Skip to main content
  • 6439 Accesses

Abstract

Atoms can aggregate or cluster in simple arrangements without forming a unit cell. Silica tetrahedral (SiO3) and other tetrahedral clusters, double tetrahedral containing five atoms, pyramids containing five atoms, as well as octahedral or double pyramids containing six atoms are among the more fundamental clusters. Eight atoms form a simple cubic unit cell, while nine characterize a body-centered cubic cell, becoming more complex with face-centered cubic unit cells which can be rendered as icosahedrons of 12 atoms or 13 atoms with a body-centered or cluster-centered atom. These form building blocks for nanoparticles which can continue to add layers or shells forming layered or shell structures, even nanotubes. Many clusters and shell structures are represented by the platonic solids and their regular-face, convex polyhedra. Carbon clusters such as fullerene-based multilayer or multiconcentric clusters form unique nanoparticles. Variances of these structures form aggregates representing carbon-based soots and related nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berman M (1971) Regular-faced convex polyhedral. J Frankl Inst 291(5):329–352

    Article  Google Scholar 

  • Bowlan J, Liang A, de Haar WA (2011) How metallic are small sodium clusters. Phys Rev Lett 106(4):043401-1-4

    Article  Google Scholar 

  • Chopra NG, Zettl A (1998) Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun 105:297–299

    Article  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (1988) Graphite fibers and filaments, vol 5, Springer series in materials science. Springer, Berlin

    Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic, New York

    Google Scholar 

  • Duncan MA, Rouvray DU (1989) Microclusters. Sci Am 161:110–115

    Google Scholar 

  • Evans RC (1964) An introduction to crystal chemistry, 2nd edn. Cambridge University Press, London

    Google Scholar 

  • Guo T, Nikolaes P, Rinzler AG, Touranek D, Colbert DT, Swalley RE (1995) Self-assembly of tubular fullerenes. J Phys Chem 99(27):10694–10697

    Article  Google Scholar 

  • Hamada H, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579–1581

    Article  Google Scholar 

  • Harris PJF (1999) Carbon nanotubes and related structures: new materials for the twenty-first century. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60. A new form of carbon. Nature 347:354–355

    Article  Google Scholar 

  • Kroto HW, Heath JR, Obrien SC, Curl RF, Swalley RE (1985) C60: buckminsterfullerene. Nature 328:162–163

    Article  Google Scholar 

  • Lair SL, Herndon WC, Murr LE, Quinones SA (2006) End cap nucleation of carbon nanotubes. Carbon 44:447–455

    Article  Google Scholar 

  • Lair SL, Herndon WC, Murr LE (2007) Energetic trends of single-walled carbon nanotube ab initio calculations. J Mater Sci 42(5):1819–1827

    Article  Google Scholar 

  • Lair SL, Herdon WC, Murr LE (2008) Stability comparison of simulated double walled carbon nanotube structures. Carbon 46:2083–2095

    Article  Google Scholar 

  • Mackay AL (1962) A dense non-crystallographic packing of equals. Acta Crystallogr 15:916–918

    Article  Google Scholar 

  • Murr LE (2012) Soot:structure, composition and health effects, Chap. 1 in Soot: sources, formation and health effects, Paul MC (ed) Nova Science Publishers, New York

    Google Scholar 

  • Rao BK, Khanna SN, Jena P (1999) Designing new materials using atomic clusters. J Clust Sci 10:477–485

    Article  Google Scholar 

  • Samorjai A (1994) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  • Terrones H, Terrones M (2003) Curved nanostructured materials. New J Phys 5:1–34

    Article  Google Scholar 

  • Tibbetts GG (1984) Why are carbon filaments tubular? J Cryst Growth 66:632–638

    Article  Google Scholar 

  • Tibbetts GG (2001) Vapor grown carbon fiber research and applications, achievements, and barriers. In: Biro LP, Bernardo CA, Tibbetts GG, Cambin P (eds) Carbon filaments and nanotubes: common origins, differing applications. Springer, New York

    Google Scholar 

  • Tsai AP (1999) Metallurgu of quasicrystals, In: Stadnik ZM (ed) Physical properties of quasicrystals. Springer, Berlin

    Google Scholar 

  • Tsai AP (2003) Back to the future-an account discovery of stable quasicrystals. Acc Chem Res 36(1):31–38

    Article  Google Scholar 

  • Tsai AP (2008) Icosahedral clusters, icosahedral order and stability of quasicrystals-a view of metallurgy. Sci Technol Adv Mater 9:1–20

    Google Scholar 

  • Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359:707–709

    Article  Google Scholar 

  • Yurdumakan B, Raravikar NR, Ajayan PM, Dhinojwala A (2005) Synthetic gecko toot-hairs from multiwalled carbon nanotubes. Chem Commons 30:3799–3801

    Google Scholar 

  • Zhang M, Fournier R (2006) Structure of 55-atom bimetallic clusters. J Mol Struct (THEOCHEM) 762:49–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence E. Murr .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Murr, L.E. (2015). Chemical Forces: Nanoparticles. In: Handbook of Materials Structures, Properties, Processing and Performance. Springer, Cham. https://doi.org/10.1007/978-3-319-01815-7_8

Download citation

Publish with us

Policies and ethics