Encyclopedia of Petroleum Geoscience

Living Edition
| Editors: Rasoul Sorkhabi

Plankton

  • Richard A. Denne
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-02330-4_55-1

Definition

Plankton are aquatic organisms incapable of swimming against a current and therefore float with the current. They are of interest in petroleum geoscience due to their importance as a kerogen source, as the dominant particle in some biogenic sediments, and their use in biostratigraphy.

Terminology

Aquatic (both marine and freshwater) organisms can be grouped based upon their life habitat: plankton (floating), nekton (swimming), and benthos (bottom-dwelling). Holoplankton, or permanent plankton, remain planktonic for their entire lives, whereas meroplankton, or temporary plankton, occupy different habitats during their lifecycle. Examples of meroplankton include benthic (e.g., clams) or nektonic (e.g., squids) organisms with planktonic larvae. Euplankton are organisms adapted for a planktonic habitat, whereas tychoplankton are organisms (typically benthic) that have inadvertently become part of the plankton community by physical processes such as turbidity currents....

This is a preview of subscription content, log in to check access.

Bibliography

  1. Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142CrossRefGoogle Scholar
  2. Barron JA (1985) Miocene to Holocene planktic diatoms. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, UK, pp 763–809Google Scholar
  3. Bé AWH, Gilmer RW (1977) A zoogeographic and taxonomic review of euthecosomatous pteropoda. In: Ramsey ATS (ed) Oceanic micropaleontology. Academic, London, pp 733–808Google Scholar
  4. Bown PR, Lees JA, Young JR (2004) Calcareous nannoplankton evolution and diversity through time. In: Thierstein HR, Young JR (eds) Coccolithophores from molecular processes to global impact, vol 4. Springer-Verlag, Berlin Heidelberg, pp 481–508CrossRefGoogle Scholar
  5. Braun A, Chen J, Waloszek D, Maas A (2007) First early Cambrian radiolarian. Geol Soc Lond Spec Publ 286:143–149CrossRefGoogle Scholar
  6. Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335CrossRefGoogle Scholar
  7. Canfield DE, Kristensen E, Thamdrup B (2005) The sulfur cycle. Adv Mar Biol 48:313–381CrossRefGoogle Scholar
  8. Casamayor EO, Borrego CM (2010) Archaea. In: Likens GE (ed) Plankton of inland waters. Academic, Amsterdam, pp 1–15Google Scholar
  9. Clayton CJ (1994) Microbial and organic processes. In: Parker A, Sellwood BW (eds) Quantitative diagenesis: recent developments and applications to reservoir geology. Springer, Dordrecht, pp 125–160CrossRefGoogle Scholar
  10. Denne RA (2017) Biostratigraphy. In: Sorkhabi R (ed) Encyclopedia of petroleum geoscience. Springer International Publishing AG, Cham, 20 pGoogle Scholar
  11. Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O’Neil J, Little CTS (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–64CrossRefGoogle Scholar
  12. Duarte CM, Cebrián J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766CrossRefGoogle Scholar
  13. Dunthorn M, Lipps JH, Dolan JR, Saab MA-A et al (2015) Ciliates – protists with complex morphologies and ambiguous early fossil record. Mar Micropaleontol 119:1–6CrossRefGoogle Scholar
  14. Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. PNAS 103:15759–15764CrossRefGoogle Scholar
  15. Fehling J, Stoecker D, Baldauf SL (2007) Photosynthesis and the eukaryote tree of life. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic, Amsterdam, pp 76–108Google Scholar
  16. Finkel ZV (2007) Does phytoplankton cell size matter? The evolution of modern marine food webs. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic, Amsterdam, pp 333–350CrossRefGoogle Scholar
  17. French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA, Hoshinof Y, Peters CA, George SC, Love GD, Brocks JJ, Buick R, Summons RE (2015) Reappraisal of hydrocarbon biomarkers in Archean rocks. PNAS 112:5915–5920CrossRefGoogle Scholar
  18. Hackett JD, Yoon HS, Butterfield NJ, Sanderson MJ, Bhattacharya D (2007) Plastid endosymbiosis: sources and timing of the major events. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic, Amsterdam, pp 76–108Google Scholar
  19. Hunt JM (1979) Petroleum geochemistry and geology. W. H. Freeman and Company, San Francisco, 617 pGoogle Scholar
  20. Jackson ED, Koizumi I, Avdeiko G, Butt A, Clague D, Dalrymple GB, Greene HG, Karpoff AM, Kirkpatrick RJ, Kono M, Ling HY, McKenzie J, Morgan J, Takayama T (1980) Explanatory notes for DSDP Leg 55 site chapters. In: Jackson ED, Koisumi I et al (eds) Initial reports of the deep sea drilling project, vol 55. U.S. Government Printing Office, Washington, DC, pp 33–41Google Scholar
  21. Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69CrossRefGoogle Scholar
  22. Katz ME, Finkel ZV, Grzebyk D, Knoll AH, Falkowski PG (2004) Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu Rev Ecol Evol Syst 35:523–556CrossRefGoogle Scholar
  23. Keller WD, Viele GW, Johnson CH (1977) Texture of Arkansas novaculite indicates thermally induced metamorphism. J Sediment Petrol 47:834–843Google Scholar
  24. Killops S, Killops V (2005) Introduction to organic geochemistry. Blackwell Publishing, Oxford, UK. 393 pGoogle Scholar
  25. Knoll AH (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Springs Harb Perspect Biol 6:a016121CrossRefGoogle Scholar
  26. Knoll AH, Summons RE, Waldbauer JR, Zumberge JE (2007) The geological succession of primary producers in the oceans. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic, Amsterdam, pp 134–168Google Scholar
  27. Kump LR, Junium C, Arthur MA, Brasier A, Fallick A, Melezhik V, Lepland A, Črne AE, Luo G (2011) Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science 334:1694–1696CrossRefGoogle Scholar
  28. Litchman E (2007) Resource competition and the ecological success of phytoplankton. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic, Amsterdam, pp 351–375CrossRefGoogle Scholar
  29. Madigan MT, Jung DO (2008) An overview of purple bacteria: systematics, physiology, and habitats. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28. Springer, Dordecht, pp 1–15Google Scholar
  30. Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, Wincker P, Iudicone D, de Vargas C, Bittner L, Zingone A, Bowler C (2016) Insights into global diatom distribution and diversity in the world’s ocean. PNAS 113:E1516–E1525CrossRefGoogle Scholar
  31. Martin R, Quigg A (2012) Evolving phytoplankton stoichiometry fueled diversification of the marine biosphere. Geosciences 2:130–146CrossRefGoogle Scholar
  32. Moczydłstrokowska M, Landing E, Zang W, Palacios T (2011) Proterozoic phytoplankton and timing of chlorophyte algae origins. Palaeontology 54:721–733CrossRefGoogle Scholar
  33. Moldowan JM, Talyzina NM (1998) Biogeochemical evidence for dinoflagellate ancestors in the early Cambrian. Science 281:1168–1170CrossRefGoogle Scholar
  34. Ogg JG, Ogg G, Gradstein FM (2016) A concise geologic time scale. Elsevier, Amsterdam. 234 pGoogle Scholar
  35. Paris F, Grahn Y, Nestor V, Lakova I (1999) A revised chitinozoan classification. J Paleontol 73:549–570CrossRefGoogle Scholar
  36. Perch-Nielsen K (1985) Silicoflagellates. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, UK, pp 811–846Google Scholar
  37. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide. Cambridge University Press, Cambridge, 492+704 pGoogle Scholar
  38. Reháková D, Michalík J (1997) Evolution and distribution of calpionellids – the most characteristic constituents of Lower Cretaceous Tethyan microplankton. Cretac Res 18:493–504CrossRefGoogle Scholar
  39. Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, New York, 535 pCrossRefGoogle Scholar
  40. Rigby S, Milsom CV (2000) Origins, evolution, and diversification of zooplankton. Annu Rev Ecol Evol Syst 31:293–313CrossRefGoogle Scholar
  41. Sato N, Moriyama T, Mori N, Toyoshima M (2017) Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol 33:74CrossRefGoogle Scholar
  42. Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archean life: stromatolites and microfossils. Precambrian Res 158:141–155CrossRefGoogle Scholar
  43. Sieburth JM, Smatacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23:1256–1263CrossRefGoogle Scholar
  44. Strauss H, Melezhik VA, Lepland A, Fallick AE, Hanski EJ, Filippov MM, Deines YE, Illing CJ, Črne AE, Brasier AT (2013) Enhanced accumulation of organic matter: the Shunga Event. In: Melezhik V, Prave AR, Hanski EJ, Fallick AE, Lepland A, Kump R, Strauss H (eds) Reading the archive of earth’s oxygenation. volume 3: Global events and the Fennoscandian Arctic Russia – drilling early Earth project. Springer, Berlin/Heidelberg, pp 1195–1273CrossRefGoogle Scholar
  45. Taylor TN, Taylor EL, Krings M (2009) Paleobotany the biology and evolution of fossil plants. Academic, Amsterdam, 1230 pGoogle Scholar
  46. Tissot BP, Welte DH (1984) Petroleum formation and occurrence a new approach to oil and gas exploration. Springer, Berlin, 699 pGoogle Scholar
  47. Turner J (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27:57–102CrossRefGoogle Scholar
  48. Van den Bark E, Thomas OD (1980) Ekofisk: first of the giant oil fields in Western Europe. In: Halbouty MT (ed) Giant oil and gas fields of the decade 1968–1978. AAPG Memoir, vol 30. American Association of Petroleum Geologists, Tulsa, pp 195–224Google Scholar
  49. Ventura GT, Kenig F, Reddy CM, Schieber J, Frysinger GS, Nelson RK, Dinel E, Gaines RB, Schaeffer P (2007) Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere. PNAS 104:14260–14265CrossRefGoogle Scholar
  50. Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundances, identity, and growth state of Actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71:5551–5559CrossRefGoogle Scholar
  51. Williams M, Siveter DJ, Salas MJ, Vannier J, Popov LE, Pour MG (2008) The earliest ostracods: the geological evidence. Senckenb Lethaea 88:11–21CrossRefGoogle Scholar
  52. Zhang Z-Y (1997) A new Palaeoproterozoic clastic-facies microbiota from the Changzhougou Formation, Changcheng Group, Jixian, North China. Geol Mag 134:145–150CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Geology, Energy, & the EnvironmentTexas Christian UniversityFort WorthUSA