Skip to main content

Superconducting Wigglers and Undulators

  • Living reference work entry
  • First Online:
Synchrotron Light Sources and Free-Electron Lasers

Abstract

Superconducting wigglers (SCWs) were introduced about 40 years ago and since then have been extensively used at many synchrotron radiation (SR) facilities around the world. The technology of SCWs progressed significantly due to innovative designs and the use of novel materials. SCWs have been established as reliable tools and are a standard attribute of many SR facilities. They became the hard X-ray radiation source of choice for the majority of low- and medium-energy x-ray light sources. SCWs greatly increased the capabilities of these sources by extending the accessible radiation wavelength range below 1 Å. The majority of SCWs have been designed and built at Budker Institute of Nuclear Physics, Novosibirsk, Russia.

Although the first superconducting undulator (SCU) was built almost at the same time as the first SCW, the progress in the development of SCUs was much slower compared with SCWs. This was mostly due to the fact that major investments went to the development and production of permanent magnet undulators. In the last two decades, there were several attempts to establish an SCU as a radiation source for an operational SR facility, but it was only relatively recently, when the SCU program was given significant funding priority at the Advanced Photon Source (APS), that SCUs attained a level of performance adequate enough to move from the research and development phase to the operational phase on a daily basis. That investment has resulted in the design and fabrication of several SCUs that are currently operating in the APS ring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACO:

Storage ring in Orsay, France

ALBA:

Synchrotron Radiation Facility, Barcelona, Spain

ANKA:

Storage ring in Karlsruhe, Germany

APS:

Advanced Photon Source, Synchrotron Radiation Facility, Chicago, USA

AS:

Australian Synchrotron, Melbourne, Australia

BESSY-II:

Synchrotron Radiation Facility, Berlin, Germany

BINP:

Budker Institute of Nuclear Physics, Novosibirsk, Russia

CAMD:

Storage ring in Baton Rouge, USA

CLS:

Canadian Light Source, Saskatoon, Canada

DELTA:

Center for Synchrotron Radiation, Dortmund, Germany

DIAMOND:

Synchrotron Radiation Facility, Oxford, UK

ELLETRA:

Synchrotron Radiation Facility, Trieste, Italy

ESRF:

European Synchrotron Radiation Facility, Grenoble, France

FEL:

Free Electron Laser

KIT:

Karlsruhe Institute of Technology

LSU:

Louisiana State University

NSRRC:

National Synchrotron Radiation Research Center, Taiwan

SC:

Superconducting

SCAPE:

Superconducting arbitrary polarized emitter

SCU:

Superconducting undulator

SCW:

Superconducting wiggler

SPring-8:

Synchrotron Radiation Facility, Japan

SR:

Synchrotron radiation

VEPP-2 M:

Storage ring in Novosibirsk, Russia

References

  • D. Alferov, Y. Bashamakov, E. Bessonov, Sov. J. Tech. Phys. 21(11), 1408 (1976)

    Google Scholar 

  • V. Anashin et al., Superconducting “snake” for the dedicated SR Source Siberia-1. Nucl. Inst. Methods. Phys. Res. A 246(1/3), 99 (1986)

    Article  ADS  Google Scholar 

  • A. Ando et al., Proposal of the high magnetic field superconducting WLS for slow positron source at SPring-8. Proceedings of SRI '97 Conference (1997)

    Google Scholar 

  • D. Arbelaez et al., A dispersion and pulse width correction algorithm for the pulsed wire method. Nucl. Inst. Methods. Phys. Res. A 716, 62–70 (2013)

    Article  ADS  Google Scholar 

  • A. Artamonov et al., Nucl. Inst. Methods 177(1), 239–246 (1980)

    Article  ADS  Google Scholar 

  • J. Bahrdt, E. Gluskin, Cryogenic permanent magnet and superconducting undulators. Nucl. Inst. Methods Phys. Res. A 907, 149 (2018)

    Article  ADS  Google Scholar 

  • J. Bahrdt, Y. Ivanyushenkov, Effects of geometrical errors on the field quality in a planar superconducting undulator. Proceedings of IPAC, New Orleans, LA,USA (2012), pp. 708–710

    Google Scholar 

  • L. Barkov et al., Nucl. Inst. Methods 152(1), 23–29 (1978)

    Article  ADS  Google Scholar 

  • A. Batrakov et al., Superconducting wavelength shifters and multipole wigglers developed in Budker INP. Proceedings of Second APAC. Beijing (2001)

    Google Scholar 

  • A. Batrakov, et al., A superconducting 3.5T multipole wiggler for the ELETTRA storage ring. Proceedings of EPAC 2002. Paris (2002)

    Google Scholar 

  • A. Batrakov et al., Nine Tesla superconducting bending magnet for BESSY-II. Nucl. Inst. Methods A543, 35–41 (2005)

    Article  ADS  Google Scholar 

  • C. Bazin et al., J. Phys. Lett. 41, L547–L550 (1980)

    Article  Google Scholar 

  • E. Bekhtenev, E. Dementiev, M. Fedurin, N. Mezentsev, Measurement of magnetic field characteristics of wigglers with the current strained wire method. Nucl. Inst. Methods Phys. Res. A 405, 214–219 (1998)

    Article  ADS  Google Scholar 

  • I. Ben-Zvi, Z. Jiang, G. Ingold, L. Yu, The performance of a superconducting micro-undulator prototype. Nucl. Inst. Methods Phys. Res. A 297, 301–305 (1990)

    Article  ADS  Google Scholar 

  • D. Berger, et al., A superconducting 7T multipole wiggler for BESSY II: Main challenges and first field measurements. Proceedings of EPAC 2002. Paris (2002)

    Google Scholar 

  • V. Borovikov et al., Power supply and quench protection system for a superconducting 7.5 Tesla WLS. Nucl. Inst. Methods Phys. Res. A 359(1–2), 107–109 (1995)

    Google Scholar 

  • V. Borovikov et al., Superconducting 7 Tesla WLS for LSU CAMD. Nucl. Inst. Methods Phys. Res. A 405, 440–442 (1998a)

    Google Scholar 

  • V. Borovikov et al., Magnetic measurement system for high field magnets. Nucl. Inst. Methods Phys. Res. A 405, 382–385 (1998b)

    Article  Google Scholar 

  • V. Borovikov et al., Superconducting 7 T wave length shifter for BESSY-II. Nucl. Inst. Methods Phys. Res. A 467, 181–184 (2001)

    Article  ADS  Google Scholar 

  • S. Casalbuoni et al., Generation of x-ray radiation in a storage ring by a superconductive cpld-bore in-vacuum undulator. Phys. Rev. ST Accel. Beams 9, 1–6 (2006)

    Article  Google Scholar 

  • S. Casalbuoni et al., Characterization and long term operation of a novel superconducting undulator with 15 mm period length in a synchrotron light source. Phys. Rev. ST Accel. Beams 19, 110702-1-15 (2016)

    ADS  Google Scholar 

  • S. Casalbuoni et al., Field quality of 1.5 m long conduction cooled superconducting undulator coils with 20 mm period length. J. Phys. Conf. Ser. 874, 012015-1-7 (2017)

    Article  Google Scholar 

  • S. Casalbuoni et al., Magnetic field measurements of full-scale conduction-cooled. IEEE Trans. Appl. Supercond. 28(3), 4111704 (2018)

    Article  Google Scholar 

  • C. Chang et al., Installation and commissioning of a 6-Tesla superconducting wavelength shifter at Taiwan light source. Nucl. Inst. Methods Phys. Res. A 550, 446C (2005)

    Article  ADS  Google Scholar 

  • S. Chen, J. Jan, C. Hwang, K. Liang, Development of a superconducting elliptically polarized undulator. J. Phys. Conf. Ser. 234, 032006 (2010)

    Article  Google Scholar 

  • D. Dietderich, A. Godeke, S. Prestemon, et al., Fabrication of a short-period Nb3Sn superconducting undulator. IEEE Trans. Appl. Supercond. 17(2), 1243–1246 (2007)

    Article  ADS  Google Scholar 

  • D. Dölling, A. Hobl, U. Klein, P. Komorowski, D.-R. Krischel, Development of superconducting undulators at ACCEL. AIP Conf. Proc. 879(1), 291 (2007)

    Article  ADS  Google Scholar 

  • C. Doose, M. Kasa, Magnetic measurements of the first superconductiong undualtor at the advanced photon source. Proceedings of North American PAC, Pasadena, CA,USA (2013), pp. 1238–1240

    Google Scholar 

  • L. Elias, J. Madey, Superconducting helically wound magnet for the free electron laser. Rev. Sci. Instrum. 50(11), 1335–1340 (1979)

    Article  ADS  Google Scholar 

  • L. Elias et al., Observation of stimulated emission of radiation by relativistic electronsin a spatially periodic transcerse magnetic field. Phys. Rev. Lett. 36, 717 (1976)

    Article  ADS  Google Scholar 

  • P. Emma et al., A plan for the development of superconducting undulator prototypes for LCLS-II and future FELs. Proceedings of FEL, Basel, Switzerland (2014a), pp. 649–653

    Google Scholar 

  • P. Emma, et al., A plan for the development of superconducting undulator prototypes for LCLS-II and future FELs. Proceedings of FEL 2014. Basel (2014b)

    Google Scholar 

  • M. Fedurin et al., Status of the activity on fabrication and application of high-field superconducting wavelength shifters at Budker INP. Nucl. Inst. Methods Phys. Res. A 470, 34–37 (2001)

    Article  ADS  Google Scholar 

  • J. Fuerst, C. Doose, Cryostat design and development for a superconducting undualtor for the APS. Adv. Cryog. Eng. AIP Conf. Proc. 1434, 901–908 (2012)

    Article  ADS  Google Scholar 

  • E. Gluskin, Development and performance of superconducting undulators at the advanced photon source. Synchrotron Radiat. News 28(3), 4–8 (2015)

    Article  Google Scholar 

  • E. Gluskin et al., First experiments with SR from 75 KGs superconducting wiggler on the VEPP-2M. Nucl. Inst. Methods Phys. Res. A 246(1/3), 41–44 (1986)

    Article  ADS  Google Scholar 

  • K. Harkay, L. Boon, Beam-induced heat load predictions and measurements in the APS SCU. Proceedings of North American PAC, Pasadena, CA,USA (2013), pp. 1055–1057

    Google Scholar 

  • T. Hezel, M. Homscheidt, H. Moser, R. Rossmanith, Experimental results with a novel superconductive in-vacuum mini-undulator test device at the Mainz microtron MAMI. Proceedings of PAC, New York, NY, USA (1999), pp. 165–167

    Google Scholar 

  • A. Hofmann, The Physics of Synchrotron Radiation (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  • G. Ingold, I. Ben-Zvi, L. Solomon, M. Woodle, Fabrication of a high-field short-period superconducting undulator. Nucl. Inst. Methods Phys. Res. A 375, 451–455 (1996)

    Article  ADS  Google Scholar 

  • Y. Ivanyushenkov et al., Development and operating experience of a short-period superconducting undulator at the advanced photon source. Phys. Rev. ST Accel. Beams 18, 040703-1-13 (2015)

    Article  ADS  Google Scholar 

  • Y. Ivanyushenkov, J. Fuerst et al., Conceptual design of a novel SCAPE undulator. Proceedings of IPAC, Copenhagen, Denmark (2017a), pp. 1596–1598

    Google Scholar 

  • Y. Ivanyushenkov, K. Harkay, et al., Development and operating experience of a 1.1-meter superconducting undulator at the advanced photon source. Phys. Rev. ST Accel. Beams 20, 100701 (2017b)

    Article  ADS  Google Scholar 

  • Y. Ivanyushenkov, C. Doose, J. Fuerst, Q. Hasse, M. Kasa, Y. Shironayagi et al., Status of the development of superconducting undulators at the advanced photon source. Proceedings of IPAC, Copenhagen, Denmark (2017c), pp. 2499–2502. http://accelconf.web.cern.ch/AccelConf/ipac2017/talks/weoca3_talk.pdf

  • Y. Ivanyushenkov et al., Status of the development of superconducting undulators at the advanced photon source. Synchrotron Radiat. News 31(3), 29–32 (2018)

    Article  Google Scholar 

  • W. Jansma, J. Fuerst, K. Goetze, J. Rix, Precision 2D laser scanning: Overview and applications. J. CMCS 12(2), 6–13 (2017)

    Google Scholar 

  • M. Kasa, J. Saniie, DSP methods for correcting dispersion and pulse width effects during pulsed wire measurements. Proceedings of IEEE International Ultrasonic Symposium (IUS), Washington, DC,USA (2017), pp. 1–4

    Google Scholar 

  • M. Kasa, C. Doose, J. Fuerst, Y. Ivanyushenkov, E. Gluskin, Progress on the magnetic performance of planar superconducting undulators. Proceedings of NA-PAC, Chicago, IL,USA (2016), pp. 477–479. http://accelconf.web.cern.ch/AccelConf/napac2016/talks/tub4co04_talk.pdf

  • M. Kasa et al., Design, construction and magnetic field measurements of a helical superconducting undulator for the advanced photon source. IPAC2018. Vancouver (2018)

    Google Scholar 

  • I. Kesgin, M. Kasa, Y. Ivanyushenkov, U. Welp, High-temperature superconducting undulator magnets. Supercond. Sci. Technol. 30, 04LT01 (2017)

    Article  Google Scholar 

  • G. Kezerashvilli, A. Lysenko, Y. Shatunov, P. Vorobyov, Colliding beams polarization measurements using superconducting helical undulator at the VEPP-2M storage ring. BINP Preprint, 91–84 (1991)

    Google Scholar 

  • S. Khrushchev et al., 3.5 Tesla 49-pole superconducting wiggler for DLS. Proceedings of RuPAC XX. Novosibirsk (2006)

    Google Scholar 

  • S. Khrushchev et al., Superconducting 63-pole 2 T wiggler for Canadian light source. Nucl. Inst. Methods Phys. Res. A 575, 38–41 (2007)

    Article  ADS  Google Scholar 

  • S. Khrushchev et al., 27-pole 4.2 T wiggler for biomedical imaging and therapy beamline at the Canadian light source. Nucl. Inst. Methods Phys. Res. A 603, 7–9 (2009)

    Article  ADS  Google Scholar 

  • S. Khrushchev et al., Superconducting 119-pole wiggler for ALBA light source. IPAC 2011 (2011)

    Google Scholar 

  • S. Khrushchev et al., Superconducting multipole wigglers: State of art. IPAC 2014 (2014)

    Google Scholar 

  • S. Khrushchev et al., Magnetic system of the high field superconducting multipole wiggler for LSU CAMD. EUCAS 2015 Proceedings. Lyon (2015)

    Google Scholar 

  • V. Korchuganov et al., An influence of 7.5 T superconducting wiggler on beam parameters of Siberia-2 storage ring. SRI 2006. (AIP, Daegu, 2007), pp. 440–443

    Google Scholar 

  • N.A. Mezentsev, Superconducting magnets for generation of synchrotron radiation. Proceedings of 21st International Cryogenic Engineering Conference (ICIC 21). Knoxville (2005)

    Google Scholar 

  • N. Mezentsev, Superconducting multipole wigglers for generation of synchrotron radiation. RuPAC 2014 (2014)

    Google Scholar 

  • E. Moog, R. Dejus, S. Sasaki, Comparison of achievable magnetic fields with superconducting and cryogenic permanent magnet undulators – a comprehensive study of computed and measured values. Light source note: ANL/APS/LS-348 (2017)

    Google Scholar 

  • S. Prestemon, R. Schlueter, S. Marks, D. Dietderich, Superconducting undulators with variable polarization and enhanced spectral range. IEEE Trans. Appl. Supercond. 16(2), 1873–1876 (2006)

    Article  ADS  Google Scholar 

  • R. Rossmanith, S. Casalbuoni, M. Hagelstein, B. Kostka, A.-S. Mueller, A year’s experience with a superconducting undulator in the storage ring ANKA. Proceedings of EPAC, Edinburgh, Scotland (2006), pp. 3571–3573

    Google Scholar 

  • Y. Shiroyanagi, J. Fuerst, Q. Hasse, Y. Ivanyushenkov, Thermal modeling and cryogenic design of a helical superconducting undulator cryostat. Proceedings of North American PAC, Chicago, IL,USA (2016), pp. 1064–1067

    Google Scholar 

  • K. Soutome et al., Generation of high-energy synchrotron radiation with a 10-T superconducting wiggler installed in the SPring-8 storage ring. Particle Accelerator Conference 2003. Portland (2003, May 12–16), p. 250

    Google Scholar 

  • M. Stampfer, P. Elleaume, A 4T Superconducting wiggler for the ESRF. Proceedings of EPAC (Proceedings of EPAC, London, 1994)

    Google Scholar 

  • C. Steier et al., Commissioning of the ALS with superbends. EPAC 2002. Paris (2002)

    Google Scholar 

  • E. Trakhtenberg, M. Kasa, Y. Ivanyushenkov, Evolution of the design of the magnet structure for the APS planar superconducting undulators. Proceedings of North America PAC, Chicago, IL, USA (2016), pp. 1245–1247

    Google Scholar 

  • N. Vinokurov, E. Levichev, Undulators and wigglers for production of radiation and other applications. Uspekhi Fizicheskih Nauk 185(9), 917–939 (2015)

    Article  Google Scholar 

  • E. Wallen, N. Mezentsev, Superconducting wigglers. Synchrotron Radiat. News 24(3), 3–9 (2011)

    Article  Google Scholar 

  • E. Wallen et al., The MAX-wiggler, a cold bore superconducting wiggler with 47 3.5T poles. Nucl. Inst. Methods Phys. Res. A 467–468, 118–121 (2001)

    Article  ADS  Google Scholar 

  • A. Zlobin et al., Advantage and challenges of Nb3Sn superconducting undulators. IPAC2018. Vancouver (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efim Gluskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gluskin, E., Mezentsev, N. (2019). Superconducting Wigglers and Undulators. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04507-8

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics