Skip to main content

Color Rendering Metrics: Status, Methods, and Future Development

  • Reference work entry
  • First Online:

Abstract

Color rendition metrics, which assess light sources in terms of the color quality of illuminated objects, are advancing with the development of lighting technology and with the increasing needs of lighting users. This chapter reviews different metrics of assessing the color quality of light sources. We show that the traditional measures of the color fidelity, such as the standard color rendering index (CRI) and its single-figure-of-merit refinements, fail to correctly assess the color rendition properties of illumination, especially for the light sources having spectral power distributions composed of narrow-band components, such as polychromatic light-emitting diode clusters. These metrics (based on the estimation of color shifts for a small number of test color samples) do not account for the ability of the light sources to increase or decrease the chromatic contrast (color saturating or dulling) and clash with the subjective preferences to the color quality of illumination. Supplementing these conventional measures with additional figures of merit accounting for the gamut area of a small number of the test color samples does not completely address this issue. The color rendition vector approach to the color shifts allows for a much more comprehensive assessment of the color rendition properties. In particular, many issues of the color rendition problem can be resolved using the statistical approach based on the color rendition vector sorting for a large number of the test color samples. However despite the availability of advanced measures of color rendition for experts, the need for an improved color rendition metric that could substitute for the outdated CRI still exists. An alternative approach to rating the light sources in terms of color quality is the color rendition engineering. The color rendition engineering allows for the development of light sources having requested or even tunable (and traded off) color rendition properties (color rendition engines). Such color rendition engines can meet individual and group needs in color quality of illumination. When supplemented with the additional functionalities offered by information and communication technology, the color rendition engines could become the preferred tools of the smart lighting revolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aston SM, Bellchambers HE (1969) Illumination, color rendering, and visual clarity. Light Res Technol 1:259–261

    Article  Google Scholar 

  • Berns RS (2011) Designing white light LED lighting for the display of art: a feasibility study. Color Res Appl 36:324–334

    Article  Google Scholar 

  • Bouma PJ (1938) The color reproduction of incandescent lamps and “Philiphan” glass. Philips’ Tech Rev 3:47–49

    Google Scholar 

  • Bodrogi P (2004) Colour rendering: past, present (2004), and future. In: Proceedings of the CIE expert symposium on LED light sources: physical measurement and visual and photobiological assessment, CIE publication no x026, pp 12–15

    Google Scholar 

  • Bodrogi P, Csuti P, Horváth P, Schanda J (2004) Why does the CIE color rendering index fail for white RGB LED light sources? In: Proceedings of the CIE expert symposium on LED light sources: physical measurement and visual and photobiological assessment, CIE publication no x026, pp 24–27

    Google Scholar 

  • Boynton RM, Fargo L, Collins BL (1990) Categorical color rendering of four common light sources. Color Res Appl 15:222–230

    Article  Google Scholar 

  • Chien M-C, Tien C-H (2012) Multispectral mixing scheme for LED clusters with extended operational temperature window. Opt Express 20:A245–A254

    Article  Google Scholar 

  • CIE (1965) Method of measuring and specifying colour rendering properties of light sources. CIE publication no 13

    Google Scholar 

  • CIE (1995) Method of measuring and specifying colour rendering properties of light sources. CIE publication no 13.3

    Google Scholar 

  • CIE (2004a) Colorimetry. CIE publication no 15

    Google Scholar 

  • CIE (2004b) A colour appearance model for colour management systems: CIECAM02, CIE publication no 159

    Google Scholar 

  • CIE (2007) Color rendering of white LED sources. CIE publication no 177

    Google Scholar 

  • David A (2014) Color fidelity of light sources evaluated over large sets of reflectance samples. Leukos 10:59–75

    Article  Google Scholar 

  • Davis W, Ohno Y (2005) Toward and improved color rendering metric. Proc SPIE 5941:59411G

    Article  Google Scholar 

  • Davis W, Ohno Y (2010) Color quality scale. Opt Eng 49:033602

    Article  Google Scholar 

  • Guo X, Houser KW (2004) A review of color rendering indices and their application to commercial light sources. Light Res Technol 36:183–189

    Article  Google Scholar 

  • Hashimoto K, Nayatani Y (1994) Visual clarity and feeling of contrast. Color Res Appl 19:171–185

    Article  Google Scholar 

  • He G, Zheng L (2010) Color temperature tunable white-light light-emitting diode clusters with high color rendering index. Appl Opt 49:4670–4676

    Article  Google Scholar 

  • Houser KW, Wei M, David A, Krames MR, Shen XS (2013) Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition. Opt Express 21:10393–10411

    Article  Google Scholar 

  • Judd DB (1967) A flattery index for artificial illuminants. Illum Eng 62:593–598

    Google Scholar 

  • Koedam M, Opstelten JJ (1971) Measurement and computer-aided optimization of spectral power distributions. Light Res Technol 3:205–210

    Google Scholar 

  • Lebedenko D, Vaicekauskas D (2014) Light source assessment. Vilnius University Lighting Group, Vilnius. http://demo.lrg.projektas.vu.lt/lcq/en/

  • Lehmann W (1963) Emission spectra of (Zn, Cd)S phosphors. J Electrochem Soc 110:754–758

    Article  Google Scholar 

  • Li C, Luo MR, Rigg B, Hunt RWG (2002) CMC 2000 chromatic adaptation transform: CMCCAT2000. Color Res Appl 27:49–58

    Article  Google Scholar 

  • Luo MR (2011) The quality of light sources. Color Technol 127:75–87

    Article  Google Scholar 

  • MacAdam DL (1942) Visual sensitivities to color differences in daylight. J Opt Soc Am 32:247–274

    Article  Google Scholar 

  • Nakamura S, Fasol G (1997) The blue laser diode: GaN based light emitters and lasers. Springer, Berlin

    Book  Google Scholar 

  • Nakano Y, Tahara H, Suehara H, Kohda J, Yano T (2005) Application of multispectral camera to color rendering simulator. In: Nieves JL, Andres JH (eds) Proceedings of the 10th Congress of the International Colour Association – AIC Colour 05, pp 1625–1628

    Google Scholar 

  • Narendran N, Deng L (2002) Color rendering properties of LED light sources. Proc SPIE 4776:61–67

    Article  Google Scholar 

  • Nickerson D (1960) Light sources and color rendering. J Opt Soc Am 50:57–69

    Article  Google Scholar 

  • Nickerson D, Jerome CW (1965) Color rendering of light sources: CIE method of specification and its application. Illum Eng 60:262–271

    Google Scholar 

  • Ohno Y (2005) Spectral design considerations for white LED color rendering. Opt Eng 44:111302

    Article  Google Scholar 

  • Pointer MR (1986) Measuring colour rendering – a new approach. Light Res Technol 18:175–184

    Article  Google Scholar 

  • Rea MS, Freyssinier-Nova JP (2008) Color rendering: a tale of two metrics. Color Res Appl 33:192–202

    Article  Google Scholar 

  • Ries H, Leike I, Muschaweck J (2004) Optimized additive mixing of colored light-emitting diode sources. Opt Eng 43:1531–1536

    Article  Google Scholar 

  • Sándor N, Schanda J (2006) Visual color rendering based on color difference evaluations. Light Res Technol 38:225–239

    Article  Google Scholar 

  • Schanda J (1999) Colour rendering, CIE TC 1-33 closing remarks. In: CIE collection 1999. Vision and colour. Physical measurement of light and radiation. CIE publication no 135, pp 10–17

    Google Scholar 

  • Schanda J (2002) The concept of color rendering revisited. In: Proceedings of the 1st European conference on colour in graphics, image, and vision. Poitier, France, pp 37–41

    Google Scholar 

  • Shakir I, Narendran N (2002) Evaluating white LEDs for outdoor landscape lighting application. Proc SPIE 4776:162–170

    Article  Google Scholar 

  • Smet KAG, Schanda J, Whitehead L, Luo RM (2013) CRI 2012: a proposal for updating the CIE colour rendering index. Light Res Technol 45:689–709

    Article  Google Scholar 

  • Thornton WA (1971) Luminosity and color-rendering capability of white light. J Opt Soc Am 61:1155–1163

    Article  Google Scholar 

  • Thornton WA (1972) Color-discrimination index. J Opt Soc Am 62:191–194

    Article  Google Scholar 

  • Thornton WA (1973) Fluorescent lamps with high color-discrimination capability. J Illum Eng Soc 3:61–64

    Article  Google Scholar 

  • Thornton WA (1974) A validation of the color-preference index. J Illum Eng Soc 4:48–52

    Article  Google Scholar 

  • Tuzikas A, Žukauskas A, Vaicekauskas R, Petrulis A, Vitta P, Shur M (2014) Artwork visualization using a solid-state lighting engine with controlled photochemical safety. Opt Express 22:16802–16818

    Article  Google Scholar 

  • University of Eastern Finland, Spectral Color Research Group. http://www.uef.fi/spectral/spectral-database

  • van der Burgt P, van Kemenade J (2010) About color rendition of light sources: the balance between simplicity and accuracy. Color Res Appl 35:85–93

    Google Scholar 

  • van Trigt C (1999) Color rendering, a reassessment. Color Res Appl 24:197–206

    Article  Google Scholar 

  • Walter W (1971) Optimum phosphor blends for fluorescent lamps. Appl Opt 10:1108–1113

    Article  Google Scholar 

  • Walter W (1978) Optimum lamp spectra. J Illum Eng Soc 7:66–73

    Article  Google Scholar 

  • Worthey JA (2003) Color rendering: asking the question. Color Res Appl 28:403–412

    Article  Google Scholar 

  • Worthey JA (2004) Color rendering: a calculation that estimates colorimetric shifts. Color Res Appl 29:43–56

    Article  Google Scholar 

  • Wyszecki G, Stiles WS (2000) Color science: concepts and methods, quantitative data and formulae. Wiley, New York

    Google Scholar 

  • Xu H (1983) Color-rendering capacity of illumination. J Opt Soc Am 73:1709–1713

    Article  Google Scholar 

  • Yaguchi H, Takahashi Y, Shioiri S (2001) A proposal of color rendering index based on categorical color names. In: Proceedings of the International Lighting Congress, vol II. Istanbul, 12−14 Sept 2001, pp 421–426

    Google Scholar 

  • Zhong P, He G, Zhang M (2012) Spectral optimization of the color temperature tunable white light-emitting diode (LED) cluster consisting of direct-emission blue and red LEDs and a diphosphor conversion LED. Opt Express 20:A684–A693

    Article  Google Scholar 

  • Žukauskas A, Shur MS, Gaska R (2002a) Introduction to solid-state lighting. Wiley, New York

    Google Scholar 

  • Žukauskas A, Vaicekauskas R, Ivanauskas F, Gaska R, Shur MS (2002b) Optimization of white polychromatic semiconductor lamps. Appl Phys Lett 80:234–236

    Article  Google Scholar 

  • Žukauskas A, Vaicekauskas R, Ivanauskas F, Vaitkevičius H, Shur MS (2008a) Rendering a color palette by light-emitting diodes. Appl Phys Lett 93:021109

    Article  Google Scholar 

  • Žukauskas A, Vaicekauskas R, Ivanauskas F, Vaitkevičius H, Vitta P, Shur MS (2008b) Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering. Appl Phys Lett 93:051115

    Article  Google Scholar 

  • Žukauskas A, Vaicekauskas R, Ivanauskas F, Vaitkevičius H, Vitta P, Shur MS (2009) Statistical approach to color quality of solid-state lamps. IEEE J Sel Top Quantum Electron 15:1753–1762

    Article  Google Scholar 

  • Žukauskas A, Vaicekauskas R, Shur MS (2010a) Colour-rendition properties of solid-state lamps. J Phys D Appl Phys 43:354006

    Article  Google Scholar 

  • Žukauskas A, Vaicekauskas R, Shur M (2010b) Solid-state lamps with optimized color saturation ability. Opt Express 18:2287–22951

    Article  Google Scholar 

  • Žukauskas A, Vaicekauskas R (2011) LEDs in lighting with tailored color quality. Int J High Speed Electron Syst 20:287–301

    Article  Google Scholar 

  • Žukauskas A, Vaicekauskas R, Vitta P, Tuzikas A, Petrulis A, Shur M (2012a) Color rendition engine. Opt Express 20:5356–5367

    Article  Google Scholar 

  • Žukauskas A, Vaicekauskas R, Shur M (2012b) Color-dulling solid-state sources of light. Opt Express 20:9755–9762

    Article  Google Scholar 

  • Žukauskas A, Vaicekauskas R, Vitta P, Shur M (2013a) Resolving the ambiguity of color fidelity indices. In: MacDonald L, Westland S, Wuerger S (eds) Proceedings of the 12th congress of the International Colour Association – AIC Colour 2013, vol 3, pp 1129–1132

    Google Scholar 

  • Žukauskas A, Vaicekauskas R, Vitta P, Zabiliūtė A, Petrulis A, Shur M (2013b) Color rendition engineering of phosphor-converted light-emitting diodes. Opt. Express 21:26642–26656

    Google Scholar 

Download references

Acknowledgment

The work at RPI was partially supported by the National Science Foundation (NSF) Smart Lighting Engineering Research Center (# EEC-0812056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Žukauskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Žukauskas, A., Shur, M.S. (2017). Color Rendering Metrics: Status, Methods, and Future Development. In: Karlicek, R., Sun, CC., Zissis, G., Ma, R. (eds) Handbook of Advanced Lighting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-00176-0_49

Download citation

Publish with us

Policies and ethics