Skip to main content

White OLED Devices

  • Reference work entry
  • First Online:
Handbook of Advanced Lighting Technology

Abstract

In this chapter, we will review the progress of white OLEDs based on organic small molecules in view of device architectures. The basics of white OLED devices are, firstly, demonstrated, and then the advanced architectures and current status of white OLEDs based on fluorescent, phosphorescent, and hybrid emitters are discussed. Because tandem structures, where similar or different emitting units are connected through a charge generation layer (CGL), provide further improvement in the efficiency and stability of white OLEDs, the advances of tandem white OLEDs are also discussed. Finally, the future outlook of white OLEDs is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi C, Baldo MA, Forrest SR, Lamansky S, Thompson ME, Kwong RC (2001) High efficiency red electrophosphorescence devices. Appl Phys Lett 78:1622

    Article  Google Scholar 

  • Albrecht U, Bassler H (1995) Efficiency of charge recombination in organic light-emitting diodes. Chem Phys 199:207

    Article  Google Scholar 

  • Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151

    Article  Google Scholar 

  • Baldo MA, Adachi C, Forrest SR (2000) Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Phys Rev B 62:10967

    Article  Google Scholar 

  • Birks JB (1970) Photophysics of organic molecules. Wiley, New York, p 372

    Google Scholar 

  • Birnstock J, Wellmann P, Werner A, Romainczyk T, Hofmann M, Limmert M, Grüßing A, Blochwitz-Nimoth J (2005) White OLED structures using molecularly doped charge transport layers. In: Eurodisplay, proceedings, Edinburgh, p 192

    Google Scholar 

  • Brutting W, Frischeisen J, Schmidt TD, Scholz BJ, Mayr C (2013) Device efficiency of organic light-emitting diodes: progress by improved light outcoupling. Phys Status Solidi A 1:44

    Article  Google Scholar 

  • Chang CH, Chen CC, Wu CC, Chang SY, Hung JY, Chi Y (2010) High-color-rendering pure-white phosphorescent organic light-emitting devices employing only two complementary colors. Org Electron 11:266

    Article  Google Scholar 

  • Chang YL, Yin S, Wang ZB, Helander MG, Qiu J, Chai L, Liu ZW, Schles GD, Lu ZH (2013) Highly efficient warm white organic light-emitting diodes by triplet exciton conversion. Adv Funct Mater 23:705

    Article  Google Scholar 

  • Chen S, Kwok HS (2011) Top-emitting white organic light-emitting diodes with a color conversion cap layer. Org Electron 12:677

    Article  Google Scholar 

  • Chen YH, Ma DG (2012) Organic semiconductor heterojunctions as charge generation layers and their application in tandem organic light-emitting diodes for high power efficiency. J Mater Chem 22:18718

    Article  Google Scholar 

  • Chen YH, Chen JS, Ma DG, Yan DH, Wang LX (2011) Tandem white phosphorescent organic light-emitting diodes based on interface-modified C60/pentacene organic heterojunction as charge generation layer. Appl Phys Lett 99:103304

    Article  Google Scholar 

  • Chen YH, Tian HK, Chen JS, Geng YH, Yan DH, Wang LX, Ma DG (2012a) Highly efficient tandem white organic light-emitting diodes based upon C60/NaT4 organic heterojunction as charge generation layer. J Mater Chem 22:8492

    Article  Google Scholar 

  • Chen YH, Zhao FC, Zhao YB, Chen JS, Ma DG (2012b) Ultra-simple hybrid white organic light-emitting diodes with high efficiency and CRI trade-off: fabrication and emission-mechanism analysis. Org Electron 13:2807

    Article  Google Scholar 

  • Chen YH, Wang Q, Chen JS, Ma DG, Yan DH, Wang LX (2012c) Organic semiconductor heterojunction as charge generation layer in tandem organic light-emitting diodes for high power efficiency. Org Electron 13:1121

    Article  Google Scholar 

  • Chen YH, Tian HK, Geng YH, Chen JS, Ma DG, Yan DH, Wang LX (2012d) Organic heterojunctions as a charge generation layer in tandem organic light-emitting diodes: the effect of interfacial energy level and charge carrier mobility. J Mater Chem 21:15332

    Article  Google Scholar 

  • Cho SH, Oh JR, Park HK, Kim HK, Lee YH, Lee JG, Do YR (2010) Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters. Opt Express 18:1099

    Article  Google Scholar 

  • D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid-state lighting. Adv Mater 16:1585

    Article  Google Scholar 

  • D’Andrade BW, Thompson ME, Forrest SR (2002) Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices. Adv Mater 14:147

    Article  Google Scholar 

  • D’Andrade BW, Holmes RJ, Forrest SR (2004) Efficient organic electrophosphorescent white organic light emitting device with a triple doped emissive layer. Adv Mater 16:624

    Article  Google Scholar 

  • D’Andrade B, Esler J, Lin C, Weaver M, Brown J (2008) Extremely long lived white phosphorescent organic light emitting device with minimum organic materials. SID 08 Digest, p 940

    Google Scholar 

  • Duan L, Zhang DQ, Wu KW, Huang XQ, Wang LD, Qiu Y (2011) Controlling the recombination zone of white organic light-emitting diodes with extremely long lifetimes. Adv Funct Mater 21:3540

    Article  Google Scholar 

  • Eom SH, Zheng Y, Wrzesniewski E, Lee J, Chopra N, So F, Xue JG (2009) White phosphorescent organic light-emitting devices with dual triple-doped emissive layers. Appl Phys Lett 94:153303

    Article  Google Scholar 

  • Fukagawa H, Shimizu T, Ohbe N, Tokito S, Tokumaru K, Fujikake H (2012) Anthracene derivatives as efficient emitting host for blue organic light-emitting diodes utilizing triplet-triplet annihilation. Org Electron 13:1197

    Article  Google Scholar 

  • Giebink NC, Forrest SR (2008) Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes. Phys Rev B 77:235215

    Article  Google Scholar 

  • Guo FW, Ma DG (2005) White organic light-emitting diodes based on tandem structures. Appl Phys Lett 87:173510

    Article  Google Scholar 

  • Hatwar TK, Spindler JP, Ricks ML, Young RH, Cosimbescu L, Begley W, Slyke SV (2004) White OLED structures optimized for RGB and RGBW formats. In: 24th international display research conference ASIA display, Daegu, p 816

    Google Scholar 

  • He G, Pfeiffer M, Leo K, Hofmann M, Birnstock J, Pudzich R, Salbeck J (2004) High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers. Appl Phys Lett 85:3911

    Article  Google Scholar 

  • Jou JH, Shen SM, Chen CC, Chung YC, Wang CJ, Hsu MF, Wang WB, Wu MH, Yang CJ, Liu CP (2008) High-efficiency fluorescent white organic light-emitting diodes using double hole-transporting-layers. Proc SPIE 6999:69992S

    Article  Google Scholar 

  • Kalinowski J, Stampor W, Mezyk J, Cocchi M, Virgili MD, Fattori V, Di Marco P (2002) Quenching effects in organic electrophosphorescence. Phys Rev B 66:235321

    Article  Google Scholar 

  • Kalinowski J, Stampor W, Szmytkowski J, Virgili D, Cocchi M, Fattori V, Sabatini C (2006) Coexistence of dissociation and annihilation of excitons on charge carriers in organic phosphorescent emitters. Phys Rev B 74:085316

    Article  Google Scholar 

  • Kido J, Kimura M, Nagai K (1995) Multilayer white light-emitting organic electroluminescent device. Science 267:1332

    Article  Google Scholar 

  • Lee J, Lee JI, Lee JY, Chu HY (2009) Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic light-emitting diodes with a mixed host structure. Appl Phys Lett 94:193305

    Article  Google Scholar 

  • Lee SY, Yasuda T, Nomura H, Adachi C (2012) High efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules. Appl Phys Lett 101:093306

    Article  Google Scholar 

  • Li C, Ichikawa M, Wei B, Taniguchi Y, Kimura H, Kawaguchi K, Sakurai K (2007) A highly color-stability white organic light-emitting diode by color conversion within hole injection layer. Opt Express 15:608

    Article  Google Scholar 

  • Liao LS, Klubek KP, Tang CW (2004) High-efficiency tandem organic light-emitting diodes. Appl Phys Lett 84:167

    Article  Google Scholar 

  • Ma YG, Zhang HY, Shen JC, Che CM (1998) Electroluminescence from triplet metal – ligand charge-transfer excited state of transition metal complexes. Synth Met 94:245

    Article  Google Scholar 

  • Matsumoto T, Nakada T, Endo J, Mori K, Kavamura N, Yokoi A, Kido J (2003) Multiphoton organic EL device having charge generation layer. SID 03 Digest, p 979

    Google Scholar 

  • Moon J, Joo M, Lee YK, Lee JY, Park M, Choi J, Ham Y, Ahn Y, Kim JD, Lee J, Kim JH, You J, Jeong K, Kim JS, Son S (2013) 80 lm/W White OLED for solid state lighting. SID 2013 Digest, p 842

    Google Scholar 

  • Murano S, Kucur E, He GF, Blochwitz-Nimoth J, Hatwar TK, Spindler J, Slyke SV (2009) White fluorescent PIN OLED with high efficiency and lifetime for display applications. SID Intl Symp Dig Tech Papers 39:417

    Article  Google Scholar 

  • Nishimura K, Kawamura M, Jinde Y, Yabunouchi N, Yamamoto H, Arakane T, Iwakuma T, Funahashi M, Fukuoka K, Hosokawa C (2008) The improvement of white OLED’s performance. SID Intl Symp Dig Tech Papers 39:1971

    Article  Google Scholar 

  • Pfeiffer M, Forrest SR, Leo K, Thomson ME (2002) Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays. Adv Mater 14:1633

    Article  Google Scholar 

  • Reineke S, Walzer K, Leo K (2007) Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Phys Rev B 75:125328

    Article  Google Scholar 

  • Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K (2009) White organic light-emitting diodes with fluorescent tube efficiency. Nature 459:234

    Article  Google Scholar 

  • Reineke S, Thomschke M, Lu¨ssem B, Leo K (2013) White organic light-emitting diodes: status and perspective. Rev Mod Phys 85:1245

    Article  Google Scholar 

  • Sasabe H, Kido J (2011) Multifunctional materials in high-performance OLEDs: challenges for solid-state lighting. Chem Mater 23(3):621–630

    Article  Google Scholar 

  • Sasabe H, Takamatsu JI, Motoyama T, Watanabe S, Wagenblast C, Langer N, Molt O, Fuchs E, Lennartz C, Kido J (2010) High efficiency blue and white organic light-emitting devices incorporating a blue iridium carbine complex. Adv Mater 22:5003

    Article  Google Scholar 

  • Schwab T, Thomschke M, Hofmann S, Furno M, Leo K, Luessem B (2011) Efficiency enhancement of top-emitting organic light-emitting diodes using conversion dyes. J Appl Phys 110:083118

    Article  Google Scholar 

  • Schwartz G, Fehse K, Pfeiffer M, Walzer K, Leo K (2006) Highly efficient white organic light emitting diodes comprising an interlayer to separate fluorescent and phosphorescent regions. Appl Phys Lett 89:083509

    Article  Google Scholar 

  • Schwartz G, Pfeiffer M, Reineke S, Walzer K, Leo K (2007) Harvesting triplet excitons from fluorescent blue emitters in white organic light-emitting diodes. Adv Mater 19:3672

    Article  Google Scholar 

  • Schwartz G, Reineke S, Rosenow TC, Walzer K, Leo K (2009) Triplet harvesting in hybrid white organic light-emitting diodes. Adv Funct Mater 19:1319

    Article  Google Scholar 

  • Segal M, Baldo MA, Holmes RJ, Forrest SR, Soos ZG (2003) Excitonic singlet-triplet ratios in molecular and polymeric organic materials. Phys Rev B 68:075211

    Article  Google Scholar 

  • Sharma BL, Purohit RK (1974) Semiconductor heterojunctions. Pergamon Press, Oxford

    Google Scholar 

  • Spindler JP, Hatwar TK (2009) Fluorescent-based tandem white OLEDs designed for display and solid-state-lighting applications. J SID 17(10):861

    Google Scholar 

  • Su SJ, Gonmori E, Sasabe H, Kido J (2008) Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off. Adv Mater 20:4189

    Google Scholar 

  • Sun Y, Forrest SR (2007) High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Appl Phys Lett 91:263503

    Article  Google Scholar 

  • Sun YR, Forrest SR (2008) Multiple exciton generation regions in phosphorescent white organic light emitting devices. Org Electron 9:994

    Article  Google Scholar 

  • Sun Y, Giebink N, Kanno H, Wa B, Thompson ME, Forrest SR (2006) Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440:908

    Article  Google Scholar 

  • Sun N, Wang Q, Zhao YB, Chen YH, Yang DZ, Zhao FC, Chen JS, Ma DG (2014) High-performance hybrid white organic light-emitting devices without an interlayer between fluorescent and phosphorescent emissive regions. Adv Mater 26:1617–1621. doi:10.1002/adma.201304779

    Article  Google Scholar 

  • Tang CW, Vanslyke SA (1987) Organic electroluminescence diodes. Appl Phys Lett 51:913

    Article  Google Scholar 

  • Tyan YS, Rao Y, Wang JS, Kesel R, Cushman TR, Begley WJ (2008) Fluorescent white OLED devices with improved light extraction. SID Intl Symp Dig Tech Papers 39:933

    Article  Google Scholar 

  • Tyan YS, Rao1YQ, Ren XF, Kesel R, Cushman TR, Begley WJ, Bhandari N (2009) Tandem hybrid white OLED devices with improved light extraction. SID 09 Digest, p 895

    Google Scholar 

  • Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234

    Article  Google Scholar 

  • Valeur B (2002) Molecular fluorescence. Wiley, Weinheim, p 41

    Google Scholar 

  • Wang Q, Ma DG (2010) Management of charges and excitons for high-performance white organic light-emitting diodes. Chem Soc Rev 39:2387

    Article  Google Scholar 

  • Wang Q, Ding JQ, Ma DG, Cheng YX, Wang LX, Wang FS (2009a) Manipulating charges and excitons within a singlet-host system to accomplish efficiency/CRI/color-stability trade-off for high performance OWLEDs. Adv Mater 21:2397

    Article  Google Scholar 

  • Wang Q, Ding JQ, Ma DG, Cheng YX, Wang LX, Jing XB, Wang FS (2009b) Harvesting excitons via two parallel channels for efficient WOLED with nearly 100 % internal quantum efficiency: fabrication and mechanism analysis. Adv Funct Mater 19:84

    Article  Google Scholar 

  • Wang Q, Ding JQ, Zhang ZQ, Ma DG, Cheng YX, Wang LX, Wang FS (2009c) A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer. J Appl Phys 105:076101

    Article  Google Scholar 

  • Wang Q, Ho CL, Zhao YB, Ma DG, Wong WY, Wang LX (2010) Reduced efficiency roll-off in highly efficient and color-stable hybrid WOLEDs: the influence of triplet transfer and charge-transport behavior on enhancing device performance. Org Electron 11:238

    Article  Google Scholar 

  • Yan DH, Wang HB, Du BX (2010) Introduction to organic semiconductor heterojunction. Science Press, Beijing

    Book  Google Scholar 

  • Yang Y, Peng T, Ye KQ, Wu Y, Liu Y, Wang Y (2011) High-efficiency and high-quality white organic light-emitting diode employing fluorescent emitters. Org Electron 12:29

    Article  Google Scholar 

  • Ye J, Zheng CJ, Ou XM, Zhang XH, Fung MK, Lee CS (2012) Management of singlet and triplet excitons in a single emission layer: a simple approach for a high-efficiency fluorescence/phosphorescence hybrid white organic light-emitting device. Adv Mater 24:3410

    Article  Google Scholar 

  • Yersin H (2004) Triplet emitters for OLED applications: mechanisms of exciton trapping and control of emission properties. Top Curr Chem 241:1

    Article  Google Scholar 

  • You H, Dai YF, Zhang ZQ, Ma DG (2007) Improved performances of organic light-emitting diodes with metal oxide as anode buffer. J Appl Phys 101:026105

    Article  Google Scholar 

  • Zhang ZQ, Wang Q, Dai YF, Liu YP, Wang LX, Ma SG (2009) High efficiency fluorescent white organic light-emitting diodes with red, green and blue separately monochromatic emission layers. Org Electron 10:491

    Article  Google Scholar 

  • Zhang QS, Li J, Shizu K, Huang S, Hirata S, Miyazaki H, Adachi C (2012) Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J Am Chem Soc 134:14706

    Article  Google Scholar 

  • Zhao YB, Zhu LP, Chen JS, Ma DG (2012a) Improving color stability of blue/orange complementary white OLEDs by using single-host double-emissive layer structure: comprehensive experimental investigation into the device working mechanism. Org Electron 13:1340

    Article  Google Scholar 

  • Zhao FC, Zhang ZQ, Liu YP, Dai YF, Chen JS, Ma DG (2012b) A hybrid white organic light-emitting diode with stable color and reduced efficiency roll-off by using a bipolar charge carrier switch. Org Electron 13:1049

    Article  Google Scholar 

  • Zhao FC, Sun N, Zhang HM, Chen JS, Ma DG (2012c) Hybrid white organic light-emitting diodes with a double light-emitting layer structure for high color-rendering index. J Appl Phys 112:084504

    Article  Google Scholar 

  • Zheng CJ, Wang J, Ye J, Lo MF, Liu XK, Fung MK, Zhang XH, Lee CS (2013) Novel efficient blue fluorophors with small singlet-triplet splitting: hosts for highly efficient fluorescence and phosphorescence hybrid WOLEDs with simplified structure. Adv Mater 25:2205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongge Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Ma, D. (2017). White OLED Devices. In: Karlicek, R., Sun, CC., Zissis, G., Ma, R. (eds) Handbook of Advanced Lighting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-00176-0_24

Download citation

Publish with us

Policies and ethics