Skip to main content

Human Vision and Perception

  • Reference work entry
  • First Online:
Handbook of Advanced Lighting Technology

Abstract

This chapter covers some basic aspects of the fundamentals of the human visual perception. Given the enormity of the subject, we will only give a very limited account of this huge area of intellectual activity. We will first discuss the structure of the visual system that is necessary to understand the functional processing of visual information and its limitations. Next, we will elaborate on some classic visual psychophysical results that delineate the limits of detection and discrimination. With these basics, we will introduce the reader to three important streams of information processing pertinent to lighting and display technologies, namely, spatial vision, flicker fusion, and color vision. We do not discuss many aspects of visual perception such as binocular visual perception, shape and form recognition, face recognition, etc. due to space constraints. Good overviews and detailed discussions of various aspects of visual perception can be found in a number of books, e.g., Cornsweet (1970), Schwartz (2010), Palmer (1999), Norton et al. (2002), and Werner and Chalupa (2013), and Chalupa and Werner (2003) or in the chapter by Lakshminarayanan and Raghuram (2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DL, Horton JC (2002) Shadows cast by retinal blood vessels mapped in primary visual cortex. Science 298(5593):572–576

    Article  Google Scholar 

  • Ahnelt P, Keri C, Kolb H (1990) Identification of pedicles of putative blue-sensitive cones in the human retina. J Comp Neurol 293(1):39–53

    Article  Google Scholar 

  • Atchison DA, Smith G (2000) Optics of the human eye. Butterworths, Boston

    Google Scholar 

  • Baldock R, Graham J (2000) Image processing and analysis. Oxford University Press, Oxford

    Google Scholar 

  • Barlow HB, Fitzhugh R, Kuffler SW (1957) Change of organization in the receptive fields of the cat’s retina during dark adaptation. J Physiol 137(3):338–354

    Article  Google Scholar 

  • Barten PG (1999) Contrast sensitivity of the human eye and its effects on image quality. SPIE Press, Bellingham

    Book  Google Scholar 

  • Bartley SH (1938) Subjective brightness in relation to flash rate and the light/dark ratio. J Exp Psychol 23:313–319

    Article  Google Scholar 

  • Baylor DA, Nunn BJ, Schnapf JL (1987) Spectral sensitivity of cones of the monkey macaca fascicularis. J Physiol 390:145–160

    Article  Google Scholar 

  • Billmeyer FW, Saltzman M (1981) Principles of color technology. Wiley, New York

    Google Scholar 

  • Blakemore C, Campbell FW (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol 203(1):237–260

    Article  Google Scholar 

  • Blackwell H (1946) Contrast thresholds of the human eye, J Opt Soc Am 36:624–632

    Google Scholar 

  • Boettner EA, Wolter JR (1962) Transmission of the ocular media. Invest Ophthalmol Vis Sci 1(6):776–783

    Google Scholar 

  • Borish IM (1954) Clinical refraction. Professional Press, Chicago

    Google Scholar 

  • Bowmaker J (1991) Visual pigments and colour vision in primates. In: From pigments to perception. Springer, Boston, pp 1–9

    Google Scholar 

  • Boynton RM (1979) Human color vision. Holt Rinehart and Winston, New York

    Google Scholar 

  • Calkins DJ (2001) Seeing with S cones. Prog Retin Eye Res 20(3):255–287

    Article  Google Scholar 

  • Campbell FW, Robson JG (1968) Application of fourier analysis to the visibility of gratings. J Physiol 197(3):551–566

    Article  Google Scholar 

  • Carroll J, Neitz M, Hofer H, Neitz J, Williams DR (2004) Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. Proc Natl Acad Sci U S A 101(22):8461–8466. doi:10.1073/pnas.0401440101

    Article  Google Scholar 

  • Chalupa LM, Werner JS (2003) The visual neurosciences, vol 2. MIT Press, Cambridge, MA

    Google Scholar 

  • Cicerone C (1990) Color appearance and the cone mosaic in trichromacy and dichromacy. In: Color vision deficiencies, McGraw Hill Professional, pp 1–12

    Google Scholar 

  • Cooper GF, Robson JG (1969) The yellow colour of the lens of man and other primates. J Physiol 203(2):411–417

    Article  Google Scholar 

  • Cornsweet T (1970) Visual perception. Academic, New York

    Google Scholar 

  • Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292(4):497–523

    Article  Google Scholar 

  • De Lange Dzn H (1958) Research into the dynamic nature of the human fovea→ cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. Josa 48(11):777–783

    Google Scholar 

  • de Monasterio FM, McCrane EP, Newlander JK, Schein SJ (1985) Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. Invest Ophthalmol Vis Sci 26(3):289–302

    Google Scholar 

  • De Valois KK, Lakshminarayanan V, Nygaard R, Schlussel S, Sladky J (1990) Discrimination of relative spatial position. Vision Res 30(11):1649–1660

    Article  Google Scholar 

  • DeValois RL, DeValois KK (1988) Spatial vision. Oxford University Press, New York

    Google Scholar 

  • Edmund C (1994) Posterior corneal curvature and its influence on corneal dioptric power. Acta Ophthalmol 72(6):715–720

    Article  Google Scholar 

  • Enoch JM, Lakshminarayanan V (1991) Retinal fiber optics. In: Charman WN (ed) Vision and visual dysfunction: visual optics and instrumentation, vol 1. MacMillan Press, London, pp 280–309

    Google Scholar 

  • Enoch JM, Lakshminarayanan V (2009) Integration of the Stiles Crawford effect of the first kind. J Mod Optics 56:2240–2250

    Article  Google Scholar 

  • Farrell J, Benson BL, Haynie CR (1987) Predicting flicker thresholds for video display terminals. Proc SID 28(4):449–453

    Google Scholar 

  • Farrell JE, Casson EJ, Haynie CR, Benson BL (1988) Designing flicker-free video display terminals. Displays 9(3):115–122

    Article  Google Scholar 

  • Fourier J (1822) Theorie analytique de la chaleur, par M. Fourier. Chez Firmin Didot, père et fils

    Google Scholar 

  • Frisby JP, Stone JV (2010) Seeing: the computational approach to biological vision. MIT Press, Cambridge, MA

    Google Scholar 

  • Gegenfurtner KR, Sharpe LT, Boycott BB (2000) Color vision: from genes to perception. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Gescheider GA (2013) Psychophysics: the fundamentals. Psychology Press

    Google Scholar 

  • Gordon RA, Donzis PB (1985) Refractive development of the human eye. Arch Ophthalmol 103(6):785–789

    Article  Google Scholar 

  • Graf V, Norren DV (1974) A blue sensitive mechanism in the pigeon retina: λ max 400 nm. Vis Res 14(11):1203–1209

    Article  Google Scholar 

  • Grassmann H (1853) Zur theorie der farbenmischung. Annalen der Physik 165(5):69–84

    Article  Google Scholar 

  • Graham N (2001) Visual pattern analyzers. Oxford University Press, New York

    Google Scholar 

  • Graham C, Hsia Y (1969) Saturation and the foveal achromatic interval. J Opt Soc Am 59(8):993–997

    Article  Google Scholar 

  • Harwarth RS, Smith EL 3rd, DeSantis L (1993) Mechanisms mediating visual detection in static perimetry. Invest Ophthalmol Vis Sci 34(10):3011–3023

    Google Scholar 

  • Hecht S, Haig C, Chase AM (1937) The influence of light adaptation on subsequent dark adaptation of the eye. J Gen Physiol 20(6):831–850

    Article  Google Scholar 

  • Hecht S, Shlaer S, Pirenne MH (1942) Energy, quanta, and vision. J Gen Physiol 25(6):819–840

    Article  Google Scholar 

  • Hood D (1998) Lower-level visual processing and models of light adaptation. Annu Rev Psychol 49(1):503–535

    Article  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243

    Article  Google Scholar 

  • Kaiser PK, Boynton RM (1996) Human color vision, 2nd edn. Optical Society of America, Washington, DC

    Google Scholar 

  • Kelly D (1961) Visual responses to time-dependent stimuli. I. amplitude sensitivity measurements. J Opt Soc Am 51(4):422–429

    Article  Google Scholar 

  • Kelly D (1964) Sine waves and flicker fusion. Doc Ophthalmol 18(1):16–35

    Article  Google Scholar 

  • Kelly D (1966) Frequency doubling in visual responses. J Opt Soc Am 56(11):1628–1632

    Article  Google Scholar 

  • Kelly D (1969) Flickering patterns and lateral inhibition. J Opt Soc Am 59(10):1361–1368

    Article  Google Scholar 

  • Kelly D (1971) Theory of flicker and transient responses, I. uniform fields. J Opt Soc Am 61(4):537–546

    Article  Google Scholar 

  • Kelly D (1972) Flicker. In: Visual psychophysics. Springer, pp 273–302

    Google Scholar 

  • Kelly D (1974) Spatio-temporal frequency characteristics of color-vision mechanisms. J Opt Soc Am 64(7):983–990

    Article  Google Scholar 

  • Kelly DH (1979) Motion and vision. II. Stabilized spatio-temporal threshold surface. J Opt Soc Am 69(10):1340–1349

    Article  Google Scholar 

  • Kremers J, Scholl HP, Knau H, Berendschot TT, Usui T, Sharpe LT (2000) L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry. J Opt Soc Am A 17(3):517–526

    Article  Google Scholar 

  • Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16(1):37–68

    Google Scholar 

  • Lakshminarayanan V (2005) Vision and the single photon. In: “What is a photon?”, SPIE proceedings, vol 5866. pp 332337

    Google Scholar 

  • Lakshminarayanan V (2012a) Light detection and sensitivity. In: Handbook of visual display technology. Springer, Berlin, pp 85–91

    Chapter  Google Scholar 

  • Lakshminarayanan V (2012b) Flicker sensitivity. In: Handbook of visual display technology. Springer, Berlin, pp 101–108

    Chapter  Google Scholar 

  • Lakshminarayanan V, Enoch JM (2000/2010) Biological waveguides. In: Handbook of optics, vol 3. Optical Society of America, Washington DC. Revised and updated chapter in Handbook of optics, vol 3, 3rd edn. McGraw Hill, New York, 2010

    Google Scholar 

  • Lakshminarayanan V, Nygaard RW (1992) Aliasing in the human visual system. Concepts Neurosci 3:201–212

    Google Scholar 

  • Lakshminarayanan V, Raghuram A (2003) Chapter 30, Visual considerations for the optical engineer. In: Wolfe W (ed) Handbook of optical engineering. SPIE Press, Bellingham, pp 593–659

    Google Scholar 

  • Lee BB, Martin PR, Valberg A (1989) Nonlinear summation of M-and L-cone inputs to phasic retinal ganglion cells of the macaque. J Neurosci 9(4):1433–1442

    Google Scholar 

  • Li KY, Roorda A (2007) Automated identification of cone photoreceptors in adaptive optics retinal images. J Opt Soc Am A 24(5):1358–1363

    Article  Google Scholar 

  • Liang J, Williams DR, Miller DT (1997) Supernormal vision and high-resolution retinal imaging through adaptive optics. JOSA A 14(11):2884–2892

    Article  Google Scholar 

  • Liu Z, Huang AJ, Pflugfelder SC (1999) Evaluation of corneal thickness and topography in normal eyes using the orbscan corneal topography system. Br J Ophthalmol 83(7):774–778

    Article  Google Scholar 

  • Lu Z, Dosher B (2013) Visual psychophysics: from laboratory to theory. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Lynn J, Feltman R, Starita R (1996) Principles of perimetry. In: Rich R, Shields MB, Krupin T (eds) The glaucomas. Mosby, St. Louis

    Google Scholar 

  • MacAdam DL (1943) Specification of small chromaticity differences. J Opt Soc Am 33(1):18–26

    Article  Google Scholar 

  • MacNichol E Jr (1986) A unifying presentation of photopigment spectra. Vision Res 26(9):1543–1556

    Article  Google Scholar 

  • Malacara D (2011) Color vision and colorimetry. SPIE Press, Bellingham

    Google Scholar 

  • Marc RE, Sperling HG (1977) Chromatic organization of primate cones. Science 196(4288):454–456

    Article  Google Scholar 

  • Marr D (2010) Vision. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Muller LJ, Pels E, Vrensen GF (2001) The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. Br J Ophthalmol 85(4):437–443

    Article  Google Scholar 

  • Nerger JL, Cicerone CM (1992) The ratio of L cones to M cones in the human parafoveal retina. Vision Res 32(5):879–888

    Article  Google Scholar 

  • Norton T, Corliss D, Bailey JE (2002) Psychophysical foundations of visual perception. Butterworth-Heinemann, Boston

    Google Scholar 

  • Osterberg G (1935) Topography of the layer of rods and cones in the human retina. Acta Ophthalmol Suppl 6:1–103

    Google Scholar 

  • Oyster CS (1999) The human eye. Sinauer, Sunderland

    Google Scholar 

  • Palmer S (1999) Vision science: photons to perception. MIT Press, Cambridge, MA

    Google Scholar 

  • Palmer JM, Grant BG (2010) The art of radiometry. SPIE Press, Bellingham

    Google Scholar 

  • Perry VH, Cowey A (1985) The ganglion cell and cone distributions in the monkey’s retina: implications for central magnification factors. Vision Res 25(12):1795–1810

    Article  Google Scholar 

  • Perry V, Oehler R, Cowey A (1984) Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12(4):1101–1123

    Article  Google Scholar 

  • Pokorny J, Smith VC, Lutze M (1987) Aging of the human lens. Appl Optics 26(8):1437–1440

    Article  Google Scholar 

  • Pugh EN Jr, Kirk DB (1986) The jt mechanisms of WS stiles: an historical review. Perception 15:705–728

    Article  Google Scholar 

  • Ramamurthy M (2011) Colour discrimination thresholds and acceptability ratings using simulated microtile displays. MSc thesis, University of Waterloo, Waterloo

    Google Scholar 

  • Rodieck RW, Stone J (1965) Analysis of receptive fields of cat retinal ganglion cells. J Neurophysiol 28(5):833–849

    Google Scholar 

  • Rodieck R (1979) Visual pathways. Annu Rev Neurosci 2(1):193–225

    Article  Google Scholar 

  • Rodieck R (1991) The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies. Vis Neurosci 6(02):95–111

    Article  Google Scholar 

  • Rodieck RW, Brening RK, Watanabe M (1993) The origin of parallel visual pathways. In: Shapley R, Lam Dm-K (eds) Proceedings of the retinal research foundation symposium, pp 117–144

    Google Scholar 

  • Rodieck R (1998) The first steps in seeing. Sinauer, Sunderland

    Google Scholar 

  • Rodieck RW, Rodieck RW (1998) The first steps in seeing, vol 15. Sinauer Associates, Sunderland

    Google Scholar 

  • Rogowitz BE (1988) The psychophysics of spatial sampling. In: 1988 Los Angeles symposium-OE/LASE’88, pp 130138

    Google Scholar 

  • Roorda A, Williams DR (1999) The arrangement of the three cone classes in the living human eye. Nature 397(6719):520–522

    Article  Google Scholar 

  • Roorda A, Williams DR (1998) Objective identification of M and L cones in the living human eye. Investig Ophthalmol Vis Sci 39:204

    Google Scholar 

  • Roorda A, Metha AB, Lennie P, Williams DR (2001) Packing arrangement of the three cone classes in primate retina. Vis Res 41(10):1291–1306

    Article  Google Scholar 

  • Rushton WA (1965) The ferrier lecture, 1962: visual adaptation. Proc R Soc Lond B 162:20–46

    Article  Google Scholar 

  • Schnapf JL, Kraft TW, Baylor DA (1987) Spectral sensitivity of human cone photoreceptors. Nature 325(6103):439–441

    Article  Google Scholar 

  • Schnapf JL, Nunn BJ, Meister M, Baylor DA (1990) Visual transduction in cones of the monkey macaca fascicularis. J Physiol 427:681–713

    Article  Google Scholar 

  • Schwartz SH (2010) Visual perception: a clinical orientation, 4th edn. McGraw Hill, New York

    Google Scholar 

  • Shevell S (2003) The science of color. Elsevier, New York

    Google Scholar 

  • Smith VC, Pokorny J (1975) Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Res 15(2):161–171

    Article  Google Scholar 

  • Stevens SS (1957) On the psychophysical law. Psychol Rev 64(3):153

    Article  Google Scholar 

  • Stiles WS (1978) Mechanisms of colour vision: selected papers of WS stiles; with a new introductory essay. Academic, New York

    Google Scholar 

  • Stiles WS, Crawford BH (1933) The luminous efficiency of rays entering the eye pupil at different points. Proc R Soc Lond B 112:428–450

    Article  Google Scholar 

  • Stiles WS, Crawford BH (1937) The luminous efficiency of rays entering the eye pupil at different points and a new colour effect. Proc R Soc Lond B 122:255–288

    Article  Google Scholar 

  • Stockman A, MacLeod DI, Johnson NE (1993) Spectral sensitivities of the human cones. J Opt Soc Am A 10(12):2491–2521

    Article  Google Scholar 

  • Tyler CW, Hamer RD (1990) Analysis of visual modulation sensitivity. IV. Validity of the ferry-porter law. J Opt Soc Am A 7(4):743–758

    Article  Google Scholar 

  • Tyson R, Lakshminarayanan V (2012) Adaptive optics. J Modern Opt 59(12):1032–1033

    Article  Google Scholar 

  • Van Best J, Bollemeijer J, Sterk C (1988) Corneal transmission in whole human eyes. Exp Eye Res 46(5):765–768

    Article  Google Scholar 

  • Wald G (1945) Human vision and the spectrum. Science 101(2635):653–658

    Article  Google Scholar 

  • Wandell BA (1995) Foundations of vision. Sinauer, Sunderland

    Google Scholar 

  • Wandell BA (1996) Book Rvw: foundations of vision. J Electron Imaging 5(1):107–107

    Article  Google Scholar 

  • Werblin FS, Dowling JE (1969) Organization of the retina of the mudpuppy, necturus macubsus. II. intracellular recording. J Neurophysiol 32:339

    Google Scholar 

  • Werner JS (1982) Development of scotopic sensitivity and the absorption spectrum of the human ocular media. J Opt Soc Am 72(2):247–258

    Article  Google Scholar 

  • Werner JS, Chalupa LM (2013) The new visual neurosciences. MIT Press, Cambridge, MA

    Google Scholar 

  • Werner JS, Peterzell DH, Scheetz A (1990) Light, vision, and aging. Optom Vis Sci 67(3):214–229

    Article  Google Scholar 

  • Williams DR, MacLeod DI, Hayhoe MM (1981) Foveal tritanopia. Vision Res 21(9):1341–1356

    Article  Google Scholar 

  • Wilson HR, Bergen JR (1979) A four mechanism model for threshold spatial vision. Vision Res 19(1):19–32

    Article  Google Scholar 

  • Wright W (1941) The sensitivity of the eye to small colour differences. Proc Phys Soc 53(2):93

    Article  Google Scholar 

  • Wyszecki G, Stiles W (1982) Color science: concepts and methods, quantitative data and formulae. Wiley, New York

    Google Scholar 

  • Young RW (1971) The renewal of rod and cone outer segments in the rhesus monkey. J Cell Biol 49(2):303–318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahalakshmi Ramamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Ramamurthy, M., Lakshminarayanan, V. (2017). Human Vision and Perception. In: Karlicek, R., Sun, CC., Zissis, G., Ma, R. (eds) Handbook of Advanced Lighting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-00176-0_46

Download citation

Publish with us

Policies and ethics