharmacol 8:353–363

    CAS  PubMed  Google Scholar 

  • Robertson DW, Blooquist W, Wong DT, Cohen ML (1992) MCPP but not TFMPP is an antagonist at cardiac 5-HT3 receptors. Life Sci 50:599–605

    CAS  PubMed  Google Scholar 

  • Rocha B, di Scala G, Jenk F, Moreau JL, Sandner G (1993) Conditioned place aversion induced by 5-HT1C receptor antagonists. Behav Pharmacol 4:101–106

    CAS  PubMed  Google Scholar 

  • Samanin R, Mennini T, Ferraris A, Bendotti C, Borsini F, Garattini S (1979) m-Chlorophenylpiperazine: a central serotonin agonist causing powerful anorexia in rats. Naunyn Schmiedebergs Arch Pharmacol 308:159–163

    CAS  PubMed  Google Scholar 

  • Wallis CJ, Lal H (1998) A discriminative stimulus produced by 1-(3-chlorophenyl)-piperazine (mCPP) as a putative animal model of anxiety. Progr Neuropsychopharmacol Biol Psychiatry 22:547–565

    CAS  Google Scholar 

  • Yamada J, Sugimoto Y, Yoshikawa T, Horisaka K (1996) Effects of adrenomedullation and adrenalectomy on the 5-HT2 receptor agonists DOI- and mCPP-induced hypophagia in rats. Neurosci Lett 209:113–116

    CAS  PubMed  Google Scholar 

Acoustic Startle Response in Rats

  • Acri JB, Grunberg NE, Morse DA (1991) Effects of nicotine on the acoustic startle reflex amplitude in rats. Psychopharmacology (Berl) 104:244–248

    CAS  Google Scholar 

  • Astrachan DI, Davis M (1981) Spinal modulation of the acoustic startle response: the role of norepinephrine, serotonin and dopamine. Brain Res 206:223–228

    CAS  PubMed  Google Scholar 

  • Cadet JL, Kuyatt B, Fahn S, De Souza EB (1987) Differential changes in 125I-LSD-labeled 5-HT-2 serotonin receptors in discrete regions of brain in the rat model of persistent dyskinesias induced by iminodipropionitrile (IDPN): evidence from autoradiographic studies. Brain Res 437:383–386

    CAS  PubMed  Google Scholar 

  • Davis M (1980) Neurochemical modulation of sensory-motor reactivity: acoustic and tactile startle reflexes. Neurosci Biobehav Rev 4:241–263

    CAS  PubMed  Google Scholar 

  • Davis M (1982) Agonist-induced changes in behavior as a measure of functional changes in receptor sensitivity following chronic antidepressant treatment. Science 18:137–147

    CAS  Google Scholar 

  • Davis M (1986) Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Behav Neurosci 100:814–824

    CAS  PubMed  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol Sci 13:35–41

    CAS  PubMed  Google Scholar 

  • Davis M, Astrachan DI, Kass E (1980) Excitatory and inhibitory effects of serotonin on sensomotoric reactivity measured with acoustic startle. Science 209:521–523

    CAS  PubMed  Google Scholar 

  • Hijzen TH, Woudenberg F, Slangen JL (1990) The long-term effects of diazepam and pentylenetetrazol on the potentiated startle response. Pharmacol Biochem Behav 36:35–38

    CAS  PubMed  Google Scholar 

  • Hijzen TH, Houtzager SWJ, Joordens RJE, Olivier B, Slangen JL (1995) Predictive validity of the potentiated startle response as a behavioral model for anxiolytic drugs. Psychopharmacol 118:150–154

    CAS  Google Scholar 

  • Keith VA, Mansbach RS, Geyer MA (1991) Failure of haloperidol to block the effects of phencyclidine and dizocilpine on prepulse inhibition of startle. Biol Psychiatry 30:557–566

    CAS  PubMed  Google Scholar 

  • Mansbach RS, Markou A, Patrick GA (1994) Lack of altered startle response in rats following termination of self-administered or noncontingently infused cocaine. Pharmacol Biochem Behav 48:453–458

    CAS  PubMed  Google Scholar 

  • Rigdon GC, Viik K (1991) Prepulse inhibition as a screening test for potential antipsychotics. Drug Dev Res 23:91–99

    CAS  Google Scholar 

  • Schulz DW, Mansbach RS, Sprouse J, Braselton JP, Collins J, Corman M, Dunaikis A, Faraci S, Schmidt AW, Seeger T, Seymour P, Tingley FD III, Winston EN, Chen YL, Heym J (1996) CP-154–526: a potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc Natl Acad Sci U S A 93:10477–10482

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor MK, Ison JR, Schwarzkopf SB (1995) Effects of single and repeated exposure to apomorphine on the acoustic startle reflex and its inhibition by a visual prepulse. Psychopharmacology (Berl) 120:117–127

    CAS  Google Scholar 

  • Vale AL, Green S (1996) Effects of chlordiazepoxide, nicotine and d-amphetamine in the rat potentiated startle model of anxiety. Behav Pharmacol 7:138–143

    CAS  PubMed  Google Scholar 

  • Varty GB, Higgins GA (1994) Differences between three rat strains in sensitivity to prepulse inhibition of an acoustic startle response: influence of apomorphine and phencyclidine pre-treatment. J Psychopharmacol 8:148–156

    CAS  PubMed  Google Scholar 

  • Vivian JA, Farrell WJ, Sapperstein SB, Miczek KA (1994) Diazepam withdrawal: effects of diazepam and gespirone on acoustic startle-induced 22 kHz ultrasonic vocalizations. Psychopharmacology (Berl) 114:101–108

    CAS  Google Scholar 

  • Walker DL, Davis M (1997) Anxiogenic effects of high illumination levels assessed with the acoustic startle response in rats. Biol Psychiatry 42:461–471

    CAS  PubMed  Google Scholar 

  • Weiss GT, Davis M (1976) Automated system for acquisition and reduction of startle response data. Pharmacol Biochem Behav 4:713–720

    CAS  PubMed  Google Scholar 

  • Yilmazer-Hanke DN, Faber-Zuschratter H, Linke R, Schwegler H (2002) Contribution of amygdala neurons containing peptides and calcium-binding proteins to fear-potentiated startle and exploration-related anxiety in inbred Roman high- and low-avoidance rats. Eur J Neurosci 15:1206–1218

    PubMed  Google Scholar 

  • Young BJ, Helmstetter FJ, Rabchenuk SA, Leaton RN (1991) Effects of systemic and intra-amygdaloid diazepam on long-term habituation of acoustic startle in rats. Pharmacol Biochem Behav 39:903–909

    CAS  PubMed  Google Scholar 

  • Zajaczkowski W, Górka Z (1993) The effects of single and repeated administration of MAO inhibitors on acoustic startle response in rats. Pol J Pharmacol 45:157–166

    CAS  PubMed  Google Scholar 

Unconditioned Conflict Procedure (Vogel Test)

  • La Marca S, Dunn RW (1994) The α2 antagonists idazoxan and rauwolscine but not yohimbine or piperoxan are anxiolytic in the Vogel lick-shock paradigm following intravenous administration. Life Sci 54:179–184

    Google Scholar 

  • Langen B, Egerland U, Bernöster K, Dost R, Unverferth K, Rundfeldt C (2005) Characterization in rats of the anxiolytic potential of ELB139 [1-(4-chlorphenyl)-4-piperidin-1-yl-1,5-dihydro-imidazol-2-on], a new agonist at the benzodiazepine binding site of the GABAA receptor. J Pharmacol Exp Ther 314:717–724

    CAS  PubMed  Google Scholar 

  • Mathiasen L, Mirza NR (2005) A comparison of chlordiazepoxide, bretazenil, L838,417 and zolpidem in a validated mouse Vogel conflict test. Psychopharmacology (Berl) 182:475–484

    CAS  Google Scholar 

  • Miklya I, Knoll J (1988) A new sensitive method which unlike the VOGEL test detects the anxiolytic effect of tofisopam. Pol J Pharmacol Pharm 40:561–572

    CAS  PubMed  Google Scholar 

  • Patel J, Malick JB (1982) Pharmacological properties of tracazolate: a new non-benzodiazepine anxiolytic agent. Eur J Pharmacol 78:323

    CAS  PubMed  Google Scholar 

  • Patel JB, Martin C, Malick JB (1983) Differential antagonism of the anticonflict effects of typical and atypical anxiolytics. Eur J Pharmacol 86:295–298

    Google Scholar 

  • Przegalinski E, Chojnacka-Wojcik E, Filip M (1992) Stimulation of 5-HT1A receptors is responsible for the anticonflict effect of ipsapirone in rats. J Pharm Pharmacol 44:780–782

    CAS  PubMed  Google Scholar 

  • Sanger DJ, Joly D, Zivkovic B (1985) Behavioral effects of nonbenzodiazepine anxiolytic drugs: a comparison of CGS 9896 and zopiclone with chlordiazepoxide. J Pharm Exp Ther 232:831–837

    CAS  Google Scholar 

  • Uyeno ET, Davies MF, Pryor GT, Loew GH (1990) Selective effect on punished versus unpunished responding in a conflict test as the criterion for anxiogenic activity. Life Sci 47:1375–1382

    CAS  PubMed  Google Scholar 

  • Vogel JR, Beer B, Clody DE (1971) A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia (Berl) 21:1–7

    CAS  Google Scholar 

Novelty-Suppressed Feeding

  • Bodnoff SR, Suranyi-Cadotte B, Aitken DH, Quirion R, Meaney MJ (1988) The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology (Berl) 95:298–302

    CAS  Google Scholar 

  • Bodnoff SR, Suranyi-Cadotte B, Quirion R, Meaney MJ (1989) A comparison of the effects of diazepam versus typical and atypical anti-depressant drugs in an animal model of anxiety. Psychopharmacology (Berl) 97:277–279

    CAS  Google Scholar 

  • Borsini F, Brambilla A, Cesana R, Donetti A (1993) The effect of DAU 6215, a novel 5-HT-5 antagonist, in animal models of anxiety. Pharmacol Res 27:151–164

    CAS  PubMed  Google Scholar 

  • Cooper SJ, Crummy YMT (1978) Enhanced choice of familiar food in a food preference test after chlordiazepoxide administration. Psychopharmacology (Berl) 59:51–56

    CAS  Google Scholar 

  • Fletcher PJ, Davies M (1990) Effects of 8-OH-DPAT, buspirone and ICS 205–930 on feeding in a novel environment: comparison with chlordiazepoxide and FG 7142. Psychopharmacology (Berl) 102:301–308

    CAS  Google Scholar 

  • Porschel BPH (1971) A simple and specific screen for benzodiazepine-like drugs. Psychopharmacologia 19:193–198

    Google Scholar 

  • Shephard RA, Broadhurst PL (1982) Hyponeophagia and arousal in rats: effects of diazepam, 5-methoxy-N, N-dimethyltryptamine, d-amphetamine and food deprivation. Psychopharmacology (Berl) 78:368–378

    CAS  Google Scholar 

  • Soubrie P, Kulkarni S, Simon P, Boissier JR (1975) Effets des anxiolytiques sur la prise de norriture de rats et de souris places en situation nouvelle ou familière. Psychopharmacologia 45:203–210

    CAS  PubMed  Google Scholar 

Shock Probe Conflict Procedure

  • Meert TF, Colpaert FC (1986) The shock probe conflict procedure. A new assay responsive to benzodiazepines, barbiturates and related compounds. Psychopharmacol 88:445–450

    CAS  Google Scholar 

Ultrasound Induced Defensive Behavior in Rats

  • Beckett SRG, Marsden CA (1995) Computer analysis and quantification of periaqueductal grey-induced defence behavior. J Neurosci Methods 58:157–161

    CAS  PubMed  Google Scholar 

  • Beckett SRG, Aspley S, Graham M, Marsden CA (1996) Pharmacological manipulation of ultrasound induced defence behaviour in the rat. Psychopharmacology 127:384–390

    CAS  PubMed  Google Scholar 

  • Molewijk HE, van der Poel AM, van der Heyden JAM, Olivier B (1995) Conditioned ultrasonic distress vocalization in adult male rats as a behavioural paradigm for screening antipanic drugs. Psychopharmacology (Berl) 117:32–40

    CAS  Google Scholar 

Anxiety/Defense Test Battery in Rats

  • Blanchard RJ, Blanchard DC (1989) Antipredator defensive behaviors in a visible burrow system. J Comp Physiol 103:70–82

    CAS  Google Scholar 

  • Blanchard RJ, Blanchard DC, Flannely KJ, Hori K (1986a) Ethanol changes patterns of defensive behaviour in wild rats. Physiol Behav 38:645–650

    CAS  PubMed  Google Scholar 

  • Blanchard RJ, Flannely HJ, Blanchard DC (1986b) Defensive behaviours of laboratory and wild Rattus norvegicus. J Comp Physiol 100:101–107

    CAS  Google Scholar 

  • Blanchard DC, Hori K, Rodgers RJ, Hendrie CA, Blanchard RJ (1989) Differential effects of benzodiazepines and 5-HT1A agonists on defensive patterns of wild rattus. In: Bean, Cools, Archer (eds) Behavioural pharmacology of 5-HAT. Erlbaum, Hillsdale, pp 145–147

    Google Scholar 

  • Blanchard DC, Blanchard RJ, Tom P, Rodgers RJ (1990) Diazepam changes risk assessment in an anxiety/defense test battery. Psychopharmacology (Berl) 101:511–518

    CAS  Google Scholar 

  • Blanchard DC, Shepherd JK, Rodgers RJ, Blanchard RJ (1992) Evidence for differential effects of 8-OH-DPAT on male and female rats in the anxiety/defense test battery. Psychopharmacology (Berl) 106:531–539

    CAS  Google Scholar 

  • Farook JM, Zhu YZ, Wang H, Moochhala S, Lee L, Wong PT (2001) Strain differences in freezing behavior of PVG hooded and Sprague Dawley rats: differential cortical expression of cholecystokinin2 receptors. Neuroreport 12:2717–2720

    CAS  PubMed  Google Scholar 

  • Farook JM, Wang Q, Moochhala SM, Zhu ZY, Lee L, Wong PTH (2004a) Distinct regions of periaqueductal gray (PAG) are involved in freezing behavior in hooded PVG rats in the cat-freezing test apparatus. Neurosci Lett 354:139–142

    CAS  PubMed  Google Scholar 

  • Farook JM, McLachlan CS, Zhu YZ, Lee L, Moochhala SM, Wong PTH (2004b) The CCK2 agonist BC264 reverses freezing behavior habituation in PVG hooded rats on repeated exposures to a cat. Neurosci Lett 355:205–208

    CAS  PubMed  Google Scholar 

  • Griebel G, Sanger DJ, Perrault G (1997) Genetic differences in the mouse defense battery. Aggress Behav 23:19–31

    Google Scholar 

  • Griebel G, Curet O, Perrault G, Sanger DJ (1998a) Behavioral effects of phenelzine in an experimental model for screening anxiolytic and anti-panic drugs. Neuropharmacol 37:927–935

    CAS  Google Scholar 

  • Griebel G, Perrault G, Sanger DJ (1998b) Characterization of the behavioral profile of the non-peptide CRF receptor antagonist CP-154,526 in anxiety models of rodents. Comparison with diazepam and buspirone. Psychopharmacology (Berl) 138:55–66

    CAS  Google Scholar 

  • Griebel G, Moindrot N, Aliaga C, Simiand J, Soubrié P (2001) Characterization of neurokinin-2 and neurotensin receptor antagonists in the mouse defense test battery. Neurosci Biobehav Rev 25:619–626

    CAS  PubMed  Google Scholar 

  • Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Maffrand JP, Soubrié P (2002) 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S5)2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)1,3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophinreleasing factor1 receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 301:332–345

    Google Scholar 

  • Wang H, Zhu YZ, Wong PTH, Farook JM, Teo AL, Lee LKH, Moochhala S (2003) cDNA microarray analysis of gene expression in anxious PVG and SD rats after cat-freezing test. Exp Brain Res 149:413–421

    CAS  PubMed  Google Scholar 

Repetitive Transcranial Magnetic Stimulation

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive stimulation of the human motor cortex. Lancet 1:1106–1107

    CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Gazawi H, Riboyad-Levin J, Klein E (1999) Chronic repetitive transcranial magnetic stimulation alters β-adrenergic and 5-HT2 receptor characteristics in rat brain. Brain Res 816:78–83

    CAS  PubMed  Google Scholar 

  • Fleischmann A, Prolov K, Abarbanel J, Belmaker RH (1995) The effect of transcranial magnetic stimulation of rat brain on behavioral models of depression. Brain Res 699:130–132

    CAS  PubMed  Google Scholar 

  • Hausmann A, Weis C, Marksteiner J, Humpel C (2000) Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Brain Res Mol Brain Res 76:355–362

    CAS  PubMed  Google Scholar 

  • Hedges DW, Massari C, Salyer DL, Lund TD, Hellewell JL, Johnson AC, Lephart ED (2003) Duration of transcranial magnetic stimulation effects on the neuroendocrine stress response and coping behavior of adult male rats. Prog Neuropsychopharm Biol Psychiatry 27:633–638

    CAS  Google Scholar 

  • Hedges DW, Higginbotham BJ, Salyer DL, Lund TD (2005) Transcranial magnetic stimulation effects on one-trail learning and response to anxiogenic stimuli in adult male rats. J ECT 21:25–30

    PubMed  Google Scholar 

  • Isogawa K, Fujiki M, Akiyoshi J, Tsutsumi T, Horinouchi Y, Kodama K, Nagayama H (2003) Anxiety induced by repetitive transcranial magnetic stimulation is suppressed by chronic treatment of paroxtine in rats. Pharmacopsychiatry 36:7–11

    CAS  PubMed  Google Scholar 

  • Isogawa K, Fujiki M, Akiyoshi J, Tsutsumi T, Kodama K, Matsushita H, Tanaka Y, Kobayashi H (2005) Anxiolytic suppression of repetitive transcranial magnetic stimulation-induced anxiety in the rats. Progr Neuropsychopharm Biol Psychiatry 29:664–668

    Google Scholar 

  • Ji RR, Schlaepfer TE, Aizenman CD, Epstein CM, Qiu D, Huang JC, Rupp F (1998) Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc Natl Acad Sci U S A 95:15635–15640

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kanno M, Matsumoto M, Togashi H, Yoshioka M, Mano Y (2003) Effects of repetitive transcranial magnetic stimulation on behavior and neurochemical changes in rats during an elevated plus-maze test. J Neurol Sci 211:5–14

    CAS  PubMed  Google Scholar 

  • Keck ME, Engelmann M, Müller MB, Henniger MSH, Hermann B, Rupprecht R, Neumann ID, Toschi N, Landgraf R, Post A (2000) Repetitive transcranial magnetic stimulation induces active coping strategies and attenuates the neuroendocrine stress response in rats. J Psych Res 14:265–276

    Google Scholar 

  • Keck ME, Welt T, Post A, Müller MB, Toschi N, Wigger A, Landgraf R, Holsboer F, Engelmann M (2001) Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects. Neuropsychopharmacology 24:337–349

    CAS  PubMed  Google Scholar 

  • Luft AR, Kaelin-Lang A, Hauser TK, Cohen LG, Thakor NV, Hanley DF (2001) Transcranial magnetic stimulation in the rat. Exp Brain Res 140:112–121

    CAS  PubMed  Google Scholar 

  • Sachdev PS, McBride R, Loo C, Mitchell PM, Malhi GS, Crooker V (2002) Effect of different frequencies of transcranial magnetic stimulation (TMS) on the forced swim model of depression in rats. Biol Psychiatry 51:474–479

    PubMed  Google Scholar 

  • Tsutsumi T, Fujiki M, Akiyoshi J, Horinouchi Y, Isogawa K, Hori S, Nagayama H (2002) Effect of repetitive transcranial magnetic stimulation on forced swimming test. Progr Neuropsychopharm Biol Psychiatry 26:107–111

    Google Scholar 

  • Weissman JD, Epstein CM, Davey KR (1992) Magnetic brain stimulation and brain size: relevance to animal studies. Electroencephalogr Clin Neurophysiol 85:215–219

    CAS  PubMed  Google Scholar 

  • Zyss T, Górka Z, Kowalska M, Vetulani J (1997) Preliminary comparison of behavioral and biochemical effects of chronic transcranial magnetic stimulation and electroconvulsive shock in the rat. Biol Psychiatry 42:920–924

    CAS  PubMed  Google Scholar 

Marmoset Human Threat Test

  • Barnes NM, Costall B, Domeney AM, Gerrard PA, Kelly ME, Krahling H, Naylor RJ, Tomkins DM, Williams TJ (1991) The effects of umespirone as a potential anxiolytic and antipsychotic agent. Pharmacol Biochem Behav 40:89–96

    CAS  PubMed  Google Scholar 

  • Barros M, Boere V, Huston JP, Tomaz C (2000) Measuring fear and anxiety in the marmoset (Callithrix penicillata) with a novel predator confrontation model: effects of diazepam. Behav Brain Res 108:205–211

    CAS  PubMed  Google Scholar 

  • Borsini F, Brambilla A, Cesana R, Donetti A (1993) The effect of DAU 6215, a novel 5HAT-3 antagonist in animal models of anxiety. Pharmacol Res 27:151–164

    CAS  PubMed  Google Scholar 

  • Cilia J, Piper DC (1997) Marmoset conspecific confrontation: an ethologically-based model of anxiety. Pharmacol Biochem Behav 58:85–91

    CAS  PubMed  Google Scholar 

  • Costall B, Domeney AM, Naylor RJ, Tyers MB (1987) Effects of the 5-HT3 receptor antagonist, GR38032F, on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain. Br J Pharmacol 92:881–894

    PubMed Central  CAS  PubMed  Google Scholar 

  • Costall B, Domeney AM, Gerrard PA, Kelley ME, Naylor RJ (1988) Zacopride: anxiolytic profile in rodent and primate models of anxiety. J Pharm Pharmacol 40:302–305

    CAS  PubMed  Google Scholar 

  • Costall B, Domeney AM, Farre AJ, Kelly ME, Martinez L, Naylor RJ (1992) Profile of action of a novel 5-hydroxytryptamine1A receptor ligand E-4424 to inhibit aversive behavior in the mouse, rat and marmoset. J Pharmacol Exp Ther 262:90–98

    CAS  PubMed  Google Scholar 

  • Jones BJ, Costall B, Domeney AM, Kelly ME, Naylor RJ, Oakley NR, Tyers MB (1988) The potential anxiolytic activity of GR38032F, a 5-HT3 receptor antagonist. Br J Pharmacol 93:985–993

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stevenson MF, Poole TB (1976) An ethogram of the common marmoset (Callithrix jacchus): general behavioural repertoire. Anim Behav 24:428–451

    CAS  PubMed  Google Scholar 

Psychosocial Stress in Tree Shrews

  • Czéh B, Pudovkina O, van der Hart MGC, Simon M, Heilbronner U, Michaelis T, Watanabe T, Frahm J, Fuchs E (2005) Examining SLV-323, a novel NK1 receptor antagonist, in a chronic stress model for depression. Psychopharmacology (Berl) 180:548–557

    Google Scholar 

  • Fischer HD, Heinzeller T, Raab A (1985) Gonadal response to psychosocial stress in male tree shrews (Tupaia belangeri): morphometry of testis, epididymis and prostate. Andrologia 17:262–275

    CAS  PubMed  Google Scholar 

  • Fuchs E (2005) Social stress in tree shrews as an animal model of depression: an example of an behavioral model of a CNS disorder. CNS Spectr 10:182–190

    PubMed  Google Scholar 

  • Fuchs E, Flügge G (2002) Social stress in tree shrews. Effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol Biochem Behav 73:247–258

    CAS  PubMed  Google Scholar 

  • Fuchs E, Jöhren O, Flügge G (1993) Psychosocial conflict in the tree shrew: effects on sympathoadrenal activity and blood pressure. Psychoneuroendocrinology 18:557–565

    CAS  PubMed  Google Scholar 

  • Fuchs E, Kramer M, Hermes B, Netter P, Hiemke C (1996) Psychological stress in tree shrews: clomipramine counteracts behavioral and endocrine changes. Pharmacol Biochem Behav 54:219–228

    CAS  PubMed  Google Scholar 

  • Lucassen PJ, Fuchs E, Czeh B (2004) Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 55:789–796

    CAS  PubMed  Google Scholar 

  • Shively CA, Register TC, Friedman PD, Morgan TM, Thompson J, Lanier T (2005) Social stress-associated depression in adult female cynomolgus monkeys (Macaca fascicularis). Biol Psychiatry 69:67–84

    Google Scholar 

Aversive Brain Stimulation

  • Aguiar MS, Brandão ML (1994) Conditioned place aversion produced by microinjection of substance P into the periaqueductal gray of rats. Behav Pharmacol 5:369–373

    CAS  PubMed  Google Scholar 

  • Aguiar MS, Brandão ML (1996) Effects of microinjections of the neuropeptide substance P in the dorsal periaqueductal gray on the behavior of rats in the plus-maze test. Physiol Behav 60:1183–1186

    CAS  PubMed  Google Scholar 

  • Audi EA, de Aguiar JC, Graeff FG (1988) Mediation by serotonin of the antiaversive effect of zimelidine and propranolol injected into the dorsal midbrain central grey. J Psychopharmacol 2:26–32

    CAS  PubMed  Google Scholar 

  • Audi EA, de Oliveira RMW, Graeff FG (1991) Microinjection of propranolol into the dorsal periaqueductal gray causes an anxiolytic effect in the elevated plus-maze antagonized by ritanserin. Psychopharmacology (Berl) 105:553–557

    CAS  Google Scholar 

  • Beckett S, Marsden CA (1997) The effect of central and systemic injection of the 5-HT1A receptor agonist 8-OHDPAT and the 5-HT1A antagonist WAY100635 on periaqueductal grey-induced defensive behaviour. J Psychopharmacol 11:35–40

    CAS  PubMed  Google Scholar 

  • Bovier P, Broekkamp CLE, Lloyd KG (1982) Enhancing GABAergic transmission reverses the aversive state in rats induced by electrical stimulation of the periaqueductal grey region. Brain Res 248:313–320

    CAS  PubMed  Google Scholar 

  • Brandão ML (1993) Involvement of opioid mechanisms in the dorsal periaqueductal gray in drug abuse. Rev Neurosci 4:397–405

    PubMed  Google Scholar 

  • Brandão ML, Lopez-Garcia JA, Roberts HMT (1991) Electrophysiological evidence for the involvement of 5-HT2 receptors in the antiaversive action of 5-HT in the dorsal periaqueductal grey. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 75–79

    Google Scholar 

  • Broekkamp CL, Dortmans C, Berendsen HHG, Jenk F (1991) Pharmacology of fear, induced by periaqueductal gray stimulation in the rat. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 69–74

    Google Scholar 

  • Clarke A, File SA (1982) Effects of ACTH, benzodiazepines and 5-HT antagonists on escape from periaqueductal grey stimulation in the rat. Progr Neuro-Psychopharmacol Biol Psychiat 6:27–35

    CAS  Google Scholar 

  • De Araujo JE, Huston JP, Brandão ML (1998) Aversive effects of the C-fragment of substance P in the dorsal periaqueductal gray matter. Exp Brain Res 123:84–89

    PubMed  Google Scholar 

  • Graeff FG (1991) Neurotransmitters in the dorsal periaqueductal grey and animal models of panic anxiety. In: Briley M, File SE (eds) New concepts in anxiety. McMillan Press, London, pp 288–312

    Google Scholar 

  • Graeff FG, Brandão ML, Audi EA, Schütz MTB (1986) Modulation of the brain aversive system by GABAergic and serotoninergic mechanisms. Behav Brain Res 21:65–72

    CAS  PubMed  Google Scholar 

  • Graeff FG, Audi EA, Almeida SS, Graeff EO, Hunziker MHL (1990) Behavioral effects of 5-HT receptor ligands in the aversive brain stimulation, elevated plus-maze and learned helplessness tests. Neurosci Biobehav Rev 14:501–506

    CAS  PubMed  Google Scholar 

  • Graeff FG, Silveira MCL, Nogueira RL, Audi EA, Oliveira RMW (1993) Role of the amygdala and periaqueductal gray in anxiety and panic. Behav Brain Res 58:123–131

    CAS  PubMed  Google Scholar 

  • Graeff FG, Viana MB, Mora PO (1997) Dual role of 5-HT in defense and anxiety. Neurosci Biobehav Rev 21:791–799

    CAS  PubMed  Google Scholar 

  • Jenck F, Broekkamp CLE, von Delft AML (1989) Effects of serotonin receptor antagonists on PAG stimulation induced aversion: different contribution of 5-HT1, 5-HT2 and 5-HT3 receptors. Psychopharmacology (Berl) 97:489–495

    CAS  Google Scholar 

  • Jenck F, Moreau JL, Martin JR (1995) Dorsal periaqueductal gray-induced aversion as a simulation of panic anxiety: elements of face and predictive validity. Psychiatry Res 57:181–191

    CAS  PubMed  Google Scholar 

  • Jenck F, Martin JR, Moreau JL (1996) Behavioral effects of CCKB receptor ligands in a validated simulation of panic anxiety in rats. Eur Neuropsychopharmacol 6:291–298

    CAS  PubMed  Google Scholar 

  • Jenck F, Moreau JL, Berendsen HHG, Boes M, Broekkamp CLE, Martin JR, Wichmann J, von Delft AML (1998) Antiaversive effects of 5-HT2c receptor agonists and fluoxetine in a model of panic-like anxiety. Eur Neuropsychopharmacol 8:161–168

    CAS  PubMed  Google Scholar 

  • Jenck F, Martin JR, Moreau JL (1999) The 5-HT1A receptor agonist flesinoxan increases aversion in a model of panic-like anxiety in rats. J Psychopharmacol 13:166–170

    CAS  PubMed  Google Scholar 

  • Melo LL, Brandão ML (1995) Involvement of 5-HT1A and 5-HT2 receptors of the inferior colliculus in aversive states induced by exposure of rats to the elevated plus-maze test. Behav Pharmacol 6:413–417

    CAS  PubMed  Google Scholar 

  • Motta V, Penha K, Brandão ML (1995) Effects of microinjections of m and k receptor agonists into the dorsal periaqueductal gray of rats submitted to the plus maze test. Psychopharmacology (Berl) 120:470–474

    CAS  Google Scholar 

  • Nogueira RL, Graeff FG (1991) 5-HT mediation of the antiaversive effect of isomoltane injected into the dorsal periaqueductal grey. Behav Pharmacol 2:73–77

    PubMed  Google Scholar 

  • Nogueira RL, Graeff FG (1995) Role of 5-HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacol Biochem Behav 52:1–6

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Schenberg LC, Bittencourt AS, Sudré ECM, Vargas LC (2001) Modeling panic attacks. Neurosci Biobehav Rev 25:647–659

    CAS  PubMed  Google Scholar 

  • Schütz MTB, de Aguiar JC, Graeff FG (1985) Anti-aversive role of serotonin in dorsal periaqueductal grey matter. Psychopharmacology (Berl) 85:340–345

    Google Scholar 

Sidman Avoidance Paradigm

  • Balfour DJK (1990) A comparison of the effects of nicotine and (+)-amphetamine on rat behavior in an unsignalled Sidman avoidance schedule. J Pharm Pharmacol 42:257–260

    CAS  PubMed  Google Scholar 

  • Duffield PH, Jamieson DD, Duffield AM (1989) Effect of aqueous and lipid-soluble extracts of Kava on the conditioned avoidance in rats. Arch Int Pharmacodyn 301:81–90

    CAS  PubMed  Google Scholar 

  • Galizio M, Journey JW, Royal SA, Welker JA (1990) Variable-interval schedules of time-out from avoidance: effects of anxiolytic and antipsychotic drugs in rats. Pharmacol Biochem Behav 37:235–238

    CAS  PubMed  Google Scholar 

  • Heise GA, Boff E (1962) Continuous avoidance as a base-line for measuring behavioral effects of drugs. Psychopharmacologia 3:264–282

    CAS  PubMed  Google Scholar 

  • Patel JB, Migler B (1982) A sensitive and selective monkey conflict test. Pharmacol Biochem Behav 17:645–649

    CAS  PubMed  Google Scholar 

  • Shekar A, Hingtgen JN, DiMicco JA (1987) Selective enhancement of shock avoidance responding elicited by GABA blockade in the posterior hypothalamus of rats. Brain Res 420:118–128

    Google Scholar 

  • Sidman M (1953a) Avoidance conditioning with brief shock and no enteroceptive warning signal. Science 118:157–158

    CAS  PubMed  Google Scholar 

  • Sidman M (1953b) Two temporal parameters of the maintenance of avoidance behavior by the white rat. J Comp Physiol Psychol 46:253–261

    CAS  PubMed  Google Scholar 

  • Szewczak MR, Corbett R, Rush DK, Wilmot CA, Conway PG, Strupczewski JT, Cornfeldt M (1995) The pharmacological profile of iloperidone, a novel atypical antipsychotic agent. J Pharmacol Exp Ther 274:1404–1413

    CAS  PubMed  Google Scholar 

  • Wadenberg ML, Young KA, Trompler RA, Zavodny RA, Richter TJ, Hicks OB (1998) A novel computer-controlled conditioned avoidance apparatus for rats. J Pharmacol Toxicol Methods 38:211–215

    Google Scholar 

Geller Conflict Paradigm

  • Barrett JE (1991) Animal behavior models in the analysis and understanding of anxiolytic drugs acting on serotonin receptors. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 37–52

    Google Scholar 

  • Barrett JE, Gleeson S, Nader MA, Hoffmann SM (1989) Anticonflict effects of the 5-HT1A compound flesinoxan. J Psychopharmacol 3:64–69

    CAS  PubMed  Google Scholar 

  • Barrett JE, Gamble EH, Zhang L, Guardiola-Lemaître B (1994) Anticonflict and discriminative stimulus effect in the pigeon of a new methoxy-chroman 5-HT1A agonist, (+)S 20244 and its enantiomers (+)S 20499 and (−)S 20500. Psychopharmacol 116:73–78

    CAS  Google Scholar 

  • Beaufour CC, Ballon N, le Bihan C, Hamon M, Thiébot MH (1999) Effects of chronic antidepressants in an operant conflict procedure of anxiety in the rat. Pharmacol Biochem Behav 62:591–599

    CAS  PubMed  Google Scholar 

  • Bignami G (1988) Pharmacology and anxiety: inadequacies of current experimental approaches and working models. Pharmacol Biochem Behav 29:771–774

    CAS  PubMed  Google Scholar 

  • Broersen LM, Woudenberg F, Slangen JL (1991) The lack of tolerance to the anxiolytic effects of benzodiazepines in the Geller/Seifter conflict test. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 97–101

    Google Scholar 

  • Chipkin RE, Iorio LC, Coffin VL, McQuade RD, Berger JG, Barnett A (1988) Pharmacological profile of SCH39166: a dopamine D1 selective benzonaphthazepine with potential antipsychotic activity. J Pharmacol Exper Ther 247:1093–1102

    CAS  Google Scholar 

  • Commissaris RL, Fontana DJ (1991) A potential animal model for the study of antipanic treatments. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 53–59

    Google Scholar 

  • Cook L, Davidson AB (1973) Effects of behaviorally active drugs in a conflict-punishment procedure in rats. In: Garattini S, Mussini E, Randall LO (eds) The benzodiazepines. Raven Press, New York, pp 327–345

    Google Scholar 

  • Cook L, Sepinwall J (1975) Behavioral analysis of the effects and mechanisms of action of benzodiazepines. In: Costa E, Greengard P (eds) Mechanisms of action of benzodiazepines. Raven Press, New York, pp 1–28

    Google Scholar 

  • Davidson AB, Cook L (1969) Effects of combined treatment with trifluoperazine-HCl and amobarbital on punished behavior in rats. Psychopharmacologia (Berl) 15:159–168

    CAS  Google Scholar 

  • Ervin GN, Cooper BR (1988) Use of conditioned taste aversion as a conflict model: effects of anxiolytic drugs. J Pharmacol Exp Ther 245:137–146

    CAS  PubMed  Google Scholar 

  • Ervin GN, Soroko FS, Cooper BR (1987) Buspirone antagonizes the expression of conditioned taste aversion in rats. Drug Dev Res 11:87–95

    CAS  Google Scholar 

  • Geller I, Seifter J (1960) The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia 1:482–492

    CAS  Google Scholar 

  • Geller I, Kulak JT, Seifter J (1962) The effects of chlordiazepoxide and chlorpromazine on a punishment discrimination. Psychopharmacologia 3:374–385

    CAS  PubMed  Google Scholar 

  • Gleeson S, Ahlers ST, Mansbach RS, Foust JM, Barrett JE (1989) Behavioral studies with anxiolytic drugs: VI. Effects on punished responding of drugs interacting with serotonin receptor subtypes. J Pharmacol Exp Ther 250:809–817

    CAS  PubMed  Google Scholar 

  • Hanson HM, Stone CA (1964) Animal techniques for evaluating antianxiety drugs. In: Nodine JN, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publication, Chicago, pp 317–324

    Google Scholar 

  • Howard JL, Pollard GT (1990) Effects of buspirone in the Geller-Seifter conflict test with incremental shock. Drug Dev Res 19:37–49

    CAS  Google Scholar 

  • Iorio LC, Barnett A, Billard W, Gold EH (1986) Benzodiazepines: structure-activity relationships between D1 receptor blockade and selected pharmacological effects. In: Breese GR, Creese I (eds) Neurobiology of central D1 dopamine receptors. Plenum Press, New York, pp 1–14

    Google Scholar 

  • Iversen S (1983) Animal models of anxiety. In: Trimble RM (ed) Benzodiazepines divided. Wiley, Chichester, pp 87–99

    Google Scholar 

  • Keane PE, Siminand J, Morre M, Biziere K (1988) Tetrazepam: a benzodiazepine which dissociates sedation from other benzodiazepine activities. I. Psychopharmacological profile in rodents. J Pharmacol Exper Ther 245:692–698

    CAS  Google Scholar 

  • Koene P, Vossen JMH (1991) Drug effects on speed of conflict resolution in the Skinnerbox. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 53–59

    Google Scholar 

  • Mc Millan DE (1973) Drugs and punished responding. I: ratedependent effects under multiple schedules. J Exp Anal Behav 19:133–145

    CAS  Google Scholar 

  • Morse WH (1964) Effect of amobarbital and chlorpromazine on punished behavior in the pigeon. Psychopharmacologia 6:286–294

    CAS  PubMed  Google Scholar 

  • Mos J, van Hest A, van Drimmelen M, Herremans AHJ, Olivier B (1997) The putative 5-HT1A receptor antagonist DU125530 blocks the discriminative stimulus of the5-HT1A receptor agonist flesinoxan in pigeons. Eur J Pharmacol 325:145–153

    CAS  PubMed  Google Scholar 

  • Patel JB, Migler B (1982) A sensitive and selective monkey conflict test. Pharmacol Biochem Behav 17:645–649

    CAS  PubMed  Google Scholar 

  • Pollard GT, Nanry KP, Howard JL (1992) Effects of tandospirone in three behavioral tests for anxiolytics. Eur J Pharmacol 221:297–305

    CAS  PubMed  Google Scholar 

  • Prado de Carvalho L, Venault P, Potier MC, Dodd RH, Brown CL, Chapoutier G, Rossier RH (1986) 3-(Methoxycarbonyl)-amino-β-carboline, a selective antagonist of the sedative effects of benzodiazepines. Eur J Pharmacol 129:232–233

    Google Scholar 

  • Schipper J, Tulp MTM, Berkelmans B, Mos J, Van der Heijden JAM, Olivier B (1991) Preclinical pharmacology of Flesinoxan: a potential anxiolytic and antidepressant drug. Hum Psychopharmacol 6:53–61

    Google Scholar 

  • Silverman P (1978) Operant conditioning. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 141–178

    Google Scholar 

  • Simiand J, Keane PE, Barnouin MC, Keane M, Soubrié P, Le Fur G (1993) Neurospychopharmacological profile in rodents of SR 57746A, a new, potent 5-HT1A receptor agonist. Fundam Clin Pharmacol 7:413–427

    CAS  PubMed  Google Scholar 

  • Slangen JL (1991) Drug discrimination and animal models. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 359–373

    Google Scholar 

  • Thiébot MH, Dangoumau L, Richard G, Puech AJ (1991) Safety signal withdrawal: a behavioral paradigm sensitive to both “anxiolytic” and “anxiogenic” drugs under identical experimental conditions. Psychopharmacology (Berl) 103:415–424

    Google Scholar 

  • van Heest A, Slangen JL, Olivier B (1991) Is the conditioned taste aversion procedure a useful tool in the drug discrimination research? In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 399–405

    Google Scholar 

  • Wuttke W, Kelleher RT (1970) Effects of some benzodiazepines on punished and unpunished behavior in the pigeon. J Pharmacol Exper Ther 172:397–405

    CAS  Google Scholar 

Progressive Ratio Procedure

  • Barr AM, Phillips AG (1999) Withdrawal following exposure to d-amphetamine decreases responding for a sucrose solution as measured by a progressive ratio schedule of reinforcement. Psychopharmacology (Berl) 141:99–106

    CAS  Google Scholar 

  • Bourland JA, French ED (1995) Effects of remoxipride, an atypical antipsychotic, on cocaine self-administration in the rat using fixed -and progressive-ratio schedules of reinforcement. Drug Alcohol Depend 40:111–114

    CAS  PubMed  Google Scholar 

  • Drews E, Schneider M, Koch M (2005) Effects of the cannabinoid agonist win 55,212–2 on operant behavior and locomotor activity in rats. Pharmacol Biochem Behav 80:145–150

    CAS  PubMed  Google Scholar 

  • Duvauchelle CL, Sapoznik T, Kornetsky C (1998) The synergistic effects of combining cocaine and heroin (“Speedball”) using a progressive-ratio schedule of drug reinforcement. Pharmacol Biochem Behav 61:297–302

    CAS  PubMed  Google Scholar 

  • Ferguson SA, Paule MG (1996) Effects of chlorpromazine and diazepam on time estimation behavior and motivation of rats. Pharmacol Biochem Behav 53:115–122

    CAS  PubMed  Google Scholar 

  • Grottnick AJ, Fletcher PJ, Higgins GA (2000) Studies to investigate the role of 5-HT2C1 receptors on cocaineand food-maintained behavior. J Pharmacol Exp Ther 295:1183–1191

    Google Scholar 

  • Kozinowski AP, Johnson KM, Deschaux O, Bandyopadhyay BD, Araldi GL, Carmona G, Munzar P, Smith MP, Balster RL, Beardsley PM, Tella SR (2003) Mixed cocaine agonist/antagonist properties of (+).methyl-4β-(4-chlorophenyl)-1-methylpiperidine-3α-carboxylate, a piperidine-based analog of cocaine. J Pharmacol Exp Ther 305:143–150

    Google Scholar 

  • McGregor A, Lacosta S, Roberts DC (1993) l-tryptophan decreases the breaking point under a progressive ratio schedule of intravenous cocaine reinforcement in the rat. Pharmacol Biochem Behav 44:651–655

    CAS  PubMed  Google Scholar 

  • Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E (2000) Comparison of the effects of clopazine, haloperidol, chlorpromazine and d-amphetamine on performance of a timeconstrained progressive ratio schedule and on locomotor behavior in the rat. Psychopharmacology (Berl) 152:47–54

    CAS  Google Scholar 

  • Poncelet M, Chermat R, Soubrie P, Simon P (1983) The progressive ration schedule as a model for studying the psychomotor stimulant activity of drugs in the rat. Psychopharmacology (Berl) 80:184–189

    CAS  Google Scholar 

  • Pulvirenti L, Balducci C, Koob GF (1997) Dextromorphan reduces intravenous cocaine self-administration in the rat. Eur J Pharmacol 321:279–281

    CAS  PubMed  Google Scholar 

  • Pulvirenti L, Balducci C, Pierci M, Koob GF (1998) Characterization of the effects of the partial dopamine agonist Terguride on cocaine self-administration in the rat. J Pharmacol Exp Ther 286:1231–1238

    CAS  PubMed  Google Scholar 

  • Reilly S (1999) Reinforcement value of gustatory stimuli determined by progressive ratio performance. Pharmacol Biochem Behav 63:301–311

    CAS  PubMed  Google Scholar 

  • Richardson NR, Roberts DC (1991) Fluoxetine pretreatment reduces breaking points on a progressive ratio schedule reinforced by intravenous cocaine self-administration in the rat. Life Sci 49:833–840

    CAS  PubMed  Google Scholar 

  • Schneider M, Koch M (2002) The cannabinoid agonist WIN 55–212–2 reduces sensorimotor gating and recognition memory in rats. Behav Pharmacol 13:29–37

    CAS  PubMed  Google Scholar 

  • Schneider M, Koch M (2003) Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 28:1760–1769

    CAS  PubMed  Google Scholar 

  • Solinas M, Panililio LV, Goldberg SR (2004) Exposure to delta-9-tetrahydrocannabinol (THC) increases subsequent heroin taking but not heroin’s reinforcing efficacy: a selfadministration study in rats. Neuropsychopharmacology 29:1301–1311

    CAS  PubMed  Google Scholar 

  • Weed MR, Paul IA, Dwoskin LP, Moore SE, Woolverton WL (1997) The relationship between reinforcing effects and in vitro effects of D1 agonists in monkeys. J Pharmacol Exp Ther 283:29–38

    CAS  PubMed  Google Scholar 

  • Wilcox KM, Rowlett JK, Paul IA, Ordway GA, Woolverton WL (2000) On the relationship between the dopamine transporter and the reinforcing effects of local anesthetics: practical and theoretical concerns. Psychopharmacology (Berl) 153:139–147

    CAS  Google Scholar 

  • Woolverton WL, Ranaldi R, Wang Z, Ordway GA, Paul IA, Petukhov P, Kozinowski A (2002) Reinforcing strength of a novel dopamine transporter ligand: pharmacodynamic and pharmacokinetic properties. J Pharmacol Exp Ther 303:212–217

    Google Scholar 

Conditioned Defensive Burying in Rats

  • Broekkamp CL, Rijk HW, Joly-Gelouin D, Lloyd KL (1986) Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol 126:223–229

    CAS  PubMed  Google Scholar 

  • Craft RM, Howard JL, Pollard GT (1988) Conditioned defensive burying as a model for identifying anxiolytics. Pharmacol Biochem Behav 30:775–780

    CAS  PubMed  Google Scholar 

  • DeBoer SF, Koolhaas JM (2003) Defensive burying in rodents: ethology, neurobiology and psychopharmacology. Eur J Pharmacol 463:145–161

    CAS  Google Scholar 

  • deBoer SF, Slangen JL, van der Gugten J (1990) Plasma catecholamine and corticosterone levels during active and passive shock-prod avoidance behavior in rats: effects of chlordiazepoxide. Physiol Behav 47:1089–1098

    CAS  Google Scholar 

  • deBoer SF, van der Gugten J, Slangen JL (1991) Behavioural and hormonal indices of anxiolytic and anxiogenic drug action in the shock prod defensive burying/avoidance paradigm. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology. Birkhäuser Verlag, Basel, pp 137–159

    Google Scholar 

  • Diamant M, Croiset G, de Zwart N, de Wied D (1991) Shockprod burying test in rats: autonomic and behavioral responses. Physiol Behav 50:23–31

    CAS  PubMed  Google Scholar 

  • Fernandez-Guasti A, Lopez-Rubalcava C (1998) Modification of the anxiolytic action of 5-HT1A compounds by GABAbenzodiazepine agents in rats. Pharmacol Biochem Behav 60:27–32

    CAS  PubMed  Google Scholar 

  • Gacsályi I, Schmidt E, Gyertyán I, Vasar E, Lang A, Haapalinna A, Fekete M, Hietala J, Syvälahti E, Tuomainen P, Männistö P (1997) Receptor binding profile and anxiolytictype activity of deramciclane (EGIS-3886) in animal models. Drug Dev Res 40:333–348

    Google Scholar 

  • Njung’e K, Handley SL (1991a) Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem Behav 38:63–67

    PubMed  Google Scholar 

  • Njung’e K, Handley SL (1991b) Effects of 5-HT uptake inhibitors, agonists and antagonists on the burying of harmless objects by mice; a putative test for anxiolytic agents. Br J Pharmacol 104:105–112

    PubMed Central  PubMed  Google Scholar 

  • Pinel JPJ, Treit D (1978) Burying as a defensive response in rats. J Comp Physiol Psychol 92:708–712

    Google Scholar 

  • Pinel JPJ, Treit D (1983) The conditioned defensive burying paradigm and behavioral neuroscience. In: Robinson T (ed) Behavioral approaches to brain research. Oxford Press, New York, pp 212–234

    Google Scholar 

  • Treit D (1985) Animal models for the study of anti-anxiety agents. A review. Neurosci Biobehav Rev 9:203–222

    CAS  PubMed  Google Scholar 

  • Treit D, Pinel JPJ, Fibiger HC (1981) Conditioned defensive burying: a new paradigm for the study of anxiolytic agents. Pharmacol Biochem Behav 15:619–626

    CAS  PubMed  Google Scholar 

  • Wiersma A, Bohus B, Koolhaas JM, Nobel A (1996) Corticotropin-releasing hormone microinfusion of in the central amygdala enhances active behavior responses in the conditioned defensive burying paradigm. Stress 1:113–122

    CAS  Google Scholar 

Taste Aversion Paradigm

  • Agüero A, Arnedo M, Gallo M, Puerto A (1993) The functional relevance of the lateral parabrachial nucleus in lithium chloride-induced aversion learning. Pharmacol Biochem Behav 45:973–978

    PubMed  Google Scholar 

  • Agüero A, Gallo M, Arnedo M, Molina F, Puerto A (1996) Effects of lesions of the medial parabrachial nucleus (PBNm): taste discrimination and lithium-chloride-induced aversion learning after delayed and contiguous interstimulus intervals. Psychobiology 24:265–280

    Google Scholar 

  • Bardo MT, Valone JM (1994) Morphine-conditioned analgesia using a taste cue: dissociation of taste aversion and analgesia. Psychopharmacology (Berl) 114:269–274

    CAS  Google Scholar 

  • Bevins RA, Delzer TA, Bardo MT (1996) Characterization of the conditioned taste aversion produced by 7-OH-DPAT in rats. Pharmacol Biochem Behav 53:695–699

    CAS  PubMed  Google Scholar 

  • Bienkowski P, Kuca P, Piasecki J, Kostowski W (1997) 5-HT3 receptor antagonist, tropisetron, does not influence ethanolinduced conditioned taste aversion and conditioned place aversion. Alcohol 14:63–69

    CAS  PubMed  Google Scholar 

  • Brockwell NT, Eikelboom R, Beninger RJ (1991) Caffeine-induced place and taste conditioning: production of dose-dependent preference and aversion. Pharmacol Biochem Behav 38:513–517

    CAS  PubMed  Google Scholar 

  • Davies BT, Wellman PJ (1990) Conditioned taste reactivity in rats after phenylpropanolamine, d-amphetamine or lithium chloride. Pharmacol Biochem Behav 36:973–977

    CAS  PubMed  Google Scholar 

  • De Beun R, Lohmann A, de Vry J (1996) Conditioned taste aversion and place preference induced by the calcium channel antagonist nimodipine in rats. Pharmacol Biochem Behav 54:657–663

    PubMed  Google Scholar 

  • Ervin GN, Birkemo LS, Johnson MF, Conger LK, Mosher JT, Menius JA Jr (1995) The effects of anorectic and aversive agents on deprivation-induced feeding and taste aversion conditioning in rats. J Pharmacol Exp Ther 273:1203–1210

    CAS  PubMed  Google Scholar 

  • Exton MS, von Horsten S, Voge J, Westermann J, Schult M, Nagel E, Schedlowski M (1998) Conditioned taste aversion produced by cyclosporine A: concomitant reduction of lymphoid organ weight and splenocyte proliferation. Physiol Behav 63:241–247

    CAS  PubMed  Google Scholar 

  • Gauvin DV, Holloway FA (1992) Ethanol tolerance developed during intoxicated operant performance in rats prevents subsequent ethanol-induced conditioned taste aversion. Alcohol 9:167–170

    CAS  PubMed  Google Scholar 

  • Glowa JR, Shaw AE, Riley AL (1994) Cocaine-induced conditioned taste aversion: comparisons between effects in LEW/N and F344/N rat strains. Psychopharmacology (Berl) 114:229–232

    CAS  Google Scholar 

  • June HL, June PL, Domangue KR, Hicks LH, Lummis GH, Lewis MJ (1992) Failure of Ro15–4513 to alter an ethanol-induced taste aversion. Pharmacol Biochem Behav 41:455–460

    CAS  PubMed  Google Scholar 

  • Land CL, Riccio DC (1997) d-Cycloserine, a positive modulator of the NMDA receptor, enhances acquisition of a conditioned taste aversion. Psychobiology 25:210–216

    CAS  Google Scholar 

  • Lin HQ, McGregor IS, Atrens DM, Christie MJ, Jackson DM (1994) Contrasting effects of dopamine blockade on MDMA and d-amphetamine conditioned taste aversion. Pharmacol Biochem Behav 47:369–374

    CAS  PubMed  Google Scholar 

  • Lipinski WJ, Rusiniak KW, Hilliard M, Davis RE (1995) Nerve growth factor facilitates conditioned taste aversion learning in normal rats. Brain Res 692:143–153

    CAS  PubMed  Google Scholar 

  • McAllister KHM, Pratt JA (1998) GR205171 blocks apomorphine and amphetamine-induced conditioned taste aversions. Eur J Pharmacol 353:141–148

    CAS  PubMed  Google Scholar 

  • Mele PC, McDonough JR, McLean DB, O’Halloran KP (1992) Cisplatin-induced conditioned taste aversion: attenuation by dexamethasone but not by zacopride or GR38032F. Eur J Pharmacol 218:229–236

    CAS  PubMed  Google Scholar 

  • Miller JS, Kelly KS, Neisewander JL, McCoy DF, Bardo MT (1990) Conditioning of morphine-induced taste aversion and analgesia. Psychopharmacology (Berl) 101:472–480

    CAS  Google Scholar 

  • Mosher JT, Hohnson MF, Birkemo LS, Ervin GN (1996) Several roles of CCKA and CCKB receptor subtypes in CCK-8-induced and LiCl-induced taste aversion conditioning. Peptides 17:483–488

    CAS  PubMed  Google Scholar 

  • Mucha RF (1997) Preference for tastes paired with a nicotine antagonist in rats chronically treated with nicotine. Pharmacol Biochem Behav 56:175–179

    CAS  PubMed  Google Scholar 

  • Neisewander JL, McDougall SA, Bowling SL, Bardo MT (1990) Conditioned taste aversion and place preference with buspirone and gespirone. Psychopharmacology (Berl) 100:485–490

    CAS  Google Scholar 

  • Parker LA (1994) Aversive taste reactivity: reactivity to quinine predicts aversive reactivity to lithium-paired sucrose solution. Pharmacol Biochem Behav 47:73–75

    CAS  PubMed  Google Scholar 

  • Parker LA, Gillies T (1995) THC-induced place and taste aversions in Lewis and Sprague–Dawley rats. Behav Neurosci 109:71–78

    CAS  PubMed  Google Scholar 

  • Rabin BM, Hunt WA (1992) Relationship between vomiting and taste aversion learning in ferrets: studies with ionizing radiation, lithium chloride, and amphetamine. Behav Neural Biol 58:83–93

    CAS  PubMed  Google Scholar 

  • Rudd JA, Ngan MP, Wai MK (1998) 5-HT3 receptors are not involved in conditioned taste aversions induced by 5-hydroxytryptamine, ipecacuanha or cisplatin. Eur J Pharmacol 352:143–149

    CAS  PubMed  Google Scholar 

  • Shoaib M, Stolerman IP (1996) The NMDA antagonist dizocilpine (MK801) attenuates tolerance to nicotine in rats. J Psychopharmacol 10:214–218

    CAS  PubMed  Google Scholar 

  • Sobel BFX, Wetherington CL, Riley AL (1995) The contribution of within-session averaging of drug- and vehicle-appropriate responding to the graded dose–response function in drug discriminating learning. Behav Pharmacol 6:348–358

    CAS  PubMed  Google Scholar 

  • Swank MW, Schafe GE, Bernstein IL (1995) c-Fos induction in response to taste stimuli previously paired with amphetamine or LiCl during taste aversion learning. Brain Res 673:251–261

    CAS  PubMed  Google Scholar 

  • Thiele TE, Roitman MF, Bernstein IL (1996) c-Fos induction in rat brainstem in response to ethanol- and lithium chlorideinduced conditioned taste aversions. Alcohol Clin Exp Res 20:1023–1028

    CAS  PubMed  Google Scholar 

  • Turenne SD, Miles C, Parker LA, Siegel S (1996) Individual differences in reactivity to the rewarding/aversive properties of drugs: assessment by taste and place conditioning. Pharmacol Biochem Behav 53:511–516

    CAS  PubMed  Google Scholar 

  • Van Haaren F, Hughes CE (1990) Cocaine-induced conditioned taste aversions in male and female Wistar rats. Pharmacol Biochem Behav 37:693–696

    PubMed  Google Scholar 

  • Willner J, Gallagher M, Graham PW, Crooks GB Jr (1992) Nmethyl-d-aspartate antagonist D-APV selectively disrupts taste-potentiated odor aversion learning. Behav Neurosci 106:315–323

    CAS  PubMed  Google Scholar 

  • Yamamoto T (1993) Neural mechanisms of taste aversion learning. Neurosci Res 16:181–185

    CAS  PubMed  Google Scholar 

Cued and Contextual Fear Conditioning

  • Anagnostaras SG, Maren S, Sage JR, Goodrich S, Fanselow MS (1999) Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis. Neuropsychopharmacology 21:731–744

    CAS  PubMed  Google Scholar 

  • Brown JS, Kalish HI, Farber IE (1951) Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol 41:317–328

    CAS  PubMed  Google Scholar 

  • Cambon K, Venero C, Berezin V, Bock E, Sandi C (2003) Posttraining administration of a synthetic peptide ligand of the neural cell adhesion molecule, C3d, attenuates long-term expression of contextual fear conditioning. Neuroscience 122:183–191

    CAS  PubMed  Google Scholar 

  • Célérier A, Pierard C, Beracochea D (2004) Effect of ibotenic acid lesions of the dorsal hippocampus on contextual fear conditioning in mice: comparison with mammillary body lesions. Behav Brain Res 151:65–72

    PubMed  Google Scholar 

  • Contarino A, Baca L, Kennelly A, Gold LH (2002) Automated assessment of conditioning parameters for context and cued fear in mice. Learn Mem 9:89–96

    PubMed Central  PubMed  Google Scholar 

  • Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Blüthmann H, Möhler H, Rudolph U (2002) Trace fear conditioning involves hippocampal á5 GABAA receptors. Proc Natl Acad Sci U S A 99:8980–8985

    PubMed Central  CAS  PubMed  Google Scholar 

  • DeLorey TM, Lin RC, McBrady B, He X, Cook JM, Lameh J, Loew GH (2001) Influence of benzodiazepine binding site ligands on fear-conditioned contextual memory. Eur J Pharmacol 426:45–54

    CAS  PubMed  Google Scholar 

  • Eckart K, Jahn O, Radulovic J, Tezval H, van Werven L, Spiess J (2001) A single amino acid serves as an affinity switch between the receptor and the binding protein of corticotrophin-releasing factor: implications for the design of agonists and antagonists. Proc Natl Acad Sci U S A 98:11142–11147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fendt M, Fanselow MS (1999) The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 23:743–770

    CAS  PubMed  Google Scholar 

  • Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J (2003) Regulation of contextual fear conditioning by baseline and inducible septo-hippocampal cyclin-dependent kinase 5. Neuropharmacology 44:1089–1099

    CAS  PubMed  Google Scholar 

  • Gould T, Feiro O, Moore D (2004) Nicotine enhances trace cued fear conditioning but not delay cued fear conditioning in C57BL/6 mice. Behav Brain Res 155:167–173

    CAS  PubMed  Google Scholar 

  • Gupta RR, Sen S, Diepenhorst LL, Rudick CN, Marebn S (2001) Estrogen modulâtes sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats. Brain Res 888:336–365

    Google Scholar 

  • Kishimoto J, Radulovic J, Radulovic M, Lin CR, Schrick C, Hooshmand F, Hermanson O, Rosenfeld MG, Spiess J (2000) Deletion of Crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat Genet 24:415–419

    CAS  PubMed  Google Scholar 

  • Kudo K, Qiao CX, Kanba S, Arita J (2004) A selective increase in phosphorylation of cyclic AMP response element-binding protein in hippocampal CA1 region of male, but not female, rats following contextual fear and passive avoidance conditioning. Brain Res 1024:233–243

    CAS  PubMed  Google Scholar 

  • Laurent-Demir C, Jaffard R (2000) Paradoxical facilitatory effect of fornix lesions on acquisition of contextual fear conditioning in mice. Behav Brain Res 107:85–91

    CAS  PubMed  Google Scholar 

  • Lu Y, Wehner JM (1997) Enhancement of contextual fear-conditioning by putative (±)-á-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor modulators and N-methyl-d-aspartate (NMDA) receptor antagonists in DBA/2 J mice. Brain Res 786:197–207

    Google Scholar 

  • Maciejak P, Taracha E, Lehner M, Szyndler J, Bidzinski A, Skórzewska A, Wislowska A, Zienowicz M, Plaznik A (2003) Hippocampal mGluR1 and consolidation of contextual fear conditioning. Brain Res Bull 62:39–45

    CAS  PubMed  Google Scholar 

  • Malkani S, Rosen JB (2001) N-Methyl-d-aspartate receptor antagonism blocks contextual fear conditioning and differentially regulates early growth response-1 messenger RNA expression in the amygdala: implications for a functional amygdaloid circuit of fear. Neuroscience 102:853–861

    CAS  PubMed  Google Scholar 

  • Maren S (1998) Effects of 7-nitroindazole, a neuronal nitric oxide synthase (nNOS) inhibitor, on locomotor activity and contextual fear conditioning in rats. Brain Res 804:155–158

    CAS  PubMed  Google Scholar 

  • McKay BE, Lado WE, Martin LJ, Galic MA, Fournier NM (2002) Learning and memory in agmatine-treated rats. Pharmacol Biochem Behav 72:551–557

    CAS  PubMed  Google Scholar 

  • Mesches MH, Gemma C, Veng LM, Allgeier C, Young DA, Browning MD, Bickford PC (2004) Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiol Aging 25:315–324

    CAS  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    CAS  PubMed  Google Scholar 

  • Radulovic J, Kammermeier J, Spiess J (1998) Generalization of fear responses in C57BL/6 N mice subjected to one-trial foreground contextual fear conditioning. Behav Brain Res 95:179–189

    CAS  PubMed  Google Scholar 

  • Radyushkin K, Anokhin KL, Meyer BI, Jiang Q, Alvarez-Bolado G, Gruss P (2005) Genetic ablation of the mammillary bodies in the Foxb 1 mutant mouse leads to selective deficit of spatial working memory. Eur J Neurosci 21:219–229

    PubMed  Google Scholar 

  • Riedel G, Sandager-Nielsen K, Macphail EM (2002) Impairment of contextual fear conditioning in rats by Group I mGluRs: reversal by the nootropic nefiracetam. Pharmacol Biochem Behav 73:391–399

    CAS  PubMed  Google Scholar 

  • Roberts AJ, Krucker T, Levy CL, Slanina KA, Sutcliffe JG, Hedlund PB (2004) Mice lacking 5-HT7 receptors show specific impairments in contextual learning. Eur J Neurosci 19:1913–1922

    PubMed  Google Scholar 

  • Sienkiewicz-Jarosz H, Maciajak P, Bidziński A, Szyndler J, Siemątkowski M, Czlonkowska A, Lehner M, Plaźnik A (2003) Exploratory activity and a conditioned fear response: correlation with cortical and subcortical binding of the α4β2 nicotinic receptor agonist [3H]-epibatine. Pol J Pharmacol 55:17–23

    CAS  PubMed  Google Scholar 

  • Stiedl O, Radulovic J, Lohmann R, Birkenfeld K, Palve M, Kammermeier J, Sananbenesi F, Spiess J (1999) Strain and substrate differences in context- and tone-dependent fear conditioning of inbred mice. Behav Brain Res 104:1–12

    CAS  PubMed  Google Scholar 

  • Stiedl O, Misana I, Spiess J, Ögren SO (2000) Involvement of the 5-HT1A receptors in classical fear conditioning in C57BL/6 J mice. J Neurosci 20:8515–8527

    CAS  PubMed  Google Scholar 

  • Sullivan GM, Apergis J, Gorman JM, LeDoux JE (2003) Rodent Doxapram model of panic: behavioral effects and c-fos immunoreactivity in the amygdala. Biol Psychiatry 53:863–870

    CAS  PubMed  Google Scholar 

  • Takahashi H (2004) Automated measurement of freezing time to contextual and auditory cues in fear conditioning as a simple screening method to assess learning and memory in rats. J Toxicol Sci 29:53–61

    PubMed  Google Scholar 

  • Tezval H, Jahn O, Todorovic C, Sasse A, Eckart K, Spiess J (2004) Cortagine, a specific agonist of corticotrophin-releasing factor receptor subtype 1, is anxiogenic and antidepressive in the mouse model. Proc Natl Acad Sci U S A 101:9468–9473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tovote P, Meyer M, Pilz PKD, Ronnenberg A, Ögren SO, Spiess J, Stiedl O (2005) Dissociation of temporal dynamics of heart rate and blood pressure responses elicited by conditioned fear but not acoustic startle. Behav Neurosci 119:55–65

    PubMed  Google Scholar 

  • Võikar V, Rossi J, Rauvala H, Airaksinen MS (2004) Impaired behavioural flexibility and memory in mice lacking GDNF family receptor α2. Eur J Neurosci 20:308–312

    PubMed  Google Scholar 

  • Walker P, Carrive P (2003) Role of ventrolateral periaqueductal gray neurons in the behavioral and cardiovascular responses to contextual conditioned fear and poststress recovery. Neuroscience 116:897–912

    CAS  PubMed  Google Scholar 

  • Wehner JM, Keller JJ, Keller AB, Piciotto MR, Paylor R, Booker TK, Beaudet A, Heinemann SF, Balogh SA (2004) Role of neuronal nicotinic receptors in the effects of nicotine and ethanol on contextual fear conditioning. Neuroscience 129:11–24

    CAS  PubMed  Google Scholar 

  • Zhang WN, Murphy CA, Feldon J (2004) Behavioral and cardiovascular responses during latent inhibition of conditioned fear measurement by telemetry and conditioned freezing. Behav Brain Res 154:199–209

    PubMed  Google Scholar 

Plasma Catecholamine Levels During and After Stress

  • deBoer SF, deBeun R, Slangen JL, van der Gugten J (1990a) Dynamics of plasma catecholamine and corticosterone concentrations during reinforced and extinguished operant behavior in rats. Physiol Behav 47:691–698

    CAS  Google Scholar 

  • deBoer SF, Slangen JL, van der Gugten J (1990b) Plasma catecholamine and corticosterone levels during active and passive shock-prod avoidance behavior in rats: effects of chlordiazepoxide. Physiol Behav 47:1089–1098

    CAS  Google Scholar 

  • Krieman MJ, Hershock DM, Greenberg IJ, Vogel WH (1992) Effects of adinazolam on plasma catecholamine, heart rate and blood pressure responses in stressed and non-stressed rats. Neuropharmacology 31:33–38

    CAS  PubMed  Google Scholar 

  • Livesey GT, Miller JM, Vogel WH (1985) Plasma norepinephrine, epinephrine and corticosterone stress responses to restraint in individual male and female rats. Neurosci Lett 62:51–56

    Google Scholar 

  • Natelson BH, Creighton D, McCarty R, Tapp WN, Pittman D, Ottenweller JE (1987) Adrenal hormonal indices of stress in laboratory rats. Physiol Behav 39:117–125

    CAS  PubMed  Google Scholar 

  • Taylor J, Harris N, Krieman M, Vogel WH (1989) Effects of buspirone on plasma catecholamines, heart rate and blood pressure in stressed and non-stressed rats. Pharmacol Biochem Behav 34:349–353

    CAS  PubMed  Google Scholar 

  • Vogel WH, Miller J, DeTurck KH, Routzahn BK (1984) Effects of psychoactive drugs on plasma catecholamines during stress in rats. Neuropharmacology 23:1105–1109

    CAS  PubMed  Google Scholar 

Plasma Corticosterone Levels Influenced by Psychotropic Drugs

  • Aulakh CS, Wozniak KM, Hill JL, DeVane CL, Tolliver TJ, Murphy DL (1988) Differential neuroendocrine responses to the 5-HT agonist m-chlorophenylpiperazine in fawnhooded rats relative to Wistar and Sprague–Dawley rats. Neuroendocrinology 48:401–406

    CAS  PubMed  Google Scholar 

  • Aulakh CS, Hill JL, Murphy DL (1993) Attenuation of hypercortisolemia in fawn-hooded rats by antidepressant drugs. Eur J Pharmacol 240:85–88

    CAS  PubMed  Google Scholar 

  • Broqua P, Baudrie V, Laude D, Chaouloff F (1992) Influence of the novel antidepressant tianeptine on neurochemical, neuroendocrinological, and behavioral effects of stress in rats. Biol Psychiatry 31:391–400

    CAS  PubMed  Google Scholar 

  • Groenink L, Van der Gugten J, Mos J, Maes RAA, Olivier B (1995) The corticosterone-enhancing effects of the 5-HT1A receptor antagonist, (S)-UH301, are not mediated by the 5-HT1A receptor. Eur J Pharmacol 272:177–183

    CAS  PubMed  Google Scholar 

  • Koenig JI, Gudelsky GA, Meltzer HY (1987) Stimulation of corticosterone and β-endorphin secretion in the rat by selective 5-HT receptor subtype activation. Eur J Pharmacol 137:1–8

    CAS  PubMed  Google Scholar 

  • Korte SM, Smit J, Bouws GAH, Koolhaas JM, Bohus B (1991) Neuroendocrine evidence for hypersensitivity in serotonergic neuronal system after psychological stress of defeat. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 199–203

    Google Scholar 

  • Nash JF, Meltzer HY, Gudelsky GA (1988) Antagonism of serotonin receptor mediated neuroendocrine and temperature responses by atypical neuroleptics in the rat. Eur J Pharmacol 151:463–469

    CAS  PubMed  Google Scholar 

  • Rittenhouse PA, Bakkum EA, O’Connor PA, Carnes M, Bethea CL, van de Kar LD (1992) Comparison of neuroendocrine and behavioral effects of ipsapirone, a 5-HT1A agonist, in three stress paradigms: immobilization, forced swim and conditioned fear. Brain Res 580:205–214

    CAS  PubMed  Google Scholar 

Benzodiazepine Dependence

  • File SE, Hitcott PK (1991) Benzodiazepine dependence. In: Briley M, File SE (eds) New concepts in anxiety. McMillan Press, London, pp 237–255

    Google Scholar 

Benzodiazepine Tolerance and Dependence in Rats

  • Boisse NR, Periana RM, Guarino JJ, Kruger HS, Samorski GM (1986) Pharmacological characterization of acute chlordiazepoxide dependence in the rat. J Pharmacol Exp Ther 239:775–783

    CAS  PubMed  Google Scholar 

  • Bonnafous C, Lefevre P, Bueno L (1995) Benzodiazepine-withdrawal- induced gastric emptying disturbances in rats: evidence for serotonin receptor involvement. J Pharmacol Exp Ther 273:995–1000

    CAS  PubMed  Google Scholar 

  • File SE (1985) Tolerance to the behavioral actions of benzodiazepines. Neurosci Biobehav Rev 9:113–121

    CAS  PubMed  Google Scholar 

  • France CP, Gerak LR (1997) Discriminative stimulus effects of flumazenil in Rhesus monkeys treated chronically with chlordiazepoxide. Pharmacol Biochem Behav 56:447–455

    CAS  PubMed  Google Scholar 

  • Gallaher EJ, Henauer SA, Jacques CJ, Hollister LE (1986) Benzodiazepine dependence in mice after ingestion of drug-containing food pellets. J Pharmacol Exp Ther 237:462–467

    CAS  PubMed  Google Scholar 

  • Goudie AJ, Leathley MJ, Cowgill J (1994) Assessment of the benzodiazepine-like dependence potential in rats of a putative 5-HT1A agonist anxiolytic S-20499. Behav Pharmacol 5:131–140

    CAS  PubMed  Google Scholar 

  • Lamb RJ, Griffiths RR (1984) Precipitated and spontaneous withdrawal in baboons after chronic dosing with lorazepam and CGS 9896. Drug Alcochol Depend 14:11–17

    CAS  Google Scholar 

  • Löscher W, Hönack D, Faßbender CP (1989) Physical dependence on diazepam in the dog: precipitation of different abstinence syndromes by the benzodiazepine receptor antagonists Ro 15–1788 and ZK 93426. Br J Pharmacol 97:843–852

    PubMed Central  PubMed  Google Scholar 

  • Lukas SE, Griffiths RR (1982) Precipitated withdrawal by a benzodiazepine receptor antagonist (Ro 15–1788) after 7 days of diazepam. Science 217:1161–1163

    CAS  PubMed  Google Scholar 

  • McNicholas LF, Martin WR, Sloan JW, Wala E (1988) Precipitation of abstinence in nordiazepam- and diazepam-dependent dogs. J Pharmacol Exp Ther 245:221–224

    CAS  PubMed  Google Scholar 

  • Nath C, Patnaik GK, Saxena RC, Gupta MB (1997) Evaluation of inhibitory effect of diphenhydramine on benzodiazepine dependence in rats. Indian J Physiol Pharmacol 41:42–46

    CAS  PubMed  Google Scholar 

  • Nutt DJ, Costello MJ (1988) Rapid induction of lorazepam dependence with flumazenil. Life Sci 43:1045–1053

    CAS  PubMed  Google Scholar 

  • Patel JB, Rinarelli CA, Malick JB (1988) A simple and rapid method of inducing physical dependence with benzodiazepines in mice. Pharmacol Biochem Behav 29:753–754

    CAS  PubMed  Google Scholar 

  • Piot O, Betschart J, Stutzmann JM, Blanchard JC (1990) Cyclopyrrolones, unlike some benzodiazepines, do not induce physical dependence in mice. Neurosci Lett 117:140–143

    CAS  PubMed  Google Scholar 

  • Ryan GP, Boisse NR (1983) Experimental induction of benzodiazepine tolerance and physical dependence. J Pharmacol Exp Ther 226:100–107

    CAS  PubMed  Google Scholar 

  • Stephens DN, Schneider HH (1985) Tolerance to the benzodiazepine diazepam in an animal model of anxiolytic activity. Psychopharmacology 87:322–327

    CAS  PubMed  Google Scholar 

  • Treit D (1985) Evidence that tolerance develops to the anxiolytic effect of diazepam in rats. Pharmacol Biochem Behav 22:383–387

    CAS  PubMed  Google Scholar 

  • Vellucci SV, File SE (1979) Chordiazepoxide loses its anxiolytic action with long-term treatment. Psychopharmacology (Berl) 62:61–65

    CAS  Google Scholar 

  • Yanagita T (1983) Dependence potential of zopiclone studied in monkeys. Pharmacology 27(Suppl 2):216–227

    PubMed  Google Scholar 

Genetically Modified Animals in Psychopharmacology

  • Anagnostopoulos AV, Mobraaten LE, Sharp JJ, Davisson MT (2001) Transgenic and knockout databases: behavioral profiles of mouse mutants. Physiol Behav 73:675–689

    CAS  PubMed  Google Scholar 

  • Costentin J (1998) From gene to behavior, a new method for elaboration of new psychotropic agents. Ann Pharm Fr 56:60–67

    CAS  PubMed  Google Scholar 

  • Crnic LS (1996) Transgenic and null mutant animals for psychosomatic research. Psychosom Med 58:622–632

    CAS  PubMed  Google Scholar 

  • Mayford M, Mansuy IM, Müller RU, Kandel ER (1997) Memory and behavior: a second generation of genetically modified mice. Curr Biol 7:R580–R589

    CAS  PubMed  Google Scholar 

  • Picciotto MR, Wickmanm K (1998) Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev 78:1131–1163

    CAS  PubMed  Google Scholar 

Special Reports on Genetically Altered Animals Useful for Evaluation of Drugs Against Anxiety

  • Bilkei-Gorzo A, Racz H, Michel K, Zimmer A, Klingmüller D, Zimmer A (2004) Behavioral phenotype of preproenkephalin-deficient mice on diverse congenic backgrounds. Psychopharmacology (Berl) 176:343–352

    CAS  Google Scholar 

  • Gross C, Santarelli L, Brunner D, Zhuang X, Hen R (2000) Altered fear circuits in 5-HT1A receptor KO mice. Biol Psychiatry 48:1157–1163

    CAS  PubMed  Google Scholar 

  • Heisler LK, Chu HM, Brennan JT, Danao JA, Bajwa P, Parsons LH, Tecott LH (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A mutant mice. Proc Natl Acad Sci U S A 95:15049–15054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes A (2001) Targeted gene mutation approaches to the study of anxiety-like behavior in mice. Neurosci Behav Rev 25:261–273

    CAS  Google Scholar 

  • Knapp DJ, Sim-Selley LJ, Breese GR, Overstreet DH (2000) Selective breeding of 5-HT1A receptor-mediated responses: application to emotion and receptor action. Pharmacol Biochem Behav 67:701–708

    CAS  PubMed  Google Scholar 

  • Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239–5250

    CAS  PubMed  Google Scholar 

  • Montag-Sallaz M, Montag D (2003) Severe cognitive and motor coordination deficits in Tenascin-R-deficient mice. Genes Brain Behav 2:20–31

    CAS  PubMed  Google Scholar 

  • Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998) Increased anxiety in mice lacking the serotonin 1A receptor. Proc Natl Acad Sci U S A 95:10734–10739

    PubMed Central  CAS  PubMed  Google Scholar 

  • Picciotto MR, Caldarone BJ, Brunzell DH, Zachariou V, Stevens TR, King SL (2001) Neuronal nicotine acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. Pharmacol Ther 92:89–108

    CAS  PubMed  Google Scholar 

  • Quinlan JJ, Firestone LL, Homanics GE (2000) Mice lacking the long splice variant of the gamma 2 subunit of the GABAA receptor are more sensitive to benzodiazepines. Pharmacol Biochem Behav 66:371–374

    CAS  PubMed  Google Scholar 

  • Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelson M, Mann JJ, Brunner D, Hen R (1999) Serotonin receptor 1A knockout. An animal model of anxiety related disorder. Proc Natl Acad Sci U S A 95:14476–14481

    Google Scholar 

  • Rupniak NM, Carlson EJ, Webb JK, Harrison T, Porsolt RD, Roux S, d Felipe C, Hunt SP, Oates B, Wheeldon B (2001) Comparison of the phenotype of NK1R−/− mice with pharmacological blockade of the substance P (NK1) receptor in assays for antidepressant and anxiolytic drugs. Behav Pharmacol 12:497–508

    CAS  PubMed  Google Scholar 

  • Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875–1878

    CAS  PubMed  Google Scholar 

  • Schramm NL, McDonald MP, Limbird LE (2001) The á2A-adrenergic receptor plays a protective role in mice behavioral models of depression and anxiety. J Neurosci 21:4875–4882

    CAS  PubMed  Google Scholar 

  • Trillat AC, Malagié I, Bourin M, Jacquot C, Hen R, Gardier AM (1998) Homozygote mice deficient in serotonin 5-HT1B receptor and antidepressant effect of selective serotonin reuptake inhibitors. C R Sceances Soc Biol Fil 192:1139–1147

    CAS  Google Scholar 

  • Wilson W, Voigt P, Bader M, Marsden CA, Fink H (1996) Behavior of the transgenic (mREN2) rat. Brain Res 729:1–9

    CAS  PubMed  Google Scholar 

  • Yamada K, Iida R, Miyamoto Y, Saito K, Sekikawa K, Seishima M, Nabeshima T (2000) Neurobehavioral alterations in mice with a targeted deletion of the tumor necrosis factor-alpha gene: implications for emotional behavior. J Neuroimmunol 111:131–138

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Jeanne Kallman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Kallman, M.J. (2016). Tests for Anxiolytic Activity. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_27

Download citation

Publish with us

Policies and ethics