Skip to main content

Loading Effects and Reference Frames

  • Living reference work entry
  • First Online:

Definition

Loading effects and reference frames. Mass loading causes the surface of the Earth to displace with an impact on reference frames realized with station coordinates.

Introduction

Surface mass loading, driven by temporal and geographical changes in the mass of the atmosphere, oceans, and continental water storage, causes the surface of the Earth to displace. The elastic displacement is proportional to the amplitude and spatial extent of the changing load. To forward predict the three-dimensional surface displacements requires a model or observations of the spatial distribution of the load and an Earth model defined by Load Love numbers.

Two approaches are commonly used to predict surface displacements from changing surface loads. The first approach uses spherical harmonics (Gegout et al., 2010). In this method, Love numbers for a particular radially symmetric Earth model are convolved with a spherical harmonic representation of the load field (Kaula, 1966). An extension of...

This is a preview of subscription content, log in via an institution.

References and Reading

  • Bloßfeld, M., Seitz, M., and Angermann, D., 2014. Non-linear station motions in epoch and multi-year reference frames. Journal of Geodesy, 88, 45–63.

    Article  Google Scholar 

  • Boy, J.-P., and Lyard, F., 2008. High-frequency non-tidal ocean loading effects on surface gravity measurements. Geophysical Journal International, 175, 35–45.

    Article  Google Scholar 

  • Carrere, L., and Lyard, F. 2003. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations. GRL, 30, 1275, doi:10.1029/2002GL016473.

    Article  Google Scholar 

  • Chambers, D. P., Wahr, J., and Nerem, R. S. 2004. Preliminary observations of global ocean mass variations with GRACE. Geophysical Research Letters, 31, L13310, doi:10.1029/2004GL020461.

    Article  Google Scholar 

  • Collilieux, X., Altamimi, Z., Coulot, D., van Dam, T., and Ray, J., 2010. Impact of loading effects on determination of the international terrestrial reference frame. Advances in Space Research, 45, 144–154.

    Article  Google Scholar 

  • Collilieux, X., van Dam, T., Ray, J., Coulot, D., Metivier, L., and Altamimi, Z., 2012. Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. Journal of Geodesy, 86, 1–14.

    Article  Google Scholar 

  • Döll, P., Kaspar, F., and Lehner, B., 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology, 270, 105–134.

    Article  Google Scholar 

  • Dong, D., Fang, P., Bock, Y., Cheng, M. K., and Miyazaki, S., 2002. Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research, 107(B42103), ETG 9-1, doi:10.1029/2001JB000573.

    Article  Google Scholar 

  • Eriksson, D., and MacMillan, D. S., 2014. Continental hydrology loading observed by VLBI measurements. Journal of Geodesy, 88, 675–690, doi:10.1007/s00190-014-0713-0.

    Article  Google Scholar 

  • Farrell, W. E., 1972. Deformation of the earth by surface loads. Reviews of Geophysics and Space Physics, 10(3), 751–797.

    Article  Google Scholar 

  • Fritsche, M., Döll, P., and Dietrich, R., 2012. Global-scale validation of model based load deformation of the Earth’s crust from continental water mass and atmospheric pressure variations using GPS. Journal of Geodynamics, 59–60, 133–142.

    Article  Google Scholar 

  • Gegout, P., and Boy, J.-P., Hinderer, J., and Ferhat, G. 2010. Modeling and observation of loading contribution to time-variable GPS sites positions. In Mertikas, P. S. (ed.), Gravity, Geoid and Earth Observation: IAG Commission 2: Gravity Field, Chania, Crete, Greece, 23–27 June 2008. Berlin/Heidelberg: Springer, pp. 651–659, doi:10.1007/978-3-642-10634-7_86, ISBN: 978-3-642-10634-7.

    Google Scholar 

  • Kaula, W. M., 1966. Theory of Satellite Geodesy. Waltham: Blaisdell.

    Google Scholar 

  • Love, A. E. H. 1911. Some Problems of Geodynamics. New York: Dover Publications, 1967.

    Google Scholar 

  • Manabe, S., Sato, T., Sakai, S., and Yokoyama, K. 1991. Atmospheric load effect on VLBI observations. In Proceedings of the AGU Chapman Conference on Geodetic VLBI: Monitoring Global Change, NOAA TR NOS 437, NGS 49, Washington, DC, pp. 111–122.

    Google Scholar 

  • Munekane, H., and Matsuzaka, S., 2004. Nontidal ocean mass loading detected by GPS observations in the tropical Pacific region. Geophysical Research Letters, 31, L08602, doi:10.1029/2004GL019773.

    Google Scholar 

  • Nordman, M., Mäkinen, J., Virtanen, H., Johansson, J. M., Bilker-Koivula, M., Virtanen, J. 2009. Crustal loading in vertical GPS time series in Fennoscandia. Journal of Geodynamics, 48(3–5), 144–150, ISSN 0264–3707, doi:10.1016/j.jog.2009.09.003 (http://www.sciencedirect.com/science/article/pii/S0264370709000702).

    Google Scholar 

  • Petit, G., and Luzum, B. 2010.‬ IERS Conventions. Issue 36 of IERS technical note. International Earth Rotation and Reference Systems Service‬. Verlag des Bundesamtes für Kartographie und Geodäsie, 179 pp.

    Google Scholar 

  • Petrov, L., and Boy, J.-P., 2004. Study of the atmospheric pressure loading signal in very long baseline interferometry observations. Journal of Geophysical Research, 109, B03405, doi:10.1029/2003JB002500.

    Article  Google Scholar 

  • Ponte, R. M. 1999. A preliminary model study of the large-scale seasonal cycle in bottom pressure over the global oceans. JGR, 104, 1289–1300.

    Article  Google Scholar 

  • Ponte, R. M., and Ray, R. D., 2002. Atmospheric pressure corrections in geodesy and oceanography: a strategy for handling air tides. Geophysical Research Letters, 29(24), 2153–2156, doi:10.1029/2002GL016340.

    Article  Google Scholar 

  • Rabbel, W., and Zschau, J. 1985. Static deformation and gravity changes at the Earth’s surface due to atmospheric loading. Journal of Geophysics, 56, 81–91.

    Google Scholar 

  • Ray, J., Altamimi, Z., Collilieux, X., and van Dam, T., 2008. Anomalous harmonics in the spectra of GPS position estimates. GPS Solutions, 12, 55–64.

    Article  Google Scholar 

  • Scherneck, H.-G., 1991. A parameterized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements. Geophysical Journal International, 106, 677–694.

    Article  Google Scholar 

  • Schindelegger, M., and Ray, R., 2014. Surface pressure tide climatologies deduced from a quality-controlled network of barometric observations. Monthly Weather Review, 12, 4872–4889.

    Article  Google Scholar 

  • Tregoning, P., and van Dam, T., 2005. Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophysical Research Letters, 32, L22310, doi:10.1029/2005GL024104.

    Article  Google Scholar 

  • Tregoning, P., and Watson, C. S., 2009. Atmospheric effects and spurious signals in GPS analyses. Journal of Geophysical Research, 114, B09403, doi:10.1029/2009JB006344.

    Google Scholar 

  • Tregoning, P., Watson, C., Ramillien, G., McQueen, H., and Zhang, J., 2009. Detecting hydrologic deformation using GRACE and GPS. Geophysical Research Letters, 36, L15401, doi:10.1029/2009GL038718.

    Article  Google Scholar 

  • van Dam, T. M., and Herring, T. A., 1994. Detection of atmospheric pressure loading using very long baseline interferometry measurements. Journal of Geophysical Research, 99(B3), 4505, doi:10.1029/93JB02758.

    Article  Google Scholar 

  • van Dam, T. M., and Wahr, J., 1987. Displacements of the Earth’s surface due to atmospheric loading: effects on gravity and baseline measurements. Journal of Geophysical Research, 92, 1282–1286.

    Google Scholar 

  • van Dam, T. M., and Wahr, J. M., 1998. Modeling environmental loading effects: a review. Physics and Chemistry of the Earth, 23, 1077–1086.

    Article  Google Scholar 

  • van Dam, T., Blewitt, G., and Heflin, M., 1994. Atmospheric pressure loading effects on global positioning system coordinate determinations. Journal of Geophysical Research, 99(B12), 23939–23950.

    Article  Google Scholar 

  • van Dam, T. M., Wahr, J., Chao, Y., and Leuliette, E., 1997. Predictions of crustal deformation and of geoid and sea-level variability caused by oceanic and atmospheric loading. Geophysical Journal International, 99, 507–517.

    Article  Google Scholar 

  • van Dam, T., Wahr, J., Milly, P. C. D., Shmakin, A. B., Blewitt, G., Lavallée, D., and Larson, K. M., 2001. Crustal displacements due to continental water loading. Geophysical Research Letters, 28(4), 651–654.

    Article  Google Scholar 

  • van Dam, T., Altamimi, Z., Collilieux, X., and Ray, J., 2010. Topographically induced height errors in predicted atmospheric loading effects. Journal of Geophysical Research, 115, B07415, doi:10.1029/2009JB006810.

    Google Scholar 

  • van Dam, T., Collilieux, X., Wuite, J., Altamimi, Z., and Ray, J. 2012. Nontidal ocean loading: amplitudes and potential effects in GPS height time series. Journal of Geodesy, 86, 1043–1057.

    Article  Google Scholar 

  • Wijaya, D. D., Böhm, J., Karbon, M., Krásná, H., and Schuh, H., 2013. Atmospheric pressure loading. In Böhm, J., and Schuh, H. (eds.), Atmospheric Effects in Space Geodesy. Berlin: Springer.

    Google Scholar 

  • Williams, S. D. P., and Penna, N. T., 2011. Non-tidal ocean loading effects on geodetic GPS heights. Geophysical Research Letters, 38, L09314, doi:10.1029/2011GL046940.

    Article  Google Scholar 

  • Wunsch, C., 1972. Bermuda sea level in relation to tides, weather, and baroclinic fluctuations. Reviews of Geophysics, 10, 1–49.

    Article  Google Scholar 

  • Wunsch, C., and Stammer, D., 1997. Atmospheric loading and the “inverted barometer” effect. Reviews of Geophysics, 35, 117–135.

    Article  Google Scholar 

  • Zerbini, S., Richter, B., Negusini, M., Romagnoli, C., Simon, D., Domenichini, F., and Schwahn, W. 2004. Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth and Planetary Science Letters, 192(267–279), 192–267279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonie van Dam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

van Dam, T., Böhm, J. (2016). Loading Effects and Reference Frames. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_104-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_104-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics