Skip to main content

Carbon Isotopes in Petroleum Science

  • Living reference work entry
  • First Online:
Encyclopedia of Petroleum Geoscience

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

In petroleum science, carbon isotopes generally involve the interpretative information carried by the relative, natural distributions of the two stable carbon isotope species, \( {}_6{}^{12}\mathrm{C} \)and \( {}_6{}^{13}\mathrm{C} \), in various organic and inorganic compounds. As carbon transfers between phases and substances, e.g., from kerogen to oil, or CO2 to CH4, the moves are associated with isotope effects that produce systematic, and generally predictable, isotopic fractionations. The carbon isotopes are thus partly partitioned, such that one carbon-bearing phase compared to another in the system can be relatively enriched or depleted in 12C or 13C. This uneven distribution between phases and substances is expressed by the isotope molar abundance ratio, i.e., n(13C)/n(12C), or more commonly, in delta notation (δ13C), whereby either the magnitude of the isotope fractionation or the resultant isotope signature can be diagnostic for petroleum-related processes or...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Abelson PH, Hoering TC (1961) Carbon isotope fractionation in the formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci 47:623

    Article  Google Scholar 

  • Alekseyev FA, Lebedev VS (1964) Isotopic composition of carbon of oil and natural gas. Petrol Geol: Digest Russ Liter Petrol Geol (Геология Нефти) 8(7):393–395

    Google Scholar 

  • Alekseyev FA, Lebedev VS, Krylova TA (1973) Isotope composition of carbon in gaseous hydrocarbons and conditions for accumulations of natural gas. Int Geol Rev 15(3):300–308

    Article  Google Scholar 

  • Baer DS, Paul JB, Gupta M, O’Keefe A (2002) Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy. Appl Phys B Lasers Opt 75:261–265

    Article  Google Scholar 

  • Barrie A, Bricout J, Koziet J (1984) Gas chromatography–stable isotope ratio analysis at natural abundance levels. Biomed Mass Spectrom 11(11):583–588

    Article  Google Scholar 

  • Barrie CD, Taylor KWR, Zumberge J (2016) Measurement of compound-specific carbon isotope ratios (δ13C values) via direct injection of whole crude oil samples. Rapid Commun Mass Spectrom 30(7):843–853

    Article  Google Scholar 

  • Bergamaschi P, Schupp M, Harris GW (1994) High-precision direct measurements of 13CH4/12CH4 and 13CH3D/13CH3D ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer. Appl Opt 33(33):7704–7716

    Article  Google Scholar 

  • Bernard BB, Brooks JM, Sackett WM (1976) Natural gas seepage in the Gulf of Mexico. Earth Planet Sci Lett 31(1):48–54

    Article  Google Scholar 

  • Berner U, Faber E (1988) Maturity related mixing model for methane, ethane and propane, based on carbon isotopes. Org Geochem 13(1–3):67–72

    Article  Google Scholar 

  • Berner U, Faber E (1996) Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Org Geochem 24(10):947–955

    Article  Google Scholar 

  • Bjorøy M, Hall K, Gillyon P, Jumeau J (1991) Carbon isotope variations in n-alkanes and isoprenoids of whole oils. Chem Geol 93(1):13–20

    Article  Google Scholar 

  • Brand WA, Dobberstein P (1996) Isotope-ratio-monitoring liquid chromatography mass spectrometry (IRM-LCMS): first results from a moving wire interface system. Isot Environ Health Stud 32(2–3):275–283

    Article  Google Scholar 

  • Burwood R, Drozd RJ, Halpern HI, Sedivy RA (1988) Carbon isotopic variations of kerogen pyrolyzates. Org Geochem 12(2):195–205

    Article  Google Scholar 

  • Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361(6410):344–345

    Article  Google Scholar 

  • Chen S, Jia W, Peng P (2016) Carbon isotope analyses of n-alkanes released from rapid pyrolysis of oil asphaltenes in a closed system. Rapid Commun Mass Spectrom 30(15):1779–1786

    Article  Google Scholar 

  • Chung HM, Gormly JR, Squires RM (1988) Origin of gaseous hydrocarbons in subsurface environments – theoretical considerations of carbon isotope distribution. Chem Geol 71:97–104

    Article  Google Scholar 

  • Chung HM, Rooney MA, Toon MB, Claypool GE (1992) Carbon isotope composition of marine crude oils. AAPG Bull 76(7):1000–1007

    Google Scholar 

  • Clayton C (1991) Carbon isotope fractionation during natural gas generation from kerogen. Mar Pet Geol 8(2):232–240

    Article  Google Scholar 

  • Clayton CJ, Bjorøy M (1994) Effect of maturity on 13C12C ratios of individual compounds in North Sea oils. Org Geochem 21(6–7):737–750

    Article  Google Scholar 

  • Coplen TB, Shrestha Y (2016) Isotope-abundance variations and atomic weights of selected elements: 2016 IUPAC technical report. Pure Appl Chem 88(12):1203–1224

    Article  Google Scholar 

  • Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3(2–3):53–92

    Article  Google Scholar 

  • Cramer B, Krooss BM, Littke R (1998) Modelling isotope fractionation during primary cracking of natural gas: a reaction kinetic approach. Chem Geol 149(3–4):235–250

    Article  Google Scholar 

  • Crosson ER, Ricci KN, Richman BA, Chilese FC, Owano TG, Provencal RA, Spence TG (2002) Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath. Anal Chem 74(9):2003–2007

    Article  Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz AP, Fontes J-C (eds) Handbook of environmental geochemistry 1. The terrestrial environment. Elsevier, Amsterdam, pp 329–406

    Google Scholar 

  • Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300

    Article  Google Scholar 

  • Etiope G, Sherwood Lollar B (2013) Abiotic methane on earth. Rev Geophys 51(2):276–299

    Article  Google Scholar 

  • Faber E (1987) Zur Isotopengeochemie gasfoermiger Kohlenwasserstoffe. Erdoel Erdgas Kohle 103:210–218

    Google Scholar 

  • Faber E, Gerling P, Dumke I (1988) Gaseous hydrocarbons of unknown origin found while drilling. Org Geochem 13(4):875–879

    Article  Google Scholar 

  • Faramawy S, Zaki T, Sakr AA (2016) Natural gas origin, composition, processing: a review. J Nat Gas Sci Eng 34:34–54

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Biol 40(1):503–537

    Article  Google Scholar 

  • Ferguson RE, Broida HP (1956) Stable carbon isotope analysis by optical spectroscopy. Anal Chem 28(9):1436–1438

    Article  Google Scholar 

  • Galimov EM (1969) Isotopic composition of carbon in gases of the crust. Int Geol Rev 11(10):1092–1104

    Article  Google Scholar 

  • Galimov EM (1973) Izotopy ugleroda v neftegazovoy geologii. Nedra Press, Moscow (English translation: Carbon isotopes in oil-gas geology, National Aeronautics and Space Administration, NASA TT F-682, 1975), 384 pp

    Google Scholar 

  • Galimov EM (1988) Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. Chem Geol 71(1):77–95

    Article  Google Scholar 

  • GeoMark Research (2021) J Zumberge personal communication

    Google Scholar 

  • Gilbert A, Yamada K, Yoshida N (2013) Exploration of intramolecular 13C isotope distribution in long chain n-alkanes (C11–C31) using isotopic 13C NMR. Org Geochem 62:56–61

    Article  Google Scholar 

  • Godin JP, McCullagh JS (2011) Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS). Rapid Commun Mass Spectrom 25(20):3019–3028

    Article  Google Scholar 

  • Gray JR, Lacrampe-Couloume G, Gandhi D, Scow KM, Wilson RD, Mackay DM, Sherwood Lollar B (2002) Carbon and hydrogen isotopic fractionation during biodegradation of methyl tert-butyl ether. Environ Sci Technol 36(9):1931–1938

    Article  Google Scholar 

  • Harris SA, Whiticar MJ, Eek MK (1999) Molecular and isotopic analysis of oils by solid phase microextraction of gasoline range hydrocarbons. Org Geochem 30(8):721–737

    Article  Google Scholar 

  • Hayes JM (2001) Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. Rev Mineral Geochem 43(1):225–277

    Article  Google Scholar 

  • Hayes JM, Strauss H, Kaufman AJ (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol 161(1–3):103–125

    Article  Google Scholar 

  • Huang L, Sturchio NC, Abrajano T, Heraty LJ, Holt BD, Argonne National Laboratory (ANL) Argonne, IL (1999) Carbon and chlorine isotope fractionation of chlorinated aliphatic hydrocarbons by evaporation. Org Geochem 30(8):777–785

    Article  Google Scholar 

  • James AT (1983) Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. AAPG Bull 67(7):1176–1191

    Google Scholar 

  • Jenden PD, Newell KD, Kaplan IR, Watney WL (1988) Composition and stable-isotope geochemistry of natural gases from Kansas, Midcontinent, USA. Chem Geol 71(1–3):117–147

    Article  Google Scholar 

  • Jenden PD, Drazan DJ, Kaplan IR (1993) Mixing of thermogenic natural gases in northern Appalachian Basin. AAPG Bull 77(6):980–998

    Google Scholar 

  • Johnson EG, Nier AO (1953) Angular aberrations in sector shaped electromagnetic lenses for focusing beams of charged particles. Phys Rev 91(1):10–17

    Article  Google Scholar 

  • Kelly JF, Sams RL, Blake TA, Newburn M, Moran J, Alexander ML, Kreuzer H (2012) A capillary absorption spectrometer for stable carbon isotope ratio (13C/12C) analysis in very small samples. Rev Sci Instrum 83(2):023101–023101-14

    Article  Google Scholar 

  • Koons CB, Bond JG, Peirce FL (1974) Effects of depositional environment and postdepositional history on chemical composition of Lower Tuscaloosa oils. AAPG Bull 58(7):1272–1280

    Google Scholar 

  • Krummen M, Hilkert AW, Juchelka D, Duhr A, Schlüter HJ, Pesch R (2004) A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 18(19):2260–2266

    Article  Google Scholar 

  • Li Y, Xiong Y, Fang C, Liang Q, Zhang J, Peng P (2011) A new application of headspace single-drop microextraction technique for compound specific carbon isotopic determination of gasoline range hydrocarbons. Org Geochem 42(5):559–565

    Article  Google Scholar 

  • Liu Q, Wu X, Wang X, Jin Z, Zhu D, Meng Q, Fu Q (2019) Carbon and hydrogen isotopes of methane, ethane, propane: a review of genetic identification of natural gas. Earth Sci Rev 190:247–272

    Article  Google Scholar 

  • Lorant F, Prinzhofer A, Behar F, Huc AY (1998) Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases. Chem Geol 147:249–264

    Article  Google Scholar 

  • Macko SA, Fogel ML, Hare PE, Hoering TC (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem Geol 65:79–92

    Article  Google Scholar 

  • Mankiewicz PJ, Pottorf RJ, Kozar MG, Vrolijk P (2009) Gas geochemistry of the Mobile Bay Jurassic Norphlet formation: thermal controls and implications for reservoir connectivity. AAPG Bull 93(10):1319–1346

    Article  Google Scholar 

  • Martini AM, Walter LM, Ku TC, Budai JM, McIntosh JC, Schoell M (2003) Microbial production and modification of gases in sedimentary basins: a geochemical case study from a Devonian shale gas play, Michigan basin. AAPG Bull 87(8):1355–1375

    Article  Google Scholar 

  • Mattauch J, Herzog R (1934) Über einen neuen Massenspektrographen. Zeitschrift für Physik 89(11–12):786–795

    Google Scholar 

  • Matthews DE, Hayes JM (1978) Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal Chem 50(11):1465–1473

    Article  Google Scholar 

  • McCarty HB, Felbeck GT (1986) High temperature simulation of petroleum formation – IV. Stable carbon isotope studies of gaseous hydrocarbons. Org Geochem 9(4):183–192

    Article  Google Scholar 

  • McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum 21(8):724–730

    Article  Google Scholar 

  • McKirdy DM, Powell TG (1974) Metamorphic alteration of carbon isotopic composition in ancient sedimentary organic matter: new evidence from Australia and South Africa. Geol 2(12):591–595

    Google Scholar 

  • Meier-Augenstein W (1999) Applied gas chromatography coupled to isotope ratio mass spectrometry. J Chromatogr A 842(1–2):351–371

    Article  Google Scholar 

  • Meinschein WG, Rinaldi GGL, Hayes JM, Schoeller DA (1974) Intramolecular isotopic order in biologically produced acetic acid. Biol Mass Spectrom 1(3):172–174

    Article  Google Scholar 

  • Miao Z, Chen J, Wang J, Wang G, Zhang C, Li W (2012) Application of butane geochemistry of natural gas in hydrocarbon exploration. Pet Sci 9(4):455–462

    Article  Google Scholar 

  • Milkov AV (2011) Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs. Org Geochem 42(2):184–207

    Article  Google Scholar 

  • Milkov AV, Etiope G (2018) Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org Geochem 125:109–120

    Article  Google Scholar 

  • Milkov AV, Faiz M, Etiope G (2020) Geochemistry of shale gases from around the world: composition, origins, isotope reversals and rollovers, and implications for the exploration of shale plays. Org Geochem 143(103997):1–18

    Google Scholar 

  • Monson KD, Hayes JM (1980) Biosynthetic control of the natural abundance of Carbon 13 at specific positions within fatty acids in Escherichia coli. evidence regarding the coupling of fatty acid and phospholipid synthesis. J Biol Chem 255(23):11435–11441

    Google Scholar 

  • Murnick D, Peer B (1994) Laser-based analysis of carbon isotope ratios. Science 263(5149):945–947

    Article  Google Scholar 

  • Nier AO (1991) The development of a high resolution mass spectrometer: a reminiscence. J Am Soc Mass Spectrom 2(6):447–452

    Article  Google Scholar 

  • Nier AO, Gulbransen EA (1939) Variations in the relative abundance of the carbon isotopes. J Am Chem Soc 61(3):697–698

    Article  Google Scholar 

  • Ono S, Wang DT, Gruen DS, Sherwood Lollar B, Zahniser MS, McManus BJ, Nelson DD (2014) Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy. Anal Chem 86(13):6487–6494

    Article  Google Scholar 

  • Philp RP, Kuder T (2008) Biomarkers and stable isotopes in environmental forensic studies. In: Methods in environmental forensics. CRC Press, pp 129–186

    Google Scholar 

  • Piasecki A, Sessions A, Lawson M, Ferreira AA, Neto ES, Eiler JM (2016) Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer. Geochim Cosmochim Acta 188:58–72

    Article  Google Scholar 

  • Prinzhofer A, Battani A (2003) Gas isotopes tracing: an important tool for hydrocarbons exploration. Oil Gas Sci Technol 58(2):299–311

    Article  Google Scholar 

  • Prinzhofer A, Pernaton E (1997) Isotopically light methane in natural gas: bacterial imprint or diffusive fractionation? Chem Geol 142(3–4):193–200

    Article  Google Scholar 

  • Prinzhofer A, Mello MR, da Silva Freitas LC, Takaki T (2000) New geochemical characterization of natural gas and its use in oil and gas evaluation. In: Mello MR, Katz BJ (eds) Petroleum systems of South Atlantic margins. AAPG Memoir, vol 73. American Association of Petroleum Geologists and PETROBRAS, pp 107–119

    Google Scholar 

  • Redding CE, Schoell M, Monin JC, Durand B (1980) Hydrogen and carbon isotopic composition of coals and kerogens. Phys Chem Earth 12:711–723

    Article  Google Scholar 

  • Rice DD, Claypool GE (1981) Generation, accumulation, and resource potential of biogenic gas. AAPG Bull 65(1):5–25

    Google Scholar 

  • Rooney MA, Claypool GE, Chung HM (1995) Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem Geol 126(3–4):219–232

    Article  Google Scholar 

  • Sano M, Yotsui Y, Abe H, Sasaki S (1976) A new technique for the detection of metabolites labelled by the isotope 13C using mass fragmentography. Biomed Mass Spectrom 3(1):1–3

    Article  Google Scholar 

  • Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378(2):283–300

    Article  Google Scholar 

  • Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44(5):649–661

    Article  Google Scholar 

  • Schoell M (1983) Genetic characterization of natural gases. AAPG Bull 67(12):2225–2238

    Google Scholar 

  • Schwartzkopf T (1984) Kohlenstoff- und Wasserstoffisotope in Kohlen und ihren Nebengesteinen. Diplomarbeit Ruhr Univ, Bochum, 39 pp

    Google Scholar 

  • Sessions AL, Sylva SP, Hayes JM (2005) Moving-wire device for carbon isotopic analyses of nanogram quantities of nonvolatile organic carbon. Anal Chem 77(20):6519–6527

    Article  Google Scholar 

  • Shell (2021) O Podlaha personal communication

    Google Scholar 

  • Sherwood Lollar B, Slater GF, Ahad J, Sleep B, Spivack J, Brennan M, MacKenzie P (1999) Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: implications for intrinsic bioremediation. Org Geochem 30(8):813–820

    Article  Google Scholar 

  • Sherwood OA, Schwietzke S, Arling VA, Etiope G (2017) Global inventory of gas geochemistry data from fossil fuel, microbial and burning sources, version 2017. Earth Syst Sci Data 9(2):639–656

    Article  Google Scholar 

  • Silverman SR (1964) Investigations of petroleum origin and evaluation mechanisms by carbon-isotope studies. In: Craig H, Miller SL, Wasserburg GJ (eds) Isotopic and cosmic chemistry. North-Holland, Amsterdam, pp 92–102

    Google Scholar 

  • Silverman SR, Epstein S (1958) Carbon isotopic compositions of petroleums and other sedimentary organic materials. AAPG Bull 42(5):998–1012

    Google Scholar 

  • Sofer Z (1984) Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. AAPG Bull 68(1):31–49

    Google Scholar 

  • Sofer Z (1991) Stable isotopes in petroleum exploration, Chapter 9. In: Merrill RK (ed) Source and migration processes and evaluation techniques. Handbook of petroleum geology AAPG special volume. American Association of Petroleum Geologists, pp 103–106

    Google Scholar 

  • Stahl WJ (1978) Source rock-crude oil correlation by isotopic type-curves. Geochim Cosmochim Acta 42(10):1573–1577

    Article  Google Scholar 

  • Stahl WJ, Carey BD Jr (1975) Source-rock identification by isotope analyses of natural gases from fields in the Val Verde and Delaware basins, west Texas. Chem Geol 16(4):257–267

    Article  Google Scholar 

  • Stahl W, Faber E (1983) Carbon isotopes as a petroleum exploration tool. In: 11th World Petroleum Congress, London, Paper WPC-20114, pp 147–159

    Google Scholar 

  • Stolper DA, Lawson M, Formolo MJ, Davis CL, Douglas PMJ, Eiler JM (2017) The utility of methane clumped isotopes to constrain the origins of methane in natural gas accumulations. Geol Soc, Lond, Special Publication 468(1):23–52

    Article  Google Scholar 

  • Teece MA, Fogel ML, Dollhopf ME, Nealson KH (1999) Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org Geochem 30(12):1571–1579

    Article  Google Scholar 

  • Tilley B, Muehlenbachs K (2013) Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems. Chem Geol 339:194–204

    Article  Google Scholar 

  • USGS (2021) U.S Geological Survey Energy Resources Program Geochemistry Laboratory Database (EGDB). https://certmapper.cr.usgs.gov/data/apps/geochem-db/

  • van Krevelen DW (1961) Coal: typology – chemistry – physics – constitution, vol 3. Elsevier Science and Technology, Amsterdam, 514 p

    Google Scholar 

  • van Warmerdam EM, Frape SK, Aravena R, Drimmie RJ, Flatt H, Cherry JA (1995) Stable chlorine and carbon isotope measurements of selected chlorinated organic solvents. Appl Geochem 10(5):547–552

    Article  Google Scholar 

  • Vieth A, Wilkes H (2010) Stable isotopes in understanding origin and degradation processes of petroleum. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 97–111

    Chapter  Google Scholar 

  • Vieth-Hillebrand A, Wilkes H (2020) Stable isotopes in understanding origin and degradation processes of hydrocarbons and petroleum. In: Wilkes H (ed) Hydrocarbons, oils and lipids: diversity, origin, chemistry and fate. Springer International Publishing, pp 339–353

    Chapter  Google Scholar 

  • Wang Z, Schauble EA, Eiler JM (2004) Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochim Cosmochim Acta 68(23):4779–4797

    Article  Google Scholar 

  • Whiticar MJ (1994) Correlation of natural gases with their sources. Chapter 16:part IV. In: Magoon LB, Dow WG (eds) The petroleum system – from source to trap: memoir 60. AAPG, Tulsa, pp 261–283

    Google Scholar 

  • Whiticar MJ (1996) Stable isotope geochemistry of coals, humic kerogens and related natural gases. Int J Coal Geol 32(1–4):191–215

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161(1–3):291–314

    Article  Google Scholar 

  • Whiticar MJ (2020) The biogeochemical methane cycle. In: Wilkes H (ed) Hydrocarbons, oils and lipids: diversity, origin, chemistry and fate. Springer International Publishing, pp 669–746

    Chapter  Google Scholar 

  • Whiticar MJ, Snowdon LR (1999) Geochemical characterization of selected Western Canada oils by C5–C8 compound specific isotope correlation (CSIC). Org Geochem 30(9):1127–1161

    Article  Google Scholar 

  • Wilhelms A, Larter SR, Hall K (1994) A comparative study of the stable carbon isotopic composition of crude oil alkanes and associated crude oil asphaltene pyrolysate alkanes. Org Geochem 21(6):751–760

    Article  Google Scholar 

  • Yeh H, Epstein S (1981) Hydrogen and carbon isotopes of petroleum and related organic matter. Geochim Cosmochim Acta 45(5):753–762

    Article  Google Scholar 

  • Yen TF (1972) Terrestrial and extraterrestrial stable organic molecules. In: Landel RF, Rembaum A (eds) Chemistry in space research. American Elsevier, New York, pp 105–153

    Google Scholar 

  • Young ED, Rumble D III, Freedman P, Mills M (2016a) A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases. Int J Mass Spectrom 401:1–10

    Article  Google Scholar 

  • Young ED, Kohl IE, Sherwood Lollar B, Etiope G, Rumble D, Li S, Sutcliffe CN (2016b) The relative abundances of resolved 12CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases. AGUFM 2016:B23H-06

    Google Scholar 

  • Zumberge J, Ferworn K, Brown S (2012) Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Mar Pet Geol 31(1):43–52

    Article  Google Scholar 

  • Zumberge J, Illich HL, Waite L (2016) Petroleum geochemistry of the Cenomanian-Turonian Eagle Ford oils of South Texas. In: Breyer J (ed) The Eagle Ford Shale: a renaissance in U.S. Oil Production. AAPG Memoir M110(2). American Association of Petroleum Geologists, pp 135–165

    Google Scholar 

Download references

Acknowledgments

I dedicate this paper to my friend and colleague Ėrik Mikhaĭlovich Galimov (1936–2020), Professor at the V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russia. He inspired us with his vast and insightful work in isotope geochemistry, but also with his keen humor. I thank E. Faber (BGR) for reviewing the paper and J. Zumberge (GeoMark Research) and O. Podlaha (Shell) for providing data. I warmly acknowledge the many other fellow isotope geochemists who have developed the methodologies and helped our understanding of petroleum isotope systematics reflected in this brief summary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Whiticar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Whiticar, M.J. (2021). Carbon Isotopes in Petroleum Science. In: Sorkhabi, R. (eds) Encyclopedia of Petroleum Geoscience. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-02330-4_310-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02330-4_310-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02330-4

  • Online ISBN: 978-3-319-02330-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics