Skip to main content

Application of Micro- and Nanobeams for Materials Science

  • Living reference work entry
  • First Online:

Abstract

Owing to the spatial resolution and sensitivity (i.e., signal-to-background ratio), nano- and micro-X-ray beams are emerging tools with a strong impact in materials science. Although the optical quality of the X-ray focusing devices has limited the progress of X-ray microscopy, recent advances in fabrication techniques as well as in theoretical approaches have pushed the spatial resolution toward the diffraction limit. As a result, materials research using nano- and micro-X-ray beams has begun to extend toward the atomic domain, with concomitant and continuous developments of multiple analytical tools. The study of micro-/nanoscale objects, small embedded domains with weak signals, and/or heterogeneous structures at the (sub)micrometer scales has required the use of intense X-ray pencil beams. Additionally, stimulated by the great brilliance with reduced emittance of current third-generation synchrotron sources and new developments in X-ray detector technology, today intense (sub)micron X-ray beams are available with a variety of focusing devices. Finally, thanks to the multiple interactions of X-rays with matter, these X-ray probes can be used for manifold purposes, such as ultrasensitive elemental/chemical detection using X-ray fluorescence/X-ray absorption, or for identification of minority phases and/or strain fields by X-ray diffraction with (sub)micron resolution. Here we describe how (sub)micrometer X-ray beams are produced and used today using refractive, reflective, and diffractive X-ray optics. We show that micro- and nano-X-ray beams are key tools for space-resolved determination of structural and electronic properties and for chemical speciation of nanostructured or composite materials. Selected recent examples will range from phase separation in single nanowires to visualization of dislocations and buried interfacial defects to domain distortions and quantum confinement effects.

This is a preview of subscription content, log in via an institution.

References

  • J.F. Adam, J.P. Moy, J. Susini, Table-top water window transmission x-ray microscopy: review of the key issues, and conceptual design of an instrument for biology. Rev. Sci. Instrum. 76, 091301 (2005); L. De Caro, D. Altamura, F.A. Vittoria et al., A superbright X-ray laboratory microsource empowered by a novel restoration algorithm. J. Appl. Crystallogr. 45, 1228–1235 (2012)

    Google Scholar 

  • P. Aguado-Puente, J. Junquera, Structural and energetic properties of domains in PbTiO3/SrTiO3 superlattices from first principles. Phys. Rev. B 85, 184105 (2002)

    Article  ADS  Google Scholar 

  • J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics (Wiley, London, 2001)

    Google Scholar 

  • A. Amassian, V.A. Pozdin, T.V. Desai et al., Post-deposition reorganization of pentacene films deposited on low-energy surfaces. J. Mater. Chem. 19, 5580–5592 (2009)

    Article  Google Scholar 

  • K.W. Ang, C.H. Tung, N. Balasubramanian et al., Strained n-channel transistors with silicon source and drain regions and embedded silicon/germanium as strain-transfer structure. IEEE Electron. Device Lett. 28, 609–612 (2007)

    Article  ADS  Google Scholar 

  • Z. Bao, J. Locklin, Organic Field Effect Transistors (CRS, Boca Raton, 2007)

    Book  Google Scholar 

  • H.R. Beguiristain, I.S. Anderson, C.D. Dewhurst et al., A simple neutron microscope using a compound refractive lens. Appl. Phys. Lett. 81, 4290–4292 (2002)

    Article  ADS  Google Scholar 

  • P. Bleuet, E. Welcomme, E. Dooryhée et al., Probing the structure of heterogeneous diluted materials by diffraction tomography. Nat. Mater. 7, 468–472 (2008)

    Article  ADS  Google Scholar 

  • G. Bunker, Introduction to XAFS: A Practical Guide to X-Ray Absorption Fine Structure Spectroscopy (Cambridge University Press, Cambridge/New York, 2010)

    Book  Google Scholar 

  • S.A. Burke, J.M. Topple, P. Grütter, Molecular dewetting on insulators. J. Phys.: Condens. Matter 21, 423101 (2009)

    Google Scholar 

  • W. Chao, D.B. Harteneck, J.A. Liddle et al., Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210–1213 (2005)

    Article  ADS  Google Scholar 

  • W. Chao, J. Kim, S. Rekawa et al., Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy. Opt. Express 17, 17669–17677 (2009)

    Article  ADS  Google Scholar 

  • W. Chao, P.P. Fischer, T. Tyliszczak et al., Real space soft x-ray imaging at 10 nm spatial resolution. Opt. Express 20, 9777–9783 (2012)

    Article  ADS  Google Scholar 

  • P. Chen, M.P. Cosgriff, Q. Zhang et al., Field-dependent domain distortion and interlayer polarization distribution in PbTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 110, 047601 (2013)

    Article  ADS  Google Scholar 

  • P. Cloetens, W. Ludwig, J. Baruchel et al., Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl. Phys. Lett. 75, 2912–2914 (1999)

    Article  ADS  Google Scholar 

  • R. Conley, C. Liu, J. Qian et al., Wedged multilayer Laue lens. Rev. Sci. Instrum. 79, 053104 (2008)

    Article  ADS  Google Scholar 

  • B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, 1978)

    Google Scholar 

  • M.S. del Rio, L. Alianelli, Aspherical lens shapes for focusing synchrotron beams. J. Synchrotron Radiat. 19, 366–374 (2012)

    Article  Google Scholar 

  • S. Dhar, H. Kosina, V. Palankovski, Electron mobility model for strained-Si devices. IEEE Trans. Electron Devices 52, 527–533 (2005)

    Article  ADS  Google Scholar 

  • P.C.J. Donoghue, S. Bengtson, X. Dong, Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442, 680–683 (2006)

    Article  ADS  Google Scholar 

  • W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006); R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nature Mater. 6, 21–29 (2007)

    Google Scholar 

  • P.J. Eng, M. Newville, M.L. Rivers et al., Dynamically figured Kirkpatrick Baez x-ray microfocusing optics. Proc. SPIE 3449, 145–156 (1998)

    Article  ADS  Google Scholar 

  • P.G. Evans, D.E. Savage, J.R. Prance et al., Nanoscale distortions of Si quantum wells in Si/SiGe quantum-electronic heterostructures. Adv. Mater. 24, 5217–5221 (2012)

    Article  Google Scholar 

  • K. Evans-Lutterodt, A. Stein, J.M. Ablett et al., Using compound kinoform hard-X-ray lenses to exceed the critical angle limit. Phys. Rev. Lett. 99, 134801 (2007)

    Article  ADS  Google Scholar 

  • C.T. Forwood, L.M. Clarebrough, Electron Microscopy of Interfaces in Metals and Alloys (Adam Hilger, London, 1991)

    Google Scholar 

  • M. Friesen, P. Rugheimer, D.E. Savage et al., Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67, 121301 (2003)

    Article  ADS  Google Scholar 

  • G. Giri, E. Verploegen, S.C. Mannsfeld et al., Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480, 504–508 (2008)

    Article  ADS  Google Scholar 

  • B. Golosio, A. Simionovici, A. Somogyi et al., Internal elemental microanalysis combining X-ray fluorescence, Compton and transmission tomography. J. Appl. Phys. 94, 145–156 (2003)

    Google Scholar 

  • M. Gómez-Gómez, N. Garro, J. Segura-Ruiz et al., Spontaneous core–shell elemental distribution in In-rich InxGa1-xN nanowires grown by molecular beam epitaxy. Nanotechnology 25, 075705 (2014)

    Article  ADS  Google Scholar 

  • I. Gorczyca, S.P. Łepkowski, T. Suski et al., Influence of indium clustering on the band structure of semiconducting ternary and quaternary nitride alloys. Phys. Rev. B 80, 075202 (2009)

    Article  ADS  Google Scholar 

  • D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  • D.J. Gundlach, J.E. Royers, S.K. Park et al., Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nat. Mater. 7, 216–221 (2008)

    Article  ADS  Google Scholar 

  • P. Guttmann, X. Zeng, M. Feser, Ellipsoidal capillary as condenser for the BESSY full-field x-ray microscope. J. Phys. Conf. Ser. 186, 012064 (2009)

    Article  ADS  Google Scholar 

  • B. Hornberger, M. Feser, C. Jacobsen, Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope. Ultramicroscopy 107, 644–655 (2007)

    Article  Google Scholar 

  • N. Hrauda, J. Zhang, E. Wintersberger et al., X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor. Nano Lett. 11, 2875-2880 (2011)

    Article  ADS  Google Scholar 

  • G.E. Ice, J.S. Chung, J.Z. Tischler, A. Lunt et al., Elliptical X-ray microprobe mirrors by differential deposition. Rev. Sci. Instrum. 71, 2635–2639 (2000)

    Article  ADS  Google Scholar 

  • K. Jefimovs, J. Vila-Comamala, T. Pilvi et al., Zone-doubling technique to produce ultrahigh-resolution X-ray optics. Phys. Rev. Lett. 99, 264801 (2007)

    Article  ADS  Google Scholar 

  • J.Y. Jo, R.J. Sichel, H.N. Lee, Piezoelectricity in the dielectric component of nanoscale dielectric-ferroelectric superlattices. Phys. Rev. Lett. 104, 207601 (2010)

    Article  ADS  Google Scholar 

  • J.Y. Jo, P. Chen, R.J. Sichel, Nanosecond dynamics of ferroelectric/dielectric superlattices. Phys. Rev. Lett. 107, 055501 (2011)

    Article  ADS  Google Scholar 

  • V. Jovanović, C. Biasotto, K.L. Nanver, n-Channel MOSFETs fabricated on SiGe dots for strain-enhanced mobility. IEEE Electron Device Lett. 31, 1083–1085 (2010)

    Google Scholar 

  • C.J. Kaiser, The Transistor Handbook (C. J. Publishing, Olathe, 1999)

    Google Scholar 

  • H.C. Kang, J. Maser, G.B. Stephenson et al., Nanometer linear focusing of hard X rays by a multilayer Laue lens. Phys. Rev. Lett. 96, 127401 (2006)

    Article  ADS  Google Scholar 

  • H.C. Kang, H.F. Yan, R.P. Winarski et al., Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens. Appl. Phys. Lett. 92, 221114 (2008)

    Article  ADS  Google Scholar 

  • T. Kimura, S. Handa, H. Mimura et al., Wavefront control system for phase compensation in hard X-ray optics. Jpn. J. Appl. Phys. 48, 072503 (2009)

    Article  ADS  Google Scholar 

  • P. Kirkpatrick, A.V. Baez, Formation of optical images by X-rays. J. Opt. Soc. Am. 38, 766–773 (1948)

    Article  ADS  Google Scholar 

  • T. Koyama, H. Takenaka, S. Ichimaru et al., Development of multilayer Laue lenses; (2) circular type. AIP Conf. Proc. 1365, 24–27 (2011)

    Article  ADS  Google Scholar 

  • C.H. Lee, Y.-J. Kim, Y.J. Hong et al., Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films. Adv. Mater. 23, 4614–4619 (2011)

    Article  Google Scholar 

  • B. Lengeler, C. Schroer, J. Tummler et al., Imaging by parabolic refractive lenses in the hard X-ray range. J. Synchrotron Radiat. 6, 1153–1167 (1999)

    Article  Google Scholar 

  • Y. Li, F. Qian, J. Xiang et al., Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (2006)

    Article  Google Scholar 

  • R. Li, J.W. Ward, D.M. Smilgies et al., Direct structural mapping of organic field-effect transistors reveals bottlenecks to carrier transport. Adv. Mater. 24, 5553–5558 (2012)

    Article  Google Scholar 

  • S. Lisenkov, L. Bellaiche, Phase diagrams of BaTiO3/SrTiO3 superlattices from first principles. Phys. Rev. B 76, 020102 (2007)

    Article  ADS  Google Scholar 

  • W.J. Liu, G.E. Ice, L. Assoufid et al., Hard X-ray nano-focusing with Montel mirror optics. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 649, 169–171 (2011)

    Article  ADS  Google Scholar 

  • C.A. Liu, G.E. Ice, W. Liu et al., Fabrication of nested elliptical KB mirrors using profile coating for synchrotron radiation X-ray focusing. Appl. Surf. Sci. 258, 2182–2186 (2012)

    Article  ADS  Google Scholar 

  • E. Margui, X-Ray Fluorescence Spectrometry and Related Techniques: An Introduction (Momentum Press, LLC, New York, 2013)

    Book  Google Scholar 

  • G. Martinez-Criado, B. Alén, A. Homs et al., Scanning x-ray excited optical luminescence microscopy in GaN. Appl. Phys. Lett. 89, 221913 (2006)

    Article  ADS  Google Scholar 

  • G. Martinez-Criado, A. Homs, B. Alén et al., Probing quantum confinement within single core-multishell nanowire. Nano Lett. 12, 5829–5834 (2012)

    Article  ADS  Google Scholar 

  • G. Martinez-Criado, J. Segura-Ruiz, B. Alén et al., Exploring single semiconductor nanowires with a multimodal hard X-ray nanoprobe. Adv. Mater. (2014). doi:10.1002/adma.201304345

    Google Scholar 

  • H. Mimura, H. Yumoto, S. Matsuyama et al., Efficient focusing of hard x rays to 25nm by a total reflection mirror. Appl. Phys. Lett. 90, 051903 (2007)

    Article  ADS  Google Scholar 

  • H. Mimura, S. Handa, T. Kimura et al., Breaking the 10 nm barrier in hard-X-ray focusing. Nat. Phys. 6, 122–125 (2010)

    Article  Google Scholar 

  • L. Mino, D. Gianolio, G. Agostini et al., \(\upmu\)-EXAFS, \(\upmu\) -XRF, and \(\upmu\) -PL characterization of a multi-quantum-well electroabsorption modulated laser realized via selective area growth. Small 7, 930–938 (2011)

    Google Scholar 

  • M. Montel, X-Ray Microscopy and Microradiography (Academic, New York, 1957)

    Google Scholar 

  • C. Morawe, P. Pecci, J.C. Peffen et al., Design and performance of graded multilayers as focusing elements for x-ray optics. Rev. Sci. Instrum. 70, 3227–3232 (1999)

    Article  ADS  Google Scholar 

  • F.R.N. Nabarro, M.S. Duesbery, Dislocation in Solids (North Holland, Amsterdam, 1979–2003)

    Google Scholar 

  • S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281, 956–961 (1998)

    Article  Google Scholar 

  • E.C. Nelson, P.V. Braun, Photonic crystals: photons and electrons confined. Nat. Photon. 2, 650–651 (2008)

    Article  ADS  Google Scholar 

  • U. Pietsch, V. Holy, T. Baumbach, High Resolution X-Ray Scattering (Springer, New York, 2004)

    Book  Google Scholar 

  • C. Reese, M. Roberts, M.M. Ling et al., Organic thin film transistors. Mater. Today 7, 20–27 (2004)

    Article  Google Scholar 

  • S. Rehbein, P. Guttmann, S. Werner et al., Characterization of the resolving power and contrast transfer function of a transmission X-ray microscope with partially coherent illumination. Opt. Express 20, 5830–5839 (2012)

    Article  ADS  Google Scholar 

  • I.K. Robinson, R. Harder, Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291–298 (2009)

    Article  ADS  Google Scholar 

  • J.M. Rodenburg, A.C. Hurst, A.G. Cullis et al., Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007)

    Article  ADS  Google Scholar 

  • A. Sakdinawat, D. Attwood, Nanoscale X-ray imaging. Nat. Photonics 4, 840–848 (2010)

    Article  ADS  Google Scholar 

  • V. Schmidt, Electron Spectrometry of Atoms Using Synchrotron Radiation in Part of Cambridge Monographs on Atomic, Molecular and Chemical Physics (Cambridge University Press, Cambridge/New York, 1997)

    Book  Google Scholar 

  • O.G. Schmidt, K. Eberl, Self-assembled Ge/Si dots for faster field-effect transistors. IEEE Trans. Electron Devices 48, 1175–1179 (2001)

    Article  ADS  Google Scholar 

  • C.G. Schroer, B. Lengeler, Focusing hard X rays to nanometer dimensions by adiabatically focusing lenses. Phys. Rev. Lett. 94, 054802 (2005)

    Article  ADS  Google Scholar 

  • C.G. Schroer, O. Kurapova, J. Patommel et al., Hard x-ray nanoprobe based on refractive x-ray lenses. Appl. Phys. Lett. 87, 124103 (2005)

    Article  ADS  Google Scholar 

  • C.G. Schroer, A. Schropp, P. Boye et al., Hard X-ray scanning microscopy with coherent diffraction contrast. AIP Conf. Proc. 1365, 227–230 (2011)

    Article  ADS  Google Scholar 

  • J. Segura-Ruiz, G. Martínez-Criado, C. Denker et al., Phase separation in single Inx Ga1–xN nanowires revealed through a hard X-ray synchrotron nanoprobe. Nano Lett. 14, 1300–1305 (2014)

    Article  ADS  Google Scholar 

  • R. Signorato, T. Ishikawa, R&D on third generation multi-segmented piezoelectric bimorph mirror substrates at Spring-8. Nucl. Instrum. Methods A 467, 271–274 (2001)

    Article  ADS  Google Scholar 

  • D.M. Smilgies, R. Li, G. Giri et al., Look fast: crystallization of conjugated molecules during solution shearing probed in-situ and in real time by X-ray scattering. Phys. Status Solidi RRL 7, 177–179 (2013)

    Article  Google Scholar 

  • A. Snigirev, I. Snigireva, High energy X-ray micro-optics. C. R. Phys. 9, 507–516 (2008)

    Article  ADS  Google Scholar 

  • A. Snigirev, V. Kohn, I. Snigireva et al., A compound refractive lens for focusing high-energy X-rays. Nature 384, 49–51 (1996)

    Article  ADS  Google Scholar 

  • A. Somogyi, F. Polack, T. Moreno, Status of the nanoscopium scanning nanoprobe beamline of synchrotron soleil. AIP Conf. Proc. 1234, 395–398 (2010)

    Article  ADS  Google Scholar 

  • S. Srinivasan, Fuel Cells: From Fundamentals to Applications (Springer, New York, 2010)

    Google Scholar 

  • A. Stein, K. Evans-Lutterodt, N. Bozovic et al., Fabrication of silicon kinoform lenses for hard X-ray focusing by electron beam lithography and deep reactive ion etching. J. Vac. Sci. Technol. B 26, 122–127 (2008)

    Article  Google Scholar 

  • M. Stockmar, P. Cloetens, I. Zanette et al., Near-field ptychography: phase retrieval for inline holography using a structured illumination. Sci. Rep. 3, 1927 (2012)

    Google Scholar 

  • N. Stribeck, X-Ray Scattering of Soft Matter (Springer, Berlin/Heidelberg, 2007)

    Google Scholar 

  • Y. Takahashi, A. Suzuki, S. Furutaku et al., Bragg x-ray ptychography of a silicon crystal: visualization of the dislocation strain field and the production of a vortex beam. Phys. Rev. B 87, 121201 (2013)

    Article  ADS  Google Scholar 

  • B.K. Tanner, X-Ray Diffraction Topography (Pergamon, Oxford, 1976)

    Google Scholar 

  • M. Van Veenendaal, I. McNulty, Prediction of strong dichroism induced by X rays carrying orbital momentum. Phys. Rev. Lett. 98, 157401 (2007)

    Article  ADS  Google Scholar 

  • J. Vila-Comamala, S. Gorelick, V.A. Guzenko et al., Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography. Nanotechnology 21, 285305 (2010)

    Article  Google Scholar 

  • Y. Waseda, Anomalous X-Ray Scattering for Materials Characterization (Springer, Berlin/Heidelberg, 2002)

    Google Scholar 

  • B.M. Wong, F. Leonard, Q. Li et al., Nanoscale effects on heterojunction electron gases in GaN/AlGaN core/shell nanowires. Nano Lett. 11, 3074–3079 (2011)

    Article  ADS  Google Scholar 

  • H.F. Yan, X-ray nanofocusing by kinoform lenses: a comparative study using different modeling approaches. Phys. Rev. B 81, 075402 (2010)

    Article  ADS  Google Scholar 

  • H.F. Yan, J. Maser, A. Macrander et al., X-ray dynamical diffraction from multilayer Laue lenses with rough interfaces. Phys. Rev. B 76, 115438 (2009)

    Article  ADS  Google Scholar 

  • H.F. Yan, H.C. Kang, R. Conley et al., Multilayer Laue lens: a path toward one nanometer X-ray focusing. X-Ray Opt. Instrum. 1, 401854 (2010)

    Google Scholar 

  • H.F. Yan, V. Rose, D.M. Shu et al., Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses. Opt. Express 19, 15069–15076 (2011)

    Article  ADS  Google Scholar 

  • H. Yan, Y.S. Chu, J. Maser et al., Quantitative x-ray phase imaging at the nanoscale by multilayer Laue lenses. Sci. Rep. 3, 1307 (2013)

    ADS  Google Scholar 

  • G.C. Yin, Y.F. Song, M.T. Tang et al., 30nm resolution x-ray imaging at 8keV using third order diffraction of a zone plate lens objective in a transmission microscope. Appl. Phys. Lett. 89, 221122 (2006)

    Article  ADS  Google Scholar 

  • H. Yumoto, H. Mimura, S. Matsuyama et al., Fabrication of elliptically figured mirror for focusing hard x rays to size less than 50nm. Rev. Sci. Instrum. 76, 063708 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Martı́nez-Criado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Martı́nez-Criado, G. (2015). Application of Micro- and Nanobeams for Materials Science. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics