Skip to main content

Synchrotron and FEL Studies of Matter at High Pressures

  • Living reference work entry
  • First Online:
Synchrotron Light Sources and Free-Electron Lasers

Abstract

Samples compressed to very high pressures are typically very small or exist for only a very short period of time. Researchers seeking to make x-ray studies of matter under such conditions have therefore always sought access to the brightest possible x-ray sources – synchrotrons – and, more recently, x-ray FELs. In this chapter, after a brief introduction and a short history of high-pressure science, I describe the techniques used to compress matter to pressures well above 1 million atmospheres (1 megabar or 100 GPa) both statically and dynamically and then review how experiments are conducted on such samples at both synchrotrons and XFELs. I conclude with a discussion about the opportunities afforded by the start-up of diffraction-limited synchrotrons and the new European XFEL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Advanced Photon Source, Early Science at the Upgraded Advanced Photon Source (2015). https:// www.aps.anl.gov/files/APS-Uploads/Aps-Upgrade/Beamlines/APS-%20Early-Science-1030 15-FINAL.pdf. Last accessed on 02 July 2018

  • D.R. Allan, S.J. Clark, S. Parsons, M. Ruf, A high-pressure structural study of propionic acid and the application of CCD detectors in high-pressure single-crystal x-ray diffraction. J. Phys. Condens. Matter 12(39), L613–L620 (2000)

    Article  ADS  Google Scholar 

  • G. Aquilanti, A. Trapananti, A. Karandikar, I. Kantor, C. Marini, O. Mathon, S. Pascarelli, R. Boehler, Melting of iron determined by X-ray absorption spectroscopy to 100 GPa. Proc. Natl. Acad. Sci. USA 112(PMC4593125), 12042–12045 (2015)

    Article  ADS  Google Scholar 

  • J.R. Asay, M. Shahinpoor (eds), High-Pressure Shock Compression of Solids (Springer, New York, 1993)

    MATH  Google Scholar 

  • A.S. Balchan, H.G. Drickamer, High pressure electrical resistance cell, and calibration points above 100 kilobars. Rev. Sci. Instrum. 32(3), 308–313 (1961)

    Article  ADS  Google Scholar 

  • M. Baldini, W. Yang, G. Aquilanti, L. Zhang, Y. Ding, S. Pascarelli, W.L. Mao, High-pressure EXAFS measurements of crystalline Ge using nanocrystalline diamond anvils. Phys. Rev. B 84, 014111 (2011)

    Article  ADS  Google Scholar 

  • D. Bancroft, E.L. Peterson, S. Minshall, Polymorphism of iron at high pressure. J. Appl. Phys. 27(3), 291–298 (1956)

    Article  ADS  Google Scholar 

  • J.D. Barnett, H.T. Hall, High pressure-high temperature X-ray diffraction apparatus. Rev. Sci. Instrum. 35(2), 175 (1964)

    Article  ADS  Google Scholar 

  • W.A. Bassett, The birth and development of laser heating in diamond anvil cells. Rev. Sci. Instrum. 72(2), 1270–1272 (2001). Workshop on Advances in Laser Heated Diamond Cell Techniques, Chicago, 25–27 May 2000

    Article  ADS  Google Scholar 

  • W.A. Bassett, Diamond anvil cell, 50th birthday. High Press. Res. 29(2), CP5–186 (2009)

    Article  Google Scholar 

  • W.A. Bassett, A.J. Anderson, R.A. Mayanovic, I.-M. Chou, Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solution up to supercritical conditions. Chem. Geol. 167(1), 3–10 (2000)

    Article  ADS  Google Scholar 

  • M.A. Baublitz, Arnold, V, & A.L. Ruoff, Energy dispersive-x-ray diffraction from high-pressure polycrystalline specimens using synchrotron radiation. Rev. Sci. Instrum. 52(11), 1616–1624 (1981)

    Article  ADS  Google Scholar 

  • J.M. Besson, J.P. Pinceaux, Melting of helium at room temperature and high pressure. Science 206(4422), 1073–1075 (1979)

    Article  ADS  Google Scholar 

  • J.M. Besson, R.J. Nelmes, G. Hamel, J.S. Loveday, G. Weill, S. Hull, Neutron powder diffraction above 10 GPa. PHYSICA B 180(Part B), 907–910 (1992). International Conference on Neutron Scattering (ICNS 91), Oxford, 27–30 Aug 1991

    Google Scholar 

  • R. Boehler, J.J. Molaison, B. Haberl, Novel diamond cells for neutron diffraction using multi-carat CVD anvils. Rev. Sci. Instrum. 88(8), 083905 (2017)

    Article  ADS  Google Scholar 

  • R. Boehler, New diamond cell for single-crystal x-ray diffraction. Rev. Sci. Instrum. 77(11), 115103 (2006)

    Article  ADS  Google Scholar 

  • P.W. Bridgman, Collected Experimental Papers by P.W. Bridgman (Harvard University Press, Cambridge, 1964)

    Google Scholar 

  • P.W. Bridgman, The linear compression of iron to 30,000,000 kg/cm3. Proc. Am. Acad. Arts Sci. 74(2), 11–20 (1940)

    Article  Google Scholar 

  • P.W. Bridgman, Linear compressions to 30,000 Kg/Cm, including relatively incompressible substances. Proc. Am. Acad. Arts Sci. 77(6), 189–234 (1949)

    Article  Google Scholar 

  • R. Briggs, M.G. Gorman, A.L. Coleman, R.S. McWilliams, E.E. McBride, D. McGonegle, J.S. Wark, L. Peacock, S. Rothman, S.G. Macleod, C.A. Bolme, A.E. Gleason, G.W. Collins, J.H. Eggert, D.E. Fratanduono, R.F. Smith, E. Galtier, E. Granados, H.J. Lee, B. Nagler, I. Nam, Z. Xing, M.I. McMahon, Ultrafast X-ray diffraction studies of the phase transitions and equation of state of scandium shock compressed to 82 GPa. Phys. Rev. Lett. 118, 025501 (2017)

    Article  ADS  Google Scholar 

  • S. Brygoo, E. Henry, P. Loubeyre, J. Eggert, M. Koenig, B. Loupias, A. Benuzzi-Mounaix, M. Rabec Le Gloahec, Laser-shock compression of diamond and evidence of a negative-slope melting curve. Nat. Mater. 6, 274 (2007)

    Article  ADS  Google Scholar 

  • F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf Jun, Man-made diamonds. Nature 176, 51 (1955)

    Article  ADS  Google Scholar 

  • F.P. Bundy, Pressure-temperature phase diagram of elemental carbon. Phys. A: Stat. Mech. Appl. 156(1), 169–178 (1989)

    Article  MathSciNet  Google Scholar 

  • B. Buras, J.S. Olsen, L. Gerward, G. Will, E. Hinze, X-ray energy-dispersive diffractometry using synchrotron radiation. J. Appl. Crystallogr. 10, 431–438 (1977)

    Article  Google Scholar 

  • E. Burkel, J. Peisl, B. Dorner, Observation of inelastic X-ray-scattering from phonons. Europhys. Lett. 3(8), 957–961 (1987)

    Article  ADS  Google Scholar 

  • J.F. Cannon, Behavior of the elements at high pressures. J. Phys. Chem. Ref. Data 3(3), 781–824 (1974)

    Article  ADS  Google Scholar 

  • R.J. Cernik, W. Clegg, C.R.A. Catlow, G. BushnellWye, J.V. Flaherty, G.N. Greaves, I. Burrows, D.J. Taylor, S.J. Teat, M. Hamichi, A new high-flux chemical and materials crystallography station at the SRS Daresbury. 1. Design, construction and test results. J. Synchrotron Radiat. 4(Part 5), 279–286 (1997)

    Article  Google Scholar 

  • J. Chen, Y. Wang, T.S. Duffy, G. Shen, L.P. Dobrzhinetskaya (eds), Advances in High-Pressure Techniques for Geophysical Applications (Elsevier Science, Amsterdam 2005)

    Google Scholar 

  • F. Coppari, R.F. Smith, J.H. Eggert, J. Wang, J.R. Rygg, A. Lazicki, J.A. Hawreliak, G.W. Collins, T.S. Duffy, Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nat. Geosci. 6, 926 (2013)

    Article  ADS  Google Scholar 

  • W.A. Crichton, M. Mezouar, Methods and application of the Paris-Edinburgh Press to X-ray diffraction structure solution with large-volume samples at high pressures and temperatures, in J. Chen, Y. Wang, T.S. Duffy, G. Shen, L.F. Dobrzhinetskaya (eds), Advances in High-Pressure Technology for Geophysical Applications (Elsevier, Amsterdam, 2005), pp. 353–369

    Chapter  Google Scholar 

  • A. Dadashev, M.P. Pasternak, G.K. Rozenberg, R.D. Taylor, Applications of perforated diamond anvils for very high-pressure research. Rev. Sci. Instrum. 72(6), 2633–2637 (2001)

    Article  ADS  Google Scholar 

  • T. d’Almeida, Y.M. Gupta, Real-time X-ray diffraction measurements of the phase transition in KCl shocked along [100]. Phys. Rev. Lett. 85, 330–333 (2000)

    Article  ADS  Google Scholar 

  • T. d’Almeida, M. Di Michiel, M. Kaiser, T. Buslaps, A. Fanget, Time-resolved x-ray diffraction measurements on CdS shocked along the c axis. J. Appl. Phys. 92(3), 1715–1717 (2002)

    Article  ADS  Google Scholar 

  • A. Dawson, D.R. Allan, S. Parsons, M. Ruf, Use of a CCD diffractometer in crystal structure determinations at high pressure. J. Appl. Crystallogr. 37(Part 3), 410–416 (2004)

    Article  Google Scholar 

  • O. Degtyareva, M.I. McMahon, D.R. Allan, R.J. Nelmes, Structural complexity in Gallium under high pressure: relation to alkali elements. Phys. Rev. Lett. 93, 205502 (2004)

    Article  ADS  Google Scholar 

  • A. Denoeud, N. Ozaki, A. Benuzzi-Mounaix, H. Uranishi, Y. Kondo, R. Kodama, E. Brambrink, A. Ravasio, M. Bocoum, J.-M. Boudenne, M. Harmand, F. Guyot, S. Mazevet, D. Riley, M. Makita, T. Sano, Y. Sakawa, Y. Inubushi, G. Gregori, M. Koenig, G. Morard, Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa. Proc. Natl. Acad. Sci. 113(28), 7745–7749 (2016)

    Article  ADS  Google Scholar 

  • S. Desgreniers, Y.K. Vohra, A.L. Ruoff, Optical-response of very high-density solid oxygen to 132 GPa. J. Phys. Chem. 94(3), 1117–1122 (1990)

    Article  Google Scholar 

  • A. Dewaele, P. Loubeyre, M. Mezouar, Equations of state of six metals above 94 GPa. Phys. Rev. B 70(9), 094112 (2004)

    Google Scholar 

  • A. Dewaele, P. Loubeyre, F. Occelli, O. Marie, M. Mezouar, Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat. Commun. 9(1), 2913 (2018)

    Google Scholar 

  • B. Dorner, E. Burkel, T. Illini, J. Peisl, 1st measurement of a phonon-dispersion curve by inelastic X-ray-scattering. Zeitschrift Fur Physik B-condensed Matter 69(2–3), 179–183 (1987)

    Article  ADS  Google Scholar 

  • N. Dubrovinskaia, L. Dubrovinsky, N.A. Solopova, A. Abakumov, S. Turner, M. Hanfland, E. Bykova, M. Bykov, C. Prescher, V.B. Prakapenka, S. Petitgirard, I. Chuvashova, B. Gasharova, Y.-L. Mathis, P. Ershov, I. Snigireva, A. Snigirev, Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2(7), E1600341 (2016). https://doi.org/10.1126/sciadv.1600341

    Article  ADS  Google Scholar 

  • L. Dubrovinsky, T. Boffa-Ballaran, K. Glazyrin, A. Kurnosov, D. Frost, M. Merlini, M. Hanfland, V.B. Prakapenka, P. Schouwink, T. Pippinger, N. Dubrovinskaia, Single-crystal X-ray diffraction at megabar pressures and temperatures of thousands of degrees. High Press. Res. 30(4), 620–633 (2010)

    Article  ADS  Google Scholar 

  • L. Dubrovinsky, N. Dubrovinskaia, V.B. Prakapenka, A.M. Abakumov, Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012)

    Article  ADS  Google Scholar 

  • T.S. Duffy, Synchrotron facilities and the study of the Earth’s deep interior. Rep. Prog. Phys. 68(8), 1811–1859 (2005)

    Article  ADS  Google Scholar 

  • G.E. Duvall, R.A. Graham, Phase transitions under shock-wave loading. Rev. Mod. Phys. 49, 523–579 (1977)

    Article  ADS  Google Scholar 

  • D. Einfeld, Multi-bend Achromat lattices for storage ring light sources. Synchrotron Radiat. News 27(6), 4–7 (2014)

    Article  Google Scholar 

  • M.I. Eremets, High Pressure Experimental Methods (Oxford University Press, Oxford, 1996)

    Google Scholar 

  • M. Eriksson, J.F. van der Veen, C. Quitmann, Diffraction-limited storage rings – a window to the science of tomorrow. J. Synchrotron Radiat. 21(5), 837–842 (2014)

    Article  Google Scholar 

  • ESRF, EBS Science Workshops (2016). http://www.esrf.eu/home/events/conferences/2016/ebs-science-workshop.html. Last accessed on 02 July 2018

    Google Scholar 

  • J.W. Forbes, (2012) Shockwave Compression of Condensed Matter. Springer, Heidelberg

    Book  Google Scholar 

  • E. Gerdau, R. Rüffer, H. Winkler, W. Tolksdorf, C.P. Klages, J.P. Hannon, Nuclear Bragg diffraction of synchrotron radiation in yttrium iron garnet. Phys. Rev. Lett. 54, 835–838 (1985)

    Article  ADS  Google Scholar 

  • A.E. Gleason, C.A. Bolme, H.J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R.G. Kraus, J.H. Eggert, D.E. Fratanduono, G.W. Collins, R. Sandberg, W. Yang, W.L. Mao, Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun. 6, 8191 (2015)

    Article  Google Scholar 

  • A.E. Gleason, C.A. Bolme, E. Galtier, H.J. Lee, E. Granados, D.H. Dolan, C.T. Seagle, T. Ao, S. Ali, A. Lazicki, D. Swift, P. Celliers, W.L. Mao, Compression freezing kinetics of water to ice VII. Phys. Rev. Lett. 119, 025701 (2017)

    Article  ADS  Google Scholar 

  • S.H. Glenzer, L.B. Fletcher, E. Galtier, B. Nagler, R. Alonso-Mori, B. Barbrel, S.B. Brown, D.A. Chapman, Z. Chen, C.B. Curry, F. Fiuza, E. Gamboa, M. Gauthier, D.O. Gericke, A. Gleason, S. Goede, E. Granados, P. Heimann, J. Kim, D. Kraus, M.J. MacDonald, A.J. Mackinnon, R. Mishra, A. Ravasio, C. Roedel, P. Sperling, W. Schumaker, Y.Y. Tsui, J. Vorberger, U. Zastrau, A. Fry, W.E. White, J.B. Hasting, H.J. Lee, Matter under extreme conditions experiments at the linac coherent light source. J. Phys. B: Atomic Mol. Opt. Phys. 49(9), 092001 (2016)

    Article  ADS  Google Scholar 

  • A.F. Goncharov, M. Wong, D. Allen Dalton, J.G.O. Ojwang, V.V. Struzhkin, Z. Konôpkov´a, P. Lazor, Thermal conductivity of argon at high pressures and high temperatures. J. Appl. Phys. 111(11), 112609 (2012)

    Article  ADS  Google Scholar 

  • M.G. Gorman, R. Briggs, E.E. McBride, A. Higginbotham, B. Arnold, J.H. Eggert, D.E. Fratanduono, E. Galtier, A.E. Lazicki, H.J. Lee, H.P. Liermann, B. Nagler, A. Rothkirch, R.F. Smith, D.C. Swift, G.W. Collins, J.S. Wark, M.I. McMahon, Direct observation of melting in shock-compressed bismuth with femtosecond X-ray diffraction. Phys. Rev. Lett. 115, 095701 (2015)

    Article  ADS  Google Scholar 

  • E. Gregoryanz, L.F. Lundegaard, M.I. McMahon, C. Guillaume, R.J. Nelmes, M. Mezouar, Structural diversity of sodium. Science 320(5879), 1054–1057 (2008)

    Article  ADS  Google Scholar 

  • C.L. Guillaume, E. Gregoryanz, O. Degtyareva, M.I. McMahon, M. Hanfland, S. Evans, M. Guthrie, S.V. Sinogeikin, H.-K. Mao, Cold melting and solid structures of dense lithium. Nat. Phys. 7(3), 211–214 (2011)

    Article  Google Scholar 

  • T. Guillot, The interiors of giant planets: models and outstanding questions. Ann. Rev. Earth Planet. Sci. 33(1), 493–530 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Hanfland, K. Syassen, J. Kohler, Pressure-volume relationship of Ta. J. Appl. Phys. 91(7), 4143–4148 (2002)

    Article  ADS  Google Scholar 

  • R.M. Hazen, The New Alchemists: Breaking Through the Barriers of High Pressure (Times Books, New York, 1994)

    Google Scholar 

  • R.M. Haze, The Diamond Makers (Cambridge University Press, New York, 1999)

    Google Scholar 

  • R.M. Hazen, L.W. Finger, Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure (Wiley, London, 1982)

    Google Scholar 

  • C. Hejny, M.I. McMahon, Large structural modulations in incommensurate Te-III and Se-IV. Phys. Rev. Lett. 91, 215502 (2003)

    Article  ADS  Google Scholar 

  • R.J. Hemley, N.W. Ashcroft, The revealing role of pressure in the condensed matter sciences. Phys. Today 51(8), 26–32 (1998)

    Article  Google Scholar 

  • W.B. Holzapfel, N.I. Isaacs, High-Pressure Techniques in Chemistry and Physics (Oxford University Press, Oxford 1997)

    Google Scholar 

  • X. Hong, M. Newville, V.B. Prakapenka, M.L. Rivers, S.R. Sutton, High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell. Rev. Sci. Instrum. 80(7), 073908 (2009)

    Article  ADS  Google Scholar 

  • X. Hong, M. Newville, T.S. Duffy, High-pressure X-ray absorption fine structure in the diamond anvil cell and its applications in geological materials. J. Phys. Conf. Ser. 430(1), 012120 (2013)

    Google Scholar 

  • J. Hu, K. Ichiyanagi, T. Doki, A. Goto, T. Eda, K. Norimatsu, S. Harada, D. Horiuchi, Y. Kabasawa, S. Hayashi, S.-I. Uozumi, N. Kawai, S. Nozawa, T. Sato, S.-I. Adachi, K.G. Nakamura, Complex structural dynamics of bismuth under laser-driven compression. Appl. Phys. Lett. 103(16), 161904 (2013)

    Article  ADS  Google Scholar 

  • K. Ichiyanagi, G.K. Nakamura, Structural dynamics of materials under shock compression investigated with synchrotron radiation. Metals 6(1), 17 (2016)

    Article  Google Scholar 

  • K. Ichiyanagi, S.-I. Adachi, S. Nozawa, Y. Hironaka, K.G. Nakamura, T. Sato, A. Tomita, S.-Y. Koshihara, Shock-induced lattice deformation of CdS single crystal by nanosecond time-resolved Laue diffraction. Appl. Phys. Lett. 91(23), 231918 (2007)

    Article  ADS  Google Scholar 

  • R. Ingalls, G.A. Garcia, E.A. Stern, X-ray absorption at high pressure. Phys. Rev. Lett. 40, 334–336 (1978)

    Article  ADS  Google Scholar 

  • R. Ingalls, E.D. Crozier, J.E. Whitmore, A.J. Seary, J.M. Tranquada, Extended x-ray absorption fine structure of NaBr and Ge at high pressure. J. Appl. Phys. 51(6), 3158–3163 (1980)

    Article  ADS  Google Scholar 

  • R. Ingalls, J.M. Tranquada, J.E. Whitmore, E.D. Crozier, XANES at high-pressure phase transitions, in EXAFS and Near Edge Structure, ed. by A. Bianconi, L. Incoccia, S. Stipcich (Springer, Berlin/Heidelberg, 1983), pp. 154–156

    Chapter  Google Scholar 

  • K. Inoue, T. Asada, Cubic Anvil X-ray diffraction press up to 100 kbar and 1000C. Jpn. J. Appl. Phys. 12(11), 1786 (1973)

    Article  ADS  Google Scholar 

  • T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, Ultrahard polycrystalline diamond from graphite. Nature 421, 599 (2003)

    Article  ADS  Google Scholar 

  • N. Ishimatsu, K. Matsumoto, H. Maruyama, N. Kawamura, M. Mizumaki, H. Sumiya, T. Irifune, Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. J. Synchrotron Radiat. 19(PMC3621395) 768–772 (2012)

    Article  Google Scholar 

  • J.P. Itie, A. Polian, G. Calas, J. Petiau, A. Fontaine, H. Tolentino, Pressure-induced coordination changes in crystalline and vitreous GeO2. Phys. Rev. Lett. 63, 398–401 (1989)

    Article  ADS  Google Scholar 

  • J.P. Itie, F. Baudelet, A. Congeduti, B. Couzinet, F. Farges, A. Polian, High pressure x-ray absorption spectroscopy at lower energy in the dispersive mode: application to Ce and FePO 4. J. Phys. Condens. Matter 17(11), S883 (2005)

    ADS  Google Scholar 

  • J.C. Jamieson, A.W. Lawson, N.D. Nachtrieb, New device for obtaining x-ray diffraction patterns from substances exposed to high pressure. Rev. Sci. Instrum. 30(11), 1016–1019 (1959)

    Article  ADS  Google Scholar 

  • A. Jayaraman, Diamond anvil cell and high-pressure physical investigations. Rev. Modern Phys. 55(1), 65–108 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Jayaraman, Ultrahigh pressures. Rev. Sci. Instrum. 57(6), 1013–1031 (1986)

    Article  ADS  Google Scholar 

  • Z. Jenei, O’E.F. Bannon, S.T. Weir, H. Cynn, M.J. Lipp, W.J. Evans, Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. Nat. Commun. 9(1), 3563 (2018)

    Google Scholar 

  • D.H. Kalantar, J.F. Belak, G.W. Collins, J.D. Colvin, H.M. Davies, J.H. Eggert, T.C. Germann, J. Hawreliak, B.L. Holian, K. Kadau, P.S. Lomdahl, H.E. Lorenzana, M.A. Meyers, K. Rosolankova, M.S. Schneider, J. Sheppard, J.S. Stölken, J.S. Wark, Direct observation of the α − 𝜖 transition in shock-compressed iron via nanosecond X-ray diffraction. Phys. Rev. Lett. 95, 075502 (2005)

    Google Scholar 

  • A. Katrusiak, High-pressure single-crystal diffractometry with laboratory x-ray sources – high-pressure structural determinations at home laboratories, in High-Pressure Crystallography, ed. by A. Katrusiak, P. McMillan. NATO Science Series, Series II: Mathematics, Physics and Chemistry, vol. 140. PO Box 17, 3300 AA Dordrecht: Springer, for NATO. NATO Advanced Research Workshop on High-Pressure Crystallography, Erice, 04–15 June 2003 (2004), pp. 57–68

    Chapter  Google Scholar 

  • A. Katrusiak, High-pressure crystallography. Acta Crystallogr. Sect. A, 64(Part 1), 135–148 (2008)

    Article  ADS  Google Scholar 

  • N. Kawai, S. Endo, Generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Rev. Sci. Instrum. 41(8), 1178 (1970)

    Google Scholar 

  • L.G. Khvostantsev, L.F. Vereshchagin, A.P. Novikov, Device of toroid type for high pressure generation. High Temp. High Press. 9, 637 (1977)

    Google Scholar 

  • L.G. Khvostantsev, V.N. Slesarev, V.V. Brazhkin, Toroid type high-pressure device: history and prospects. High Press. Res. 24(3), 371–383 (2004)

    Article  ADS  Google Scholar 

  • S. Klotz, J.M. Besson, G. Hamel, R.J. Nelmes, J.S. Loveday, W.G. Marshall, R.M. Wilson, Neutron powder diffraction at pressures beyond 25 GPa. Appl. Phys. Lett. 66(14), 1735–1737 (1995)

    Article  ADS  Google Scholar 

  • S. Klotz, G. Hamel, J. Frelat, A new type of compact large-capacity press for neutron and X-ray scattering. High Press. Res. 24(1), 219–223 (2004). Meeting on Matter Under Extreme Conditions, Paris, 16 May 2003

    Article  ADS  Google Scholar 

  • S. Klotz, J.-C. Chervin, P. Munsch, G. Le Marchand, Hydrostatic limits of 11 pressure transmitting media. J. Phys.-Condens. Matter 42(7), 075413 (2009). https://doi.org/10.1088/0022-3727/42/7/075413

    Article  ADS  Google Scholar 

  • Y. Kono, C. Park, C. Kenney-Benson, G. Shen, Y. Wang, Toward comprehensive studies of liquids at high pressures and high temperatures: combined structure, elastic wave velocity, and viscosity measurements in the Paris-Edinburgh cell. Phys. Earth Planet. Interiors 228, 269–280 (2014). High-Pressure Research in Earth Science: Crust, Mantle, and Core.

    Article  ADS  Google Scholar 

  • D. Kraus, J. Vorberger, A. Pak, N.J. Hartley, L.B. Fletcher, S. Frydrych, E. Galtier, E.J. Gamboa, D.O. Gericke, S.H. Glenzer, E. Granados, M.J. MacDonald, A.J. MacKinnon, E.E. McBride, I. Nam, P. Neumayer, M. Roth, A.M. Saunders, A.K. Schuster, P. Sun, T. van Driel, T. Döppner, R.W. Falcone, Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1(9), 606–611 (2017)

    Article  ADS  Google Scholar 

  • T. Kunimoto, T. Irifune, Pressure generation to 125 GPa using a 6-8-2 type multianvil apparatus with nano-polycrystalline diamond anvils. J. Phys. Conf. Ser. 215(1), 012190 (2010)

    Google Scholar 

  • M. Kumazawa, Theory of generation of very high static pressures by an external force. High Temp.-High Press. 5, 599–619 (1973)

    Google Scholar 

  • Y. Le Godec, G. Hamel, V.L. Solozhenko, D. Martinez-Garcia, J. Philippe, T. Hammouda, M. Mezouar, W.A. Crichton, G. Morard, S. Klotz, Portable multi-anvil device for in situ angle-dispersive synchrotron diffraction measurements at high pressure and temperature. J. Synchrotron Radiat. 16(Part 4), 513–523 (2009)

    Google Scholar 

  • R. LeToullec, J.P. Pinceaux, P. Loubeyre, The membrane diamond anvil cell: a new device for generating continuous pressure and temperature variations. High Press. Res. 1(1), 77–90 (1988)

    Article  ADS  Google Scholar 

  • B. Li, C. Ji, W. Yang, J. Wang, K. Yang, R. Xu, W. Liu, Z. Cai, J. Chen, H.-K. Mao, Diamond anvil cell behavior up to 4 Mbar. Proc. Natl. Acad. Sci. (2018)

    Book  Google Scholar 

  • Q. Liang, C.-S. Yan, Y. Meng, J. Lai, S. Krasnicki, H.K. Mao, R.J. Hemley, Recent advances in high-growth rate single-crystal CVD diamond. Diamond Relat. Mater. 18(5–8, Sp. Iss. SI), 698–703 (2009). 19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Garbide, Sitges, 07–11 Sept 2008.

    Google Scholar 

  • R.C. Liebermann, Multi-anvil, high pressure apparatus: a half-century of development and progress. High Press. Res. 31(4), 493–532 (2011)

    Article  ADS  Google Scholar 

  • H.P. Liermann, Conceptual Design Report for Diamond Anvil Cell Setup (DAC) at the HED Instrument of the European XFEL (2016). http://photon-science.desy.de/sites/site_photonscience/ content/e58/e281572/e281621/e282672000/e282685/e282725/DAC_Conceptual_Design_Rep- ort_Ver_2_5_eng.pdf. Last accessed on 02 July 2018.

  • H.-P. Liermann, Z. Konôpkov´a, W. Morgenroth, K. Glazyrin, J. Bednarčik, E.E. McBride, S. Petitgirard, J.T. Delitz, M. Wendt, Y. Bican, A. Ehnes, I. Schwark, A. Rothkirch, M. Tischer, J. Heuer, H. Schulte-Schrepping, T. Kracht, H. Franz, The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA III. J. Synchrotron Radiat. 22(PMC4489534), 908–924 (2015)

    Article  Google Scholar 

  • K.-D. Liss, T. d’Almeida, M. Kaiser, R. Hock, A. Magerl, J.F. Eloy, Time-resolved x-ray diffraction study of laser-induced shock and acoustic waves in single crystalline silicon. J. Appl. Phys. 106(4), 044914 (2009)

    Article  ADS  Google Scholar 

  • L.G. Liu, W.A. Bassett, Elements, Oxides, and Silicates: High Pressure Phases with Implications for the Earth’s Interior. Oxford Monographs on Geology and Geophysics (Oxford University Press, New York, 1986)

    Google Scholar 

  • L.F. Lundegaard, M. Marques, G. Stinton, G.J. Ackland, R.J. Nelmes, M.I. McMahon, Observation of the oP8 crystal structure in potassium at high pressure. Phys. Rev. B 80(2), 020101(R) (2009a). https://doi.org/10.1103/PhysRevB.80.020101

  • L.F. Lundegaard, E. Gregoryanz, M.I. McMahon, C. Guillaume, I. Loa, R.J. Nelmes, Single-crystal studies of incommensurate Na to 1.5 Mbar. Phys. Rev. B, 79(6), 064105 (2009b). https://doi.org/10.1103/PhysRevB.79.064105

  • Y. Ma, M. Eremets, A.R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A.O. Lyakhov, M. Valle, V. Prakapenka, Transparent dense sodium. Nature 458(7235), 182–U3 (2009)

    Article  ADS  Google Scholar 

  • M. Malinowski, A diamond-anvil high-pressure-cell for x-ray-diffraction on a single-crystal. J. Appl. Crystallogr. 20(Part 5), 379–382 (1987)

    Article  Google Scholar 

  • H.K. Mao, P.M. Bell, High-pressure physics – sustained static generation of 1.36 to 1.72 megabars. Science 200(4346), 1145–1147 (1978)

    Article  ADS  Google Scholar 

  • H.K. Mao, R.J. Hemley, L.C. Chen, J.F. Shu, L.W. Finger, Y. Wu, X-ray diffraction to 302 Gigapascals: high-pressure crystal structure of cesium iodide. Science 246(4930), 649–651 (1989)

    Article  ADS  Google Scholar 

  • N. Marques De Souza Neto, Extreme condition beamline at SIRIUS to study rare earths and actinides. Acta Crystallogr. Sect. A 73(a2), C817 (2017)

    Google Scholar 

  • L.P. Martin, D. Orlikowski, J.H. Nguyen, Fabrication and characterization of graded impedance impactors for gas gun experiments from tape cast metal powders. Mater. Sci. Eng. A 427(1), 83–91 (2006)

    Article  Google Scholar 

  • K. Matsumoto, H. Maruyama, N. Ishimatsu, N. Kawamura, M. Mizumaki, T. Irifune, H. Sumiya, Noncollinear Spin structure in Fe-Ni Invar alloy probed by magnetic EXAFS at high pressure. J. Phys. Soc. Jpn. 80(2), 023709 (2011)

    Article  ADS  Google Scholar 

  • H.E. Maynard, J.S. Loveday, S. Klotz, C.L. Bull, T.C. Hansen, High-pressure crystallography of methane: a low-temperature neutron diffraction study in the 1-5GPa range. High Press. Res. 29(1), 125–128 (2009). 46th Annual Meeting of the European-High-Pressure-Research-Group Meeting (EHPRG 46), Valencia, 07–12 Sept 2008

    Article  ADS  Google Scholar 

  • H.E. Maynard-Casely, C.L. Bull, M. Guthrie, I. Loa, M.I. McMahon, E. Gregoryanz, R.J. Nelmes, J.S. Loveday, The distorted close-packed crystal structure of methane A. J. Chem. Phys. 133(6), 064504 (2010). https://doi.org/10.1063/1.3455889

    Article  ADS  Google Scholar 

  • E.E. McBride, K.A. Munro, G.W. Stinton, R.J. Husband, R. Briggs, H.P. Liermann, M.I. McMahon, One-dimensional chain melting in incommensurate potassium. Phys. Rev. B 91(14), 144111 (2015)

    Google Scholar 

  • M. McMahon, R. Nelmes, Incommensurate crystal structures in the elements at high pressure. Zeitschrift fur Kristallographie 219(11), 742–748 (2004)

    ADS  Google Scholar 

  • M.I. McMahon, U. Zastrau, Dynamic Laser Compression Experiments at the HED Instrument of European XFEL (2017). https://www.xfel.eu/sites/sites_custom/site_xfel/content/e35165/e46561/e46886/e46963/e46964/xfel_file61566/TR-2017-001_CDR_HED_DC_eng.pdf. Last accessed on 02 July 2018

  • M.I. McMahon, R.J. Nelmes, S. Rekhi, Complex Crystal Structure of Cesium-III. Phys. Rev. Lett. 87, 255502 (2001)

    Article  ADS  Google Scholar 

  • M.I. McMahon, (2014) High-pressure X-ray science on the ultimate storage ring. J. Synchrotron Radiat. 21(5), 1077–1083

    Article  Google Scholar 

  • P.F. McMillan, New materials from high-pressure experiments. Nat. Mater. 1(1), 19–25 (2002)

    Article  ADS  Google Scholar 

  • S. Merkel, M. Gruson, Y. Wang, N. Nishiyama, C.N. Tom´e, Texture and elastic strains in hcp-iron plastically deformed up to 17.5 GPa and 600 K: experiment and model. Model. Simul. Mater. Sci. Eng. 20(2), 024005 (2012)

    Article  ADS  Google Scholar 

  • L. Merrill, W.A. Bassett, Miniature diamond anvil pressure cell for single-crystal x-ray-diffraction studies. Rev. Sci. Instrum. 45(2), 290–294 (1974)

    Article  ADS  Google Scholar 

  • J. Meza-Galvez, N. Gomez-Perez, A. Marshall, A.L. Coleman, K. Appel, H.P. Liermann, Z. Konopkova, M.I. McMahon, R.S. McWilliams, (2018) Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard x-ray irradiation. ArXiv e-prints

    Google Scholar 

  • M. Mezouar, T. Le Bihan, H. Libotte, Y. Le Godec, D. Hausermann, Paris-Edinburgh large-volume cell coupled with a fast imaging-plate system for structural investigation at high pressure and high temperature. J. Synchrotron Radiat. 6(6), 1115–1119 (1999)

    Article  Google Scholar 

  • M. Mezouar, P. Faure, W. Crichton, N. Rambert, B. Sitaud, S. Bauchau, G. Blattmann, Multichannel collimator for structural investigation of liquids and amorphous materials at high pressures and temperatures. Rev. Sci. Instrum. 73(10), 3570–3574 (2002)

    Article  ADS  Google Scholar 

  • D. Milathianaki, D.C. Swift, J. Hawreliak, B.S. El-Dasher, J.M. McNaney, H.E. Lorenzana, T. Ditmire, In situ lattice measurement of the bcc phase boundary in Mg on the principal shock Hugoniot. Phys. Rev. B 86(1), 014101 (2012)

    Google Scholar 

  • R. Miletich, D.R. Allan, W.F. Kuhs, High-pressure single-crystal techniques, in High-temperature and High-pressure Crystal Chemistry. Reviews in Mineralogy & Geochemistr, vol. 41. 1015 Eighteenth St, Nw, Suite 601, Washington, DC 20036-5274 USA: (Mineralogical Soc America, 2000), pp. 445–519

    Article  ADS  Google Scholar 

  • S. Mobilio, C. Meneghini, Synchrotron radiation in the study of amorphous materials. J. Non-Cryst. Solids 232–234, 25–37 (1998)

    Article  Google Scholar 

  • S.A. Moggach, S. Parsons, P.A. Wood, High-pressure polymorphism in amino acids. Crystallogr. Rev. 14(2), 143–183 (2008a)

    Article  Google Scholar 

  • S.A. Moggach, D.R. Allan, S. Parsons, J.E. Warren, Incorporation of a new design of backing seat and anvil in a Merrill-Bassett diamond anvil cell. J. Appl. Crystallogr. 41(Part 2), 249–251 (2008b)

    Article  Google Scholar 

  • G. Morard, M. Mezouar, N. Rey, R. Poloni, A. Merlen, S. Le Floch, P. Toulemonde, S. Pascarelli, A. San-Miguel, C. Sanloup, G. Fiquet, Optimization of Paris-Edinburgh press cell assemblies for in situ monochromatic X-ray diffraction and X-ray absorption. High Press. Res. 27(2), 223–233 (2007)

    Article  ADS  Google Scholar 

  • M. Murakami, S.V. Sinogeikin, H. Hellwig, J.D. Bass, J. Li, Sound velocity of MgSiO3 perovskite to Mbar pressure. Earth Planet. Sci. Lett. 256(1), 47–54 (2007)

    Article  ADS  Google Scholar 

  • B. Nagler, B. Arnold, G. Bouchard, R.F. Boyce, R.M. Boyce, A. Callen, M. Campell, R. Curiel, E. Galtier, J. Garofoli, E. Granados, J. Hastings, G. Hays, P. Heimann, R.W. Lee, D. Milathianaki, L. Plummer, A. Schropp, A. Wallace, M. Welch, W. White, Z. Xing, J. Yin, J. Young, U. Zastrau, H.J. Lee, The matter in extreme conditions instrument at the linac coherent light source. J. Synchrotron Radiat. 22(3), 520–525 (2015)

    Article  Google Scholar 

  • B. Nagler, A. Schropp, E.C. Galtier, B. Arnold, S.B. Brown, A. Fry, A. Gleason, E. Granados, A. Hashim, J.B. Hastings, D. Samberg, F. Seiboth, F. Tavella, Z. Xing, H.J. Lee, C.G. Schroer, The phase-contrast imaging instrument at the matter in extreme conditions endstation at LCLS. Rev. Sci. Instrum. 87(10), 103701 (2016)

    Article  ADS  Google Scholar 

  • Y. Nakamoto, H. Sumiya, T. Matsuoka, K. Shimizu, T. Irifune, Y. Ohishi, Generation of multi-megabar pressure using nano-polycrystalline diamond anvils. Jpn. J. Appl. Phys. Part 2-Lett. Express Lett. 46(25-28), L640–L641 (2007)

    Article  ADS  Google Scholar 

  • R.J. Nelmes, P.D. Hatton, M.I. McMahon, R.O. Piltz, J. Crain, R.J. Cernik, G. Bushnell-Wye, Angle-dispersive powder-diffraction techniques for crystal structure refinement at high pressure. Rev. Sci. Instrum. 63(1), 1039–1042 (1992)

    Article  ADS  Google Scholar 

  • R.J. Nelmes, M.I. McMahon, J.S. Loveday, S. Rekhi, Structure of Rb-III: Novel Modul. Stacking Struct. Alkali Metals. Phys. Rev. Lett. 88, 155503 (2002)

    Article  Google Scholar 

  • R.J. Nelmes, M.I. McMahon, High-pressure powder diffraction On synchrotron sources. J. Synchrotron Radiat. 1(1), 69–73 (1994)

    Article  Google Scholar 

  • J.H. Nguyen, D. Orlikowski, F.H. Streitz, J.A. Moriarty, N.C. Holmes, High-pressure tailored compression: controlled thermodynamic paths. J. Appl. Phys. 100(2), 023508 (2006)

    Article  ADS  Google Scholar 

  • H. Ohfuji, T. Okada, T. Yagi, H. Sumiya, T. Irifune, Laser heating in nano-polycrystalline diamond anvil cell. J. Phys. Conference Ser. 215(1), 012192 (2010)

    Google Scholar 

  • O. Ohtaka, H. Arima, H. Fukui, W. Utsumi, Y. Katayama, A. Yoshiasa, Pressure-induced sharp coordination change in liquid Germanate. Phys. Rev. Lett. 92, 155506 (2004)

    Article  ADS  Google Scholar 

  • M.P. Olbinado, X. Just, J.-L. Gelet, P. Lhuissier, M. Scheel, P. Vagovic, T. Sato, R. Graceffa, J. Schulz, A. Mancuso, J. Morse, A. Rack, MHz frame rate hard X-ray phase-contrast imaging using synchrotron radiation. Opt. Express 25(12), 13857–13871 (2017)

    Article  ADS  Google Scholar 

  • M.P. Olbinado, V. Cantelli, O. Mathon, S. Pascarelli, J. Grenzer, A. Pelka, M. Roedel, I. Prencipe, A.L. Garcia, U. Helbig, D. Kraus, U. Schramm, T. Cowan, M. Scheel, P. Pradel, T. De Resseguier, A. Rack, Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light. J. Phys. D Appl. Phys. 51(5), 055601 (2018)

    Article  ADS  Google Scholar 

  • A. Onodera, Octahedral-anvil high-pressure devices. High Temp. High Press. 19(01), 579–609 (1987)

    Google Scholar 

  • S. Osamu, U. Wataru, T. Takashi, K. Takumi, N. Takashi, A New High Pressure and High Temperature Apparatus with Sintered Diamond Anvils for Synchrotron Radiation Use (American Geophysical Union (AGU), 2013), pp. 3–11. https://doi.org/10.1029/GM067p0003

    Chapter  Google Scholar 

  • J. Osugi, K. Shimizu, K. Inoue, K. Yasunami, A compact cubic anvil high pressure apparatus. Rev. Phys. Chem. Jpn. 34, 1–6 (1964)

    Google Scholar 

  • W. Paszkowicz, High-pressure powder X-ray diffraction at the turn of the century. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 198(3-4), 142–182 (2002)

    Article  ADS  Google Scholar 

  • S. Petitgirard, A. Salamat, P. Beck, G. Weck, P. Bouvier, Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline. J. Synchrotron Radiat. 21(PMC4861204), 89–96 (2013)

    Article  Google Scholar 

  • A. Polian, J.P. Itie, E. Dartyge, A. Fontaine, G. Tourillon, X-ray absorption spectroscopy on solid krypton up to 20 GPa. Phys. Rev. B 39, 3369–3373 (1989)

    Article  ADS  Google Scholar 

  • P. Raimondi, ESRF-EBS: the extremely brilliant source project. Synchrotron Radiat. News 29(6), 8–15 (2016)

    Article  Google Scholar 

  • M.E. Rutherford, D.J. Chapman, J.G. Derrick, J.R.W. Patten, P.A. Bland, A. Rack, G.S. Collins, D.E. Eakins, Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale. Sci. Rep. 7, 45206 (2017)

    Article  ADS  Google Scholar 

  • J.R. Rygg, J.H. Eggert, A.E. Lazicki, F. Coppari, J.A. Hawreliak, D.G. Hicks, R.F. Smith, C.M. Sorce, T.M. Uphaus, B. Yaakobi, G.W. Collins, Powder diffraction from solids in the terapascal regime. Rev. Sci. Instrum. 83(11), 113904 (2012). https://doi.org/10.1063/1.4766464

    Article  ADS  Google Scholar 

  • T. Sakai, T. Yagi, T. Irifune, H. Kadobayashi, N. Hirao, T. Kunimoto, H. Ohfuji, S. Kawaguchi-Imada, Y. Ohishi, S. Tateno, K. Hirose, High pressure generation using double-stage diamond anvil technique: problems and equations of state of rhenium. High Press. Res. 38(2), 107–119 (2018)

    Article  ADS  Google Scholar 

  • A.V. Sapelkin, S.C. Bayliss, X-ray absorption spectroscopy under high pressures in diamond anvil cells. High Press. Res. 21(6), 315–329 (2001)

    Article  ADS  Google Scholar 

  • F. Seiboth, L.B. Fletcher, D. McGonegle, S. Anzellini, L.E. Dresselhaus-Cooper, M. Frost, E. Galtier, S. Goede, M. Harmand, H.J. Lee, A.L. Levitan, K. Miyanishi, B. Nagler, I. Nam, N. Ozaki, M. Rödel, A. Schropp, C. Spindloe, P. Sun, J.S. Wark, J. Hastings, S.H. Glenzer, E.E. McBride, Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS. Appl. Phys. Lett. 112(22), 221907 (2018)

    Article  ADS  Google Scholar 

  • G. Shen, H.K. Mao, High-pressure studies with x-rays using diamond anvil cells. Rep. Prog. Phys. 80(1), 016101 (2017)

    Article  ADS  Google Scholar 

  • G. Shen, Y. Wang, High-pressure apparatus integrated with synchrotron radiation. Rev. Mineral. Geochem. 78(1), 745 (2014)

    Article  ADS  Google Scholar 

  • O. Shimomura, S. Yamaoka, T. Yagi, M. Wakatsuki, K. Tsuji, H. Kawamura, N. Hamaya, O. Fukuoga, K. Aoki, S. Akimoto, Multi-anvil type X-ray system for synchrotron radiation, in Solid State Physics Under Pressure (Ed. S Minomura), Terra Scientific Publishing Co., Tokyo, pp. 351–356 (1985)

    Google Scholar 

  • O. Shimomura, K. Takemura, H. Fujihisa, Y. Fujii, Y. Ohishi, T. Kikegawa, Y. Amemiya, T. Matsushita, Application of an imaging plate to high-pressure x-ray study with a diamond anvil cell (invited). Rev. Sci. Instrum. 63(1), 967–973 (1992)

    Article  ADS  Google Scholar 

  • O. Shimomura, T. Fukamachi, T. Kawamura, S. Hosoya, S. Hunter, A. Bienenstock, EXAFS measurement of high-pressure metallic phase of GaAs by use of a diamond anvil cell. Jpn. J. Appl. Phys. 17S2(Supplement 17-2), 221–223 (1978)

    Article  Google Scholar 

  • E.F. Skelton, J. Kirkland, S.B. Qadri, Energy-dispersive measurements of diffracted synchrotron radiation as a function of pressure: applications to phase transitions in KCl and KI. J. Appl. Crystallogr. 15(1), 82–88 (1982)

    Article  Google Scholar 

  • T.S. Sokolova, P.I. Dorogokupets, A.M. Dymshits, B.S. Danilov, K.D. Litasov, Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments. Comput. Geosci. 94, 162–169 (2016)

    Article  ADS  Google Scholar 

  • H. Sumiya, T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. J. Mater. Sci. 39(2), 445–450 (2004)

    Article  ADS  Google Scholar 

  • D.C. Swift, J.H. Eggert, D.G. Hicks, S. Hamel, K. Caspersen, E. Schwegler, G.W. Collins, N. Nettelmann, G.J. Ackland, Mass-radius relationships for exoplanets. Astrophys. J. 744(1), 59 (2012)

    Article  ADS  Google Scholar 

  • K. Syassen, Ruby under pressure. High Press. Res. 28(2), 75–126 (2008)

    Article  ADS  Google Scholar 

  • Y. Tange, T. Irifune, K.-I. Funakoshi, Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils. High Pressure Research, 28(3), 245–254 (2008)

    Article  ADS  Google Scholar 

  • K. Tohji, Y. Udagawa, Novel approach for structure analysis by x-ray Raman scattering. Phys. Rev. B 36, 9410–9412 (1987)

    Article  ADS  Google Scholar 

  • K. Tohji, Y. Udagawa, X-ray Raman scattering as a substitute for soft-x-ray extended x-ray-absorption fine structure. Phys. Rev. B 39, 7590–7594 (1989)

    Article  ADS  Google Scholar 

  • E.Y. Tonkov, E.G. Ponyatovsky, Phase Transformations of Elements Under High High-Pressure (CRC Press, Hoboken, 2004)

    Google Scholar 

  • R. Torchio, F. Occelli, O. Mathon, A. Sollier, E. Lescoute, L. Videau, T. Vinci, A. Benuzzi-Mounaix, J. Headspith, W. Helsby, S. Bland, D. Eakins, D. Chapman, S. Pascarelli, P. Loubeyre, Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe. Sci. Rep. 6, 26402 (2016)

    Article  ADS  Google Scholar 

  • S.J. Turneaure, N. Sinclair, Y.M. Gupta, Real-time examination of atomistic mechanisms during shock-induced structural transformation in silicon. Phys. Rev. Lett. 117, 045502 (2016)

    Article  ADS  Google Scholar 

  • S.J. Turneaure, S.M. Sharma, T.J. Volz, J.M. Winey, Y.M. Gupta, Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Sci. Adv. 3(10), eaao3561 (2017). https://doi.org/10.1126/sciadv.aao3561

    Article  Google Scholar 

  • A. Vanvalkenburg, Visual observations of high pressure transitions. Rev. Sci. Instrum. 33(12), 1462 (1962)

    Google Scholar 

  • Y. Wang, Large volume presses for high-pressure studies using synchrotron radiation, in High-Pressure Crystallography: From Fundamental Phenomena to Technological Applications, ed. by E. Boldyreva, P. Dera. NATO Science for Peace and Security Series B-Physics and Biophysics. Ettore Majorana Ctr Sci Culture. 41st Course of the International School of Crystallography, Ettore Majorana Ctr Sci Culture, Erice, 04–14 June 2009 (2010), pp. 81–96

    Google Scholar 

  • C.E. Wehrenberg, D. McGonegle, C. Bolme, A. Higginbotham, A. Lazicki, H.J. Lee, B. Nagler, H.-S. Park, B.A. Remington, R.E. Rudd, M. Sliwa, M. Suggit, D. Swift, F. Tavella, L. Zepeda-Ruiz, J.S. Wark, In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature 550, 496 (2017)

    Article  ADS  Google Scholar 

  • C.E. Weir, E.R. Lippincott, A. Vanvalkenburg, E.N. Bunting, Infrared studies in the 1-micron to 15-micron region to 30,000 atmospheres. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 63(1), 55–62 (1959)

    Article  Google Scholar 

  • E. Wigner, H.B. Huntington, On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3(12), 764–770 (1935)

    Article  ADS  Google Scholar 

  • R.E. Winter, M. Cotton, E.J. Harris, D.J. Chapman, D. Eakins, A novel graded density impactor. J. Phys. Conf. Ser. 500(14), 142034 (2014)

    Google Scholar 

  • C.S. Yoo, N.C. Holmes, M. Ross, D.J. Webb, C. Pike, Shock temperatures and melting of iron at Earth core conditions. Phys. Rev. Lett. 70, 3931–3934 (1993)

    Article  ADS  Google Scholar 

  • D.A. Young, Phase Diagrams of the Elements (University of California Press, Berkeley, 1991)

    Google Scholar 

  • C.-S. Zha, S. Krasnicki, Y.-F. Meng, C.-S. Yan, J. Lai, Q. Liang, H.-K. Mao, R.J. Hemley, Composite chemical vapor deposition diamond anvils for high-pressure/high-temperature experiments. High Press. Res. 29(2), 317–324 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank N. Dubrovinskaia, A. Dewaele, Y. Wang, H-P. Liermann, H.J. Lee, S. Klotz, T. Sakai, and Y. Gupta for providing images and figures used in this chapter. I would like to thank and acknowledge the numerous colleagues and collaborators who have contributed to the research and developments published by my group over the past 20 years that I have cited in this review. I would also like to thank the facility staff at synchrotrons and XFELs for their assistance and support in the experiments and technical developments. This work was supported by grants from the Engineering and Physical Sciences Research and the Royal Society and facilities and funding provided by SRS Daresbury Laboratory, the European Synchrotron Radiation Facility, the Advanced Photon Source, Diamond Light Source, and the Linac Coherent Light Source (LCLS). Use of the LCLS, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The MEC instrument is supported by the US Department of Energy, Office of Science, and Office of Fusion Energy Sciences under Contract No. SF00515. The author is grateful to AWE Aldermaston for the support of a William Penney Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm I. McMahon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McMahon, M.I. (2019). Synchrotron and FEL Studies of Matter at High Pressures. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_67-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_67-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04507-8

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics