Skip to main content

Monitoring Everyday Abilities and Cognitive Health Using Pervasive Technologies: Current State and Prospect

  • Reference work entry
  • First Online:

Abstract

In this chapter, we provide an overview of technology-driven approaches to performing in-home cognitive assessment based on sensor data using measures of everyday function. We present examples of clinical findings that relate measures of everyday functioning to cognitive health and highlight different sensor-based approaches to monitor them. We argue that the sensor-based everyday behavior data can capture early indications of decline in cognitive health, and we present possible future research directions to develop an in-home sensor-based cognitive health monitoring system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.penscreen.com

  2. 2.

    http://www.cantabmobile.com/

  3. 3.

    http://designinteractive.net/coggauge/

References

  • Aarhus R, Grönvall E, Larsen SB, Wollsen S (2011) Turning training into play: embodied gaming, seniors, physical training and motivation. Gerontechnology 10(2):110–120

    Article  Google Scholar 

  • Artero S, Touchon J, Ritchie K (2001) Disability and mild cognitive impairment: a longitudinal population based study. Int J Geriatr Psychiatry 16(11):1092–1097

    Article  Google Scholar 

  • Austin D, Leen T, Hayes T, Kaye J, Jimison H, Mattek N, Pavel M (2010) Model-based inference of cognitive processes from unobtrusive gait velocity measurements. In: Annual international conference of the IEEE engineering in medicine and biology society, Buenos Aires, Argentina, vol 2010, pp 5230–5233

    Google Scholar 

  • Austin D, Hayes TL, Kaye J, Mattek N, Pavel M (2011a) Unobtrusive monitoring of the longitudinal evolution of in-home gait velocity data with applications to elder care. In: Annual international conference of the IEEE engineering in medicine and biology society, vol 2011, pp 6495–6498

    Google Scholar 

  • Austin D, Hayes TL, Kaye J, Mattek N, Pavel M (2011b) On the disambiguation of passively measured in-home gait velocities from multi-person smart homes. J Ambient Intell Smart Environ 3(2):165–174

    Google Scholar 

  • Chaytor N, Schmitter-Edgecombe M (2003) The ecological validity of neuropsychological tests: a review of the literature on everyday cognitive skills. Neuropsychol Rev 13(4):181–197

    Article  Google Scholar 

  • Cook DJ (2010) Learning setting-generalized activity models for smart spaces. IEEE Intell Syst 27(1):32–38

    Article  Google Scholar 

  • Cook DJ, Das S (2004) Smart environments: technology, protocols and applications, Wiley series on parallel and distributed computing. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  • Cook DJ, Das SK (2012) Pervasive computing at scale: transforming the state of the art. Pervasive Mob Comput 8(1):22–35

    Article  Google Scholar 

  • Cook DJ, Schmitter-Edgecombe M (2009) Assessing the quality of activities in a smart environment. Methods Inf Med 48(5):480–485

    Article  Google Scholar 

  • Coppin AK, Shumway-Cook A, Saczynski JS, Patel KV, Ble A, Ferrucci L, Guralnik JM (2006) Association of executive function and performance of dual-task physical tests among older adults: analyses from the InChianti study. Age Ageing 35(6):619–624

    Article  Google Scholar 

  • Dawadi P, Cook DJ, Schmitter-Edgecombe M, Parsey C (2013a) Automated assessment of cognitive health using smart home technologies. Technol Health Care 21(4):323–343

    Google Scholar 

  • Dawadi P, Cook D, Schmitter-Edgecombe M (2013b) Automated cognitive health assessment using smart home smart monitoring of complex tasks. IEEE Trans Syst Man Cybern Syst 43(6):1302–1313

    Article  Google Scholar 

  • Dodge HH, Mattek NC, Austin D, Hayes TL, Kaye JA (2012) In-home walking speeds and variability trajectories associated with mild cognitive impairment. Neurology 78(24):1946–1952

    Article  Google Scholar 

  • Dougherty JH, Cannon RL, Nicholas CR, Hall L, Hare F, Carr E, Dougherty A, Janowitz J, Arunthamakun J (2010) The computerized self test (CST): an interactive, internet accessible cognitive screening test for dementia. J Alzheimers Dis 20(1):185–195

    Google Scholar 

  • Dwolatzky T, Whitehead V, Doniger GM, Simon ES, Schweiger A, Jaffe D, Chertkow H (2003) Validity of a novel computerized cognitive battery for mild cognitive impairment. BMC Geriatr 3:4

    Article  Google Scholar 

  • Farias ST, Mungas D, Reed BR, Harvey D, Cahn-Weiner D, DeCarli C (2006) MCI is associated with deficits in everyday functioning. Alzheimer Dis Assoc Disord 20(4):217–223

    Article  Google Scholar 

  • Fitzpatrick AL, Buchanan CK, Nahin RL, Dekosky ST, Atkinson HH, Carlson MC, Williamson JD (2007) Associations of gait speed and other measures of physical function with cognition in a healthy cohort of elderly persons. J Gerontol A Biol Sci Med Sci 62(11):1244–1251

    Article  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  Google Scholar 

  • Fouchenette (2010) Mobile testing of cognitive function. Royal Institute of Technology, KTH, School of Information and Communication Technology (ICT), Stockholm, Sweden

    Google Scholar 

  • Frenken T, Govercin M (2010) Precise assessment of self-selected gait velocity in domestic environments. In: Pervasive computing technologies for healthcare (PervasiveHealth), 2010 4th international conference, Munchen, Germany, pp 1–8

    Google Scholar 

  • Gross AL, Rebok GW, Unverzagt FW, Willis SL, Brandt J (2011) Cognitive predictors of everyday functioning in older adults: results from the ACTIVE cognitive intervention trial. J Gerontol B Psychol Sci Soc Sci 66(5):557–566

    Article  Google Scholar 

  • Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, Studenski S, Berkman LF, Wallace RB (2000) Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci 55(4):221–231

    Article  Google Scholar 

  • Hagler S, Austin D, Hayes TL, Kaye J, Pavel M (2010) Unobtrusive and ubiquitous in-home monitoring: a methodology for continuous assessment of gait velocity in elders. IEEE Trans Biomed Eng 57(4):813–820

    Article  Google Scholar 

  • Hodges MR, Kirsch NL, Newman MW, Pollack ME (2010) Automatic assessment of cognitive impairment through electronic observation of object usage. In: 8th international conference on pervasive computing. Pervasive Comput Lecture Notes Comput Sci 6030:192–209

    Google Scholar 

  • Hope T, Keene J, Gedling K, Fairburn CG, Jacoby R (1998) Predictors of institutionalization for people with dementia living at home with a carer. Int J Geriatr Psychiatry 13(10):682–690

    Article  Google Scholar 

  • Jefferson AL, Paul RH, Ozonoff A, Cohen RA (2006) Evaluating elements of executive functioning as predictors of instrumental activities of daily living (IADLs). Arch Clin Neuropsychol 21(4):311–320

    Article  Google Scholar 

  • Jimison H, Pavel M (2006) Embedded assessment algorithms within home-based cognitive computer game exercises for elders. In: International conference of the IEEE engineering in medicine and biology society, New York City, New York, USA, vol 1, pp 6101–6104

    Google Scholar 

  • Jimison H, Pavel M, McKanna J, Pavel J (2004a) Unobtrusive monitoring of computer interactions to detect cognitive status in elders. IEEE Trans Inf Technol Biomed 8(3):248–252

    Article  Google Scholar 

  • Jimison H, Pavel M, McKanna J, Pavel J (2004b) Unobtrusive monitoring of computer interactions to detect cognitive status in elders. IEEE Eng Med Biol Soc 8(3):248–252

    Google Scholar 

  • Jimison HB, Pavel M, Wild K, Bissell P, McKanna J, Blaker D, Williams D (2007) A neural informatics approach to cognitive assessment and monitoring. In: 3rd international IEEE/EMBS conference on neural engineering, Kohala Coast, Hawaii, pp 696–699

    Google Scholar 

  • Jimison H, Pavel M, Le T (2008) Home-based cognitive monitoring using embedded measures of verbal fluency in a computer word game. Int Conf IEEE Eng Med Biol Soc 2008:3312–3315

    Google Scholar 

  • Kang YJ, Ku J, Han K, Kim SI, Yu TW, Lee JH, Il Park C (2008) Development and clinical trial of virtual reality-based cognitive assessment in people with stroke: preliminary study. Cyberpsychol Behav 11(3):3329–3339

    Article  Google Scholar 

  • Kanis M, Robben S, Hagen J, Bimmerman A, Wagelaar N, Kröse B (2013) Sensor monitoring in the home: giving voice to elderly people. In: Pervasive computing technologies for healthcare (PervasiveHealth), 2013 7th international conference on, Venice, Italy, pp 97–100

    Google Scholar 

  • Kim H, Hsiao C, Do E (2012) Home-based computerized cognitive assessment tool for dementia screening. J Ambient Intell Smart Environ 4(5):429–442

    Google Scholar 

  • Marquis S, Moore MM, Howieson DB, Sexton G, Payami H, Kaye JA, Camicioli R (2002) Independent predictors of cognitive decline in healthy elderly persons. Arch Neurol 59(4):601–606

    Article  Google Scholar 

  • Matic A, Mehta P, Rehg JM, Osmani V, Mayora O (2012) Monitoring dressing activity failures through RFID and video. Methods Inf Med 51(1):45–54

    Article  Google Scholar 

  • Middleton L, Buss AA, Bazin A, Nixon MS (2005) A floor sensor system for gait recognition. In: Fourth IEEE workshop on automatic identification advanced technologies (AutoID’05), Buffalo, NY, US, pp 171–176

    Google Scholar 

  • Noyes JM, Garland KJ (2008) Computer- vs. paper-based tasks: are they equivalent? Ergonomics 51(9):1352–1375

    Article  Google Scholar 

  • O’Connor ML, Edwards JD, Wadley VG, Crowe M (2010) Changes in mobility among older adults with psychometrically defined mild cognitive impairment. J Gerontol B Psychol Sci Soc Sci 65B(3):306–316

    Article  Google Scholar 

  • Paavilainen P, Korhonen I, Lötjönen J, Cluitmans L, Jylhä M, Särelä A, Partinen M (2005a) Circadian activity rhythm in demented and non-demented nursing-home residents measured by telemetric actigraphy. J Sleep Res 14(1):61–68

    Article  Google Scholar 

  • Paavilainen P, Korhonen I, Partinen M (2005b) Telemetric activity monitoring as an indicator of long-term changes in health and well-being of older people. Gerontechnology 4(2):77–85

    Article  Google Scholar 

  • Pavel M, Hayes T, Tsay I, Erdogmus D, Paul A, Larimer N, Jimison H, Nutt J (2007) Continuous assessment of gait velocity in Parkinson’s disease from unobtrusive measurements. In: 3rd international IEEE/EMBS conference on neural engineering, Kohala Coast, Hawaii pp 700–703

    Google Scholar 

  • Pedrosa H, De Sa A, Guerreiro M, Maroco J, Simoes MR, Galasko D, de Mendonca A (2010) Functional evaluation distinguishes MCI patients from healthy elderly people–the ADCS/MCI/ADL scale. J Nutr Health Aging 14(8):703–709

    Article  Google Scholar 

  • Pérès K, Helmer C, Amieva H, Orgogozo J-M, Rouch I, Dartigues J-F, Barberger-Gateau P (2008) Natural history of decline in instrumental activities of daily living performance over the 10 years preceding the clinical diagnosis of dementia: a prospective population-based study. J Am Geriatr Soc 56(1):37–44

    Article  Google Scholar 

  • Rashidi P, Cook DJ, Holder LB, Schmitter-Edgecombe M (2011) Discovering activities to recognize and track in a smart environment. IEEE Trans Knowl Data Eng 23(4):527–539

    Article  Google Scholar 

  • Robben S, Englebienne G, Pol M, Kröse B (2012) How is grandma doing? Predicting functional health status from binary ambient sensor data. In: 2012 AAAI fall symposium series, Washington DC, USA, pp 26–31

    Google Scholar 

  • Russell SJ, Norvig P (2003) Artificial intelligence: a modern approach. Pearson Education, Upper Saddle River

    MATH  Google Scholar 

  • Schmitter-Edgecombe M, Parsey C, Cook DJ (2011) Cognitive correlates of functional performance in older adults: comparison of self-report, direct observation, and performance-based measures. J Int Neuropsychol Soc 17(5):853–864

    Article  Google Scholar 

  • Schmitter-Edgecombe M, McAlister C, Weakley A (2012) Naturalistic assessment of everyday functioning in individuals with mild cognitive impairment: the day-out task. Neuropsychology 26(5):631–641

    Article  Google Scholar 

  • Singer JD, Willett JB (2003) Applied longitudinal data analysis, vol 102, no 479. Oxford University Press, New York

    Google Scholar 

  • Singla G, Cook D, Schmitter-Edgecombe M (2010) Recognizing independent and joint activities among multiple residents in smart environments. J Ambient Intell Humaniz Comput 1(1):57–63

    Article  Google Scholar 

  • Snyder PJ, Jackson CE, Petersen RC, Khachaturian AS, Kaye J, Albert MS, Weintraub S (2011) Assessment of cognition in mild cognitive impairment: a comparative study. Alzheimers Dement 7(3):338–355

    Article  Google Scholar 

  • Spector WD, Katz S, Murphy JB, Fulton JP (1987) The hierarchical relationship between activities of daily living and instrumental activities of daily living. J Chronic Dis 40(6):481–489

    Article  Google Scholar 

  • Stone E, Skubic M (2011) Evaluation of an inexpensive depth camera for in-home gait assessment. J Ambient Intell Smart Environ 3(4):349–361

    Google Scholar 

  • Studenski S, Perera S, Wallace D, Chandler JM, Duncan PW, Rooney E, Fox M, Guralnik JM (2003) Physical performance measures in the clinical setting. J Am Geriatr Soc 51(3):314–322

    Article  Google Scholar 

  • Suzuki T, Murase S (2010) Influence of outdoor activity and indoor activity on cognition decline: use of an infrared sensor to measure activity. Telemed J E Health 16(6):686–690

    Article  Google Scholar 

  • Teng EL, Chui HC (1987) The modified mini-mental state (3MS) examination. J Clin Psychiatry 48(8):314–318

    Google Scholar 

  • Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H (2002) Abnormality of gait as a predictor of non-Alzheimer’s dementia. N Engl J Med 347(22):1761–1768

    Article  Google Scholar 

  • Virone G, Alwan M, Dalal S, Kell SW, Turner B, Stankovic JA, Felder R (2008) Behavioral patterns of older-adults in assisted living. IEEE Trans Inf Technol Biomed 12(3):387–398

    Article  Google Scholar 

  • Wadley VG, Crowe M, Marsiske M, Cook SE, Unverzagt FW, Rosenberg AL, Rexroth D (2007) Changes in everyday function in individuals with psychometrically defined mild cognitive impairment in the Advanced Cognitive Training for Independent and Vital Elderly Study. J Am Geriatr Soc 55(8):1192–1198

    Article  Google Scholar 

  • Waite LM, Grayson DA, Piguet O, Creasey H, Bennett HP, Broe GA (2005) Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney Older Persons Study. J Neurol Sci 229–230:89–93

    Article  Google Scholar 

  • Wang S, Skubic M, Zhu Y (2012) Activity density map visualization and dissimilarity comparison for eldercare monitoring. IEEE Trans Inf Technol Biomed 16(4):607–614

    Article  Google Scholar 

  • Webber SC, Porter MM, Menec VH (2010) Mobility in older adults: a comprehensive framework. Gerontologist 50(4):443–450

    Article  Google Scholar 

  • Williamson R, Andrews BJ (2000) Gait event detection for FES using accelerometers and supervised machine learning. IEEE Trans Rehabil Eng 8(3):312–319

    Article  Google Scholar 

  • Woodford HJ, George J (2007) Cognitive assessment in the elderly: a review of clinical methods. QJM 100(8):469–484

    Article  Google Scholar 

  • Zhang L, Abreu BC, Seale GS, Masel B, Christiansen CH, Ottenbacher KJ (2003) A virtual reality environment for evaluation of a daily living skill in brain injury rehabilitation: reliability and validity. Arch Phys Med Rehabil 84(8):1118–1124

    Article  Google Scholar 

  • Zhu HS, Maalej N, Webster JG, Tompkins WJ, Bach-y-Rita P, Wertsch JJ (1990) An umbilical data-acquisition system for measuring pressures between the foot and shoe. IEEE Trans Biomed Eng 37(9):908–1011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafulla N. Dawadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Dawadi, P.N., Cook, D.J. (2017). Monitoring Everyday Abilities and Cognitive Health Using Pervasive Technologies: Current State and Prospect. In: van Hoof, J., Demiris, G., Wouters, E. (eds) Handbook of Smart Homes, Health Care and Well-Being. Springer, Cham. https://doi.org/10.1007/978-3-319-01583-5_28

Download citation

Publish with us

Policies and ethics