Skip to main content

Computer Simulation in Materials Science and Engineering

Definitions, Types, Methods, Implementation, Verification, and Validation

  • Reference work entry
  • 6344 Accesses

Abstract

Computer simulation is described as a comprehensive method for studying materials and materials systems. Computational methods used on different length and time scales for the simulation of materials structures and behavior are described along with process features involved in the implementation, verification, and validation of computer simulations. Computer simulation in the context of integrated computational materials engineering as this relates to the materials genome initiative concept for materials innovation and advanced materials development and deployment is discussed.

Keywords

  • Density Functional Theory
  • Monte Carlo
  • Discrete Element Method
  • Smooth Particle Hydrodynamic
  • Dissipative Particle Dynamic

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham F, Broughton J, Bernstein N, Kaxiras E (1998) Spanning the length scales in dynamic simulation. Comput Phys 12:538–556

    CrossRef  Google Scholar 

  • Bathe K (1982) Finite element procedures in engineering analysis. Prentice Hall, Cambridge, UK

    Google Scholar 

  • Benson DJ (1992) Computational methods in Lagrangian and Eulerial hydrocodes. Comp Methods in Appl Mech & Engr 99(2–3):235–394

    CrossRef  Google Scholar 

  • Broughton JQ, Abrahams FF, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales; methodology and applications. Phys Rev B60:2391–2403

    CrossRef  Google Scholar 

  • Bulatov VU, Abraham F, Kubin L, Devrince B, Yip S (1998) Connecting atomistic and mesoscale simulations of crystal plasticity. Nature 391:669–672

    CrossRef  Google Scholar 

  • Car R, Parinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    CrossRef  Google Scholar 

  • Cao W, Chen S-L, Zhang F, Wu K, Yang Y, Chang YA, Schmid-Fetzer R, Oates WA (2009) PANDAT Software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. CALPHAD Comp Coupling Phase Diagrams Thermochem 33:328–342

    CrossRef  Google Scholar 

  • Cook RD, Malkus DS, Plesha ME, Witt RJ (2001) Concepts and applications of finite element analysis, 4th edn. Lavoisier SAS, Paris

    Google Scholar 

  • Cundall P, Strack O (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    CrossRef  Google Scholar 

  • Dantzig JA, Rappaz M (2009) Solidification. CRC Press/Taylor and Francis Group, LLC, Boca Raton

    CrossRef  Google Scholar 

  • Daw MS (1988) Model of metallic cohesion: the embedded atom method. Phys Rev B 39:7441–7452

    CrossRef  Google Scholar 

  • Epstein J (1999) Agent-based computational models and generative social science. Complexity 4(5):41–57

    CrossRef  Google Scholar 

  • Grüne-Yanoff T, Weirich P (2010) Philosophy of simulation. Simul Gaming Interdiscipl J 41(1):1–31

    Google Scholar 

  • Hayhurst CJ, Ranson HJ, Gardner DJ, Birnbaum NK (1995) Modeling of microparticle hypervelocity oblique impacts on thick targets. Int J Impact Eng 17:375–386

    CrossRef  Google Scholar 

  • Hernandez VS, Murr LE, Anchondo IA (2006) Experimental observations and computer simulations for metallic projectile fragmentation and impact crater development in thick metal targets. Int J Impact Eng 32:1981–1999

    CrossRef  Google Scholar 

  • Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160

    CrossRef  Google Scholar 

  • Humphreys P, Imbert C (eds) (2010) Models, simulations and representations. Routledge Publishers, London

    Google Scholar 

  • Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and temperatures. In: Proceedings of the 7th international symposium. O Ballistics, The Hague

    Google Scholar 

  • Kadau K, Germann T, Lomdahl P (2004) Large-scale molecular dynamics simulation of 19 billion particles. J Modern Phys C 15:193–201

    CrossRef  Google Scholar 

  • Kosloff R (1988) Time-dependent quantum-mechanical methods for molecular dynamics. J Chem Phys 92:2087–2100

    CrossRef  Google Scholar 

  • Le Sar R (2014) Introduction to computational materials science. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Liu GR, Liu MB (2003) Smoothed particle hydrodynamics. A meshfree particle method. Scientific, Singapore

    CrossRef  Google Scholar 

  • Maitland G, Rigby M, Smith E, Wakeham W (1981) Intermolecular forces – their origins and determination. Clarendon Press, Oxford

    Google Scholar 

  • Nightingale M, Umrigar C (eds) (1999) Quantum Monte Carlo methods in physics and chemistry. Springer, New York

    Google Scholar 

  • Phillips R (2003) Crystals, defects and microstructures – modeling across scales. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Roy S (2005) Recent advances in numerical methods for fluid dynamics and heat transfer. J Fluid Eng 127(4):629–630

    CrossRef  Google Scholar 

  • Saal JA, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65(1):1501–1509

    CrossRef  Google Scholar 

  • Steinberg DJ, Cochran SG, Guinan MW (1980) A constitutive model for metals applicable at high strain rates. J Appl Phys 51(3):1498–1502

    CrossRef  Google Scholar 

  • Steinhauser MO (2008) Computational multiscale modeling of solids and fluids – theory and applications. Springer, Heidelberg

    Google Scholar 

  • Steinhauser MO, Hiermaier S (2009) A review of computational methods in materials sciences: examples from shock-wave and polymer physics. Int J Mol Sci 10:5135–5216

    CrossRef  Google Scholar 

  • Wang Y, Shang S, Chen L-Q, Liu Z-K (2013) Density functional theory-based database development and CALPHAD automation. JOM 65(1):1533–1539

    CrossRef  Google Scholar 

  • Winsberg E (2003) Simulated experiments: methodology for a virtual world. Phil Sci 70:105–125

    CrossRef  Google Scholar 

  • Winsberg E (2010) Science in the age of computer simulation. The University of Chicago Press, Chicago

    CrossRef  Google Scholar 

  • Zerilli FJ, Armstrong RW (1992) The effect of dislocation drag on the stress–strain behavior of fcc metals. Acta Met Mater 40:1803–1809

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence E. Murr .

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Murr, L.E. (2015). Computer Simulation in Materials Science and Engineering. In: Handbook of Materials Structures, Properties, Processing and Performance. Springer, Cham. https://doi.org/10.1007/978-3-319-01815-7_60

Download citation