Skip to main content

Thermal Management: Component to Systems Level

  • Reference work entry
  • First Online:
Handbook of Advanced Lighting Technology
  • 4182 Accesses

Abstract

Thermal management is one of the most essential issues for LED applications. The output power, efficiency, emission spectrum and reliability of the LED chip and phosphor are functions of temperature. Without proper thermal management, the output of the LED could depart from the desired performance. Basic heat transfer phenomena and corresponding calculations are introduced as well as the thermal behaviors and concerns of the essential components of an LED. A quick method to estimate the thermal resistance of an LED package is provided based on the shape factor of the geometry at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akishin GP et al (2009) Thermal conductivity of beryllium oxide ceramic. Refract Ind Ceram 50:465–468

    Article  Google Scholar 

  • Anderson BJ (2011) Thermal stability of high temperature epoxy adhesives by thermogravimetric and adhesive strength measurements. Polym Degrad Stab 96:1874–1881

    Article  Google Scholar 

  • Burshtein Z (2009) Radiative, nonradiative, and mixed-decay transitions of rare-earth ions in dielectric media. Opt Eng 49:091005

    Article  Google Scholar 

  • Chung TY et al (2012) A study of large area die bonding materials and their corresponding mechanical and thermal properties. Microelectron Rel 52:872–877

    Article  Google Scholar 

  • Chung T-Y et al. (2014) Study of the temperature distribution within the phosphor regions of white LEDs. In: Presented at the 14th international symposium on the science and technology of lighting, Spazio Como

    Google Scholar 

  • CREE (2014, June 5) CREE XLamp LEDs Chemical Compatibility. Support document CLD-AP63 REV

    Google Scholar 

  • Demtröder W (2002) Laser spectroscopy: basic concepts and instrumentation, 3rd edn. Springer, New York

    Google Scholar 

  • Faghri A (1995) Heat pipe science and technology. Taylor & Francis, Washington, DC

    Google Scholar 

  • Fujita S et al (2008) Luminescence characteristics of YAG glass-ceramic phosphor for white LED. IEEE J Sel Top Quantum Electron 14:1387–1391

    Article  Google Scholar 

  • Huang K (1987) Statistical mechanics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Incropera FP et al (2007) Introduction to heat transfer, 5th edn. Wiley, Hoboken

    Google Scholar 

  • JEDEC Solid State Technology Association (2005) Guidelines for reporting and using electronic package thermal information

    Google Scholar 

  • Keppens A et al (2010) Modeling high power light-emitting diode spectra and their variation with junction temperature. J Appl Phys 108:043104

    Article  Google Scholar 

  • Kim HH et al (2008) Thermal transient characteristics of die attach in high power LED PKG. Microelectron Rel 48:445–454

    Article  Google Scholar 

  • Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    MATH  Google Scholar 

  • Lee YK et al (2012) Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications. Opt Lett 37:3276–3278

    Article  Google Scholar 

  • Lin ME et al (1993) A comparative-study of gan epilayers grown on sapphire and sic substrates by plasma-assisted molecular-beam epitaxy. Appl Phys Lett 62:3479–3481

    Article  Google Scholar 

  • Miyashiro F et al (1990) High thermal-conductivity aluminum nitride ceramic substrates and packages. IEEE Trans Comp Hybrid Manufact Technol 13:313–319

    Article  Google Scholar 

  • Nakamura S et al (1998) InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl Phys Lett 72:211–213

    Article  Google Scholar 

  • Narendran N, Gu YM (2005) Life of LED-based white light sources. J Disp Technol 1:167–171

    Article  Google Scholar 

  • Narendran N et al (2004) Solid-state lighting: failure analysis of white LEDs. J Cryst Growth 268:449–456

    Article  Google Scholar 

  • Peteves SD (1996) Joining nitride ceramics. Ceram Int 22:527–533

    Article  Google Scholar 

  • Petrie EM (2007) Handbook of adhesives and sealants, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Reay DA et al (2006) Heat pipes, 5th edn. Butterworth-Heinemann, Oxford/Burlington

    Google Scholar 

  • Regan FJ (1993) Dynamics of atmospheric re-entry. AIAA education series, AIAA. ISBN 160086046X, 9781600860461

    Google Scholar 

  • Schroeder DV (2000) An introduction to thermal physics. Addison Wesley, San Francisco

    Google Scholar 

  • Schubert EF (2006) Light-emitting diodes, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Spalding DB (1963) Convective mass transfer, an introduction. McGraw-Hill, New York

    MATH  Google Scholar 

  • Szekely V (1997) A new evaluation method of thermal transient measurement results. Microelectron Rel 28:277–292

    Article  Google Scholar 

  • Touloukian YS et al (1979) Master index to materials and properties. IFI/Plenum, New York

    Google Scholar 

  • Tran CA et al (1999) Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy. Appl Phys Lett 75:1494–1496

    Article  Google Scholar 

  • Vurgaftman I, Meyer JR (2003) Band parameters for nitrogen-containing semiconductors. J Appl Phys 94:3675–3696

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te-Yuan Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Chung, TY. (2017). Thermal Management: Component to Systems Level. In: Karlicek, R., Sun, CC., Zissis, G., Ma, R. (eds) Handbook of Advanced Lighting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-00176-0_60

Download citation

Publish with us

Policies and ethics