Skip to main content

LED Materials: Epitaxy and Quantum Well Structures

  • Reference work entry
  • First Online:
Handbook of Advanced Lighting Technology

Abstract

This chapter describes how, in order to achieve low droop and high-efficiency light-emitting diodes (LEDs), we investigated the following multiple quantum wells (MQWs) and electron-blocking layer (EBL) design to enhance our LED devices: graded-thickness multiple quantum wells (GQWs), graded-composition multiple quantum barriers (GQBs), selectively graded-composition multiple quantum barriers (SGQBs), and graded-composition electron-blocking layer (GEBL). Besides, the crystal quality of the epitaxial layer was enhanced by introducing freestanding GaN substrate for the epitaxial growth of III-nitride epilayer. On the other hand, in recent years, the epitaxial growth of GaN-based materials on Si substrate has a great potential for applications in low-cost and high-efficiency LEDs. Hence, the properties of GaN-based LEDs on Si will also be described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference:

  • Able A, Wegscheider W, Engl K, Zweck J (2005) Growth of crack-free GaN on Si(1 1 1) with graded AlGaN buffer layers. J Cryst Growth 276:415

    Article  Google Scholar 

  • Akasaka T, Gotoh H, Saito T, Makimoto T (2004) High luminescent efficiency of InGaN multiple quantum wells grown on InGaN underlying layers. Appl Phys Lett 85:3089

    Article  Google Scholar 

  • Arif RA, Ee YK, Tansu N (2007) Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes. Appl Phys Lett 91:091110

    Article  Google Scholar 

  • Bernardini F (2007) Chapter 3, Spontaneous and piezoelectric polarization: basic theory vs. practical recipes. In: Piprek J (ed) Nitride semiconductor devices: principles and simulation. Wiley, New York, pp 49–67

    Chapter  Google Scholar 

  • Bhagavannarayana G, Ananthamurthy RV, Budakoti GC, Kumar B, Bartwal KS (2005) A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT-IR. J Appl Crystallogr 38:768–771

    Article  Google Scholar 

  • Butter E, Fitzl G, Hirsch D, Leonhardt G, Seifert W (1979) The deposition of group III nitrides on silicon substrates. Thin Solid Films 59:25

    Article  Google Scholar 

  • Cao XA, LeBoeuf SF (2007) Current and temperature dependent characteristics of deep-ultraviolet light-emitting diodes. IEEE Trans Electron Devices 54(12):3414–3417

    Article  Google Scholar 

  • Cao XA, Teetsov JA, Shahedipour-Sandvik F, Arthur SD (2004a) Microstructural origin of leakage current in GaN/InGaN light-emitting diodes. J Cryst Growth 264:172

    Article  Google Scholar 

  • Cao XA, LeBoeuf SF, D’Evelyn MP, Arthur SD, Kretchmer J, Yan CH, Yang ZH (2004b) Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrate. Appl Phys Lett 84:4313–4315

    Article  Google Scholar 

  • Chao C-L, Xuan R, Yen H-H, Chiu C-H, Fang Y-H, Li Z-Y, Chen B-C, Lin C-C, Chiu C-H, Guo Y-D, Kuo H-C, Chen J-F, Cheng S-J (2011) Reduction of efficiency droop in InGaN light-emitting diode grown on self-separated freestanding GaN substrates. IEEE Photon Technol Lett 23:798

    Article  Google Scholar 

  • Charash R, Maaskant PP, Lewis L, McAleese C, Kappers MJ, Humphreys CJ, Corbett B (2009) Carrier distribution in InGaN/GaN tricolor multiple quantum well light emitting diodes. Appl Phys Lett 95:151103

    Article  Google Scholar 

  • Chiu CH, Yen HH, Chao CL, Li ZY, Peichen Y, Kuo HC, Lu TC, Wang SC, Lau KM, Cheng SJ (2008a) Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template. Appl Phys Lett 93:081108

    Article  Google Scholar 

  • Chiu CH, Lee CE, Chao CL, Cheng BS, Huang HW, Kuo HC, Lu TC, Wang SC, Kuo WL, Hsiao CS, Chen SY (2008b) Enhancement of light output intensity by integrating ZnO nanorod arrays on GaN-based LLO vertical LEDs. Electrochem Solid-State Lett 11:H84

    Article  Google Scholar 

  • Chiu C-H, Lin D-W, Lin C-C, Li Z-Y, Chen Y-C, Ling S-C, Kuo H-C, Lu T-C, Wang S-C, Liao W-T, Tanikawa T, Honda Y, Yamaguchi M, Sawaki N (2011a) Optical properties of (11¯ 01) semi-polar InGaN/GaN multiple quantum wells grown on patterned silicon substrates. J Cryst Growth 318:500

    Article  Google Scholar 

  • Chiu C-H, Lin C-C, Deng D-M, Lin D-W, Li J-C, Li Z-Y, Shu G-W, Lu T-C, Shen J-L, Kuo H-C, Lau K-M (2011b) Optical and electrical properties of GaN-based light emitting diodes grown on micro- and nano-scale patterned Si substrate. IEEE J Quantum Electron 47:899

    Article  Google Scholar 

  • Dadgar A, Bläsing J, Diez A, Alam A, Heuken M, Krost A (2000) Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness. Jpn J Appl Phys 39:1183

    Article  Google Scholar 

  • Dadgar A, Poschenrieder M, Bläsing J, Contreras O, Bertram F, Riemann T, Reiher A, Kunze M, Daumiller I, Krtschil A, Diez A, Kaluza A, Modlich A, Kamp M, Christen J, Ponce FA, Kohn E, Krost A (2003a) MOVPE growth of GaN on Si(1 1 1) substrates. J Cryst Growth 248:556

    Google Scholar 

  • Dadgar A, Strittmatter A, Bläsing J, Poschenrieder M, Contreras O, Veit P, Riemann T, Bertram F, Reiher A, Krtschil A, Diez A, Hempel T, Finger T, Kasic A, Schubert M, Bimberg D, Ponce FA, Christen J, Krost A (2003b) Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon. Phys Status Solidi (C) 0:1583

    Article  Google Scholar 

  • David A, Grundmann MJ (2010) Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl Phys Lett 96:103504

    Article  Google Scholar 

  • David A, Grundmann MJ, Kaeding JF, Gardner NF, Mihopoulos TG, Krames MR (2008) Carrier distribution in (0001)InGaN∕GaN(0001)InGaN∕GaN multiple quantum well light-emitting diodes. Appl Phys Lett 92:053502

    Article  Google Scholar 

  • Davis RF, Bishop SM, Mita S, Collazo R, Reitmeier ZJ, Sitar Z (2007) Epitaxial growth of gallium nitride. AIP Conf Proc 916:520

    Article  Google Scholar 

  • Denton AR, Ashcroft NW (1991) Vegard’s law. Phys Rev A 43:3161

    Article  Google Scholar 

  • Ding K, Zeng YP, Wei XC, Li ZC, Wang JX, Lu HX, Cong PP, Yi XY, Wang GH, Li JM (2009) A wide-narrow well design for understanding the efficiency droop in InGaN/GaN light-emitting diodes. Appl Phys B: Lasers Opt 97:465

    Article  Google Scholar 

  • Eric F, Beaumont B, La€ugt M, de Mierry P, Vennéguès P, Lahrèche H, Leroux M, Gibart P (2001) Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl Phys Lett 79:3230

    Article  Google Scholar 

  • Fang YH, Fu YK, Xuan R (2012) High efficiency and output power of near-ultraviolet light-emitting diodes grown on GaN substrate with back-side etching. Phys Scr 85:045703

    Article  Google Scholar 

  • Feng ZC, Zhang X, Chua SJ, Yang TR, Deng JC, Xu G (2002) Optical and structural properties of GaN materials and structures grown on Si by metalorganic chemical vapor deposition. Thin Solid Films 409:15

    Article  Google Scholar 

  • Goldenberg B, Zook JD, Ulmer RJ (1993) Ultraviolet and violet light–emitting GaN diodes grown by low–pressure metalorganic chemical vapor deposition. Appl Phys Lett 62:381

    Article  Google Scholar 

  • Gong JR, Yeh MF, Wang CL (2003) Growth and characterization of GaN and AlN films on (1 1 1) and (0 0 1) Si substrates. J Cryst Growth 247:261

    Article  Google Scholar 

  • Haffouz S, Grzegorczyk A, Hageman PR, Vennéguės P, Van der Drift EWJM, Larsen PK (2003) Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (1 1 1) substrates. J Cryst Growth 248:568

    Article  Google Scholar 

  • Han S-H, Lee D-Y, Lee S-J, Cho C-Y, Kwon M-K, Lee SP, Noh DY, Kim D-J, Kim YC, Park S-J (2009) Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes. Appl Phys Lett 94:231123

    Article  Google Scholar 

  • Harima H (2002) Properties of GaN and related compounds studied by means of Raman scattering. J Phys Condens Matter 14:R967–R993

    Article  Google Scholar 

  • Heying B, Wu XH, Keller S, Li Y, Kapolnek D, Keller BP, DenBaar SP, Speck JS (1996) Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Appl Phys Lett 68(5):643–645

    Article  Google Scholar 

  • Ishikawa Y, Tashiro M, Hazu K, Furusawa K, Namita H, Nagao S, Fujito K, Chichibu SF (2012) Local lifetime and luminescence efficiency for the near-band-edge emission of free-standing GaN substrates determined using spatio-time-resolved cathodoluminescence. Appl Phys Lett 101(21):212106

    Article  Google Scholar 

  • Jang S-H, Lee S-J, Seo I-S, Ahn H-K, Lee O-Y, Leem J-Y, Lee C-R (2002) Characteristics of GaN/Si(1 1 1) epitaxy grown using Al0.1Ga0.9N/AlN composite nucleation layers having different thicknesses of AlN. J Cryst Growth 241:289

    Article  Google Scholar 

  • Jeong S-M, Kissinger S, Kim D-W, Lee SJ, Kim J-S, Ahn H-K, Lee C-R (2010) Characteristic enhancement of the blue LED chip by the growth and fabrication on patterned sapphire (0 0 0 1) substrate. J Cryst Growth 312(258)

    Google Scholar 

  • Katsuragawa M, Sota S, Komori M, Anbe C, Takeuchi T, Sakai H, Amano H, Akasaki I (1998) Thermal ionization energy of Si and Mg in AlGaN. J Cryst Growth 189–190:528

    Article  Google Scholar 

  • Kim M-H, Do Y-G, Kang HC, Noh DY, Park S-J (2001a) Effects of step-graded AlxGa1-xN interlayer on properties of GaN grown on Si (111) using ultrahigh vacuum chemical vapor deposition. Appl Phys Lett 79:2713

    Article  Google Scholar 

  • Kim M-H, Do Y-G, Kang HC, Noh DY, Park S-J (2001b) Effects of step-graded AlxGa1-xN interlayer on properties of GaN grown on Si (111) using ultrahigh vacuum chemical vapor deposition. Appl Phys Lett 79(2713)

    Google Scholar 

  • Kim MH, Schubert MF, Dai Q, Kim JK, Schubert EF, Piprek J, Park Y (2007a) Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett 91:183507

    Article  Google Scholar 

  • Kim KC, Schmidt MC, Sato H,Wu F, Fellows N, Jia Z, Satio M, Nakamura S, DenBaars SP, Speck JS, Fujito K (2007b) Study of nonpolar m-plane InGaN/GaN multiquantum well light emitting diodes grown by homoepitaxial metal-organic chemical vapor deposition, Appl Phys Lett 91(18):181120

    Article  Google Scholar 

  • Kim J-Y, Tak Y, Hong H-G, Chae S, Lee JW, Choi H, Kim JK, Min B, Park Y, Chung U-I, Kim M, Lee S, Cha N, Shin Y, Sone C, Kim J-R, Shim J-I (2011a) Highly efficient InGaN/GaN blue LEDs on large diameter Si(111) substrates comparable to those on sapphire. In: Proceedings of the SPIE 8123, eleventh international conference on solid state lighting, 81230A, San Diego, 23 Sept 2011

    Google Scholar 

  • Kim JO, Hong SK, Kim H, Moon KW, Choi CJ, Lim KY (2011b) J Korean Phys Soc 58:1374

    Article  Google Scholar 

  • Kim J-Y, Tak Y, Kim J, Hong H-G, Chae S, Lee JW, Choi H, Park Y, Chung U-I, Kim J-R, Shim J-I (2012) Highly efficient InGaN/GaN blue LED on 8-inch Si (111) substrate. In: Proceedings of the SPIE 8262, gallium nitride materials and devices VII, 82621D, San Francisco, 9 Feb 2012

    Google Scholar 

  • Kobayashi NP, Kobayashi JT, Choi W-J, Dapkus PD, Zhang X, Rich DH (1998) Growth of single crystal GaN on a Si substrate using oxidized AlAs as an intermediate layer. J Cryst Growth 189/190:172

    Google Scholar 

  • Krost A, Dadgar A (2002) GaN-based optoelectronics on silicon substrates, Mater Sci Eng B 93:77

    Article  Google Scholar 

  • Kuo YK, Chang JY, Tsai MC, Yen SH (2009) Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers. Appl Phys Lett 95:011116

    Article  Google Scholar 

  • Lau KM, Wong KM, Zou X, Chen P (2011) Performance improvement of GaN-based light-emitting diodes grown on patterned Si substrate transferred to copper. Opt Express 19:A956

    Article  Google Scholar 

  • Lee SR, West AM, Allerman AA, Waldrip KE, Follstaedt DM, Provencio PP, Koleske DD, Abernathy CR (2005) Effect of threading dislocation on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers. Appl Phys Lett 86(24):241904

    Article  Google Scholar 

  • Li ZY, Uen WY, Lo MH, Chiu CH, Lin PC, Hung CT, Lu TC, Kuo HC, Wang SC, Huang YC (2009) Enhancing the emission efficiency of In0.2Ga0.8N/GaN MQW blue LED by using appropriately misoriented sapphire substrates. J Electrochem Soc 156(2):H129–H133

    Article  Google Scholar 

  • Ling SC, Lu TC, Chang SP, Chen JR, Kuo HC, Wang SC (2010) Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes. Appl Phys Lett 96:231101

    Article  Google Scholar 

  • Liu BL, Lachab M, Jia A, Yoshikawaa A, Takahashi K (2002) MOCVD growth of device-quality GaN on sapphire using a three-step approach. J Cryst Growth 234:637

    Article  Google Scholar 

  • Liu N, Wu J, Li W, Luo R, Tong Y, Zhang G (2014) Highly uniform growth of 2-inch GaN wafers with a multi-wafer HVPE system. J Cryst Growth 388:132–136

    Article  Google Scholar 

  • Lu Y, Liu X, Lu D-C, Yuan H, Hu G, Wang X, Wang Z, Duan X (2003) The growth morphologies of GaN layer on Si(1 1 1) substrate. J Cryst Growth 247:91

    Article  Google Scholar 

  • Marchand H, Zhao L, Zhang N, Moran B, Coffie R, Mishra UK, Speck JS, DenBaars SP, Freitas JA (2001) Metalorganic chemical vapor deposition of GaN on Si(111): Stress control and application to field-effect transistors. J Appl Phys 89:7846

    Article  Google Scholar 

  • Missaoui A, Ezzaouia H, Bessaïs B, Boufaden T, Matoussi A, Bouaïcha M, El Jani B (2002) Morphological study of GaN layers grown on porous silicon. Mater Sci Eng B 93:102

    Article  Google Scholar 

  • Monemar B, Sernelius BE (2007) Defect related issues in the “current roll-off” in InGaN based light emitting diodes. Appl Phys Lett 91:181103

    Article  Google Scholar 

  • Nakamura S (1998) The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281:956

    Article  Google Scholar 

  • Nakamura T, Motoki K (2013) GaN substrate technologies for optical devices. Proc IEEE 101(10):2221–2228

    Article  Google Scholar 

  • Nakamura S, Mukai T, Senoh M (1994) Candela–class high–brightness InGaN/AlGaN double–heterostructure blue–light–emitting diodes. Appl Phys Lett 64:1687

    Article  Google Scholar 

  • Ni X, Fan Q, Shimada R, Özg€ur Ü, Morkoç H (2008) Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells. Appl Phys Lett 93:171113

    Article  Google Scholar 

  • Osram (2012) Osram Opto unveils R&D results from GaN LEDs grown on silicon. http://ledsmagazine.com/news/9/1/19

    Google Scholar 

  • Pinos A, TanW-S, Chitnis A, Nishikawa A, Groh L, Hu C-Y, Murad S, Lutgen S (2013) Highly uniform electroluminescence from 150 and 200 mm GaN-on-Si-based blue light-emitting diode wafers. Appl Phys Express 6:095502

    Article  Google Scholar 

  • Piprek J (2007) Nitride semiconductor devices: principles and simulation. Wiley, Berlin, p 279

    Book  Google Scholar 

  • Puech P, Demangeot F, Frandon J, Pinquier C, Kuball M, Domnich V, Gogotsi Y (2004) GaN nanoindentation: a micro-Raman spectroscopy study of local strain fields. J Appl Phys 96(5):2853–2856

    Article  Google Scholar 

  • Schubert MF, Xu J, Kim JK, Schubert EF, Kim MH, Yoon S, Lee SM, Sone C, Sakong T, Park Y (2008) Polarization-matched GaInN∕AlGaInNGaInN∕AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett 93:041102

    Article  Google Scholar 

  • Sharan S, Jagannadham K, Narayan J (1987) Stress distribution and critical thicknesses of thin epitaxial films. Mat Res Soc Symp Proc 91:311

    Article  Google Scholar 

  • Simon J, Protasenko V, Lian C, Xing H, Jena D (2010) Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures. Science 327:60

    Article  Google Scholar 

  • Son JK, Lee SN, Sakong T, Paek HS, Nam O, Park Y, Hwang JS, Kim JY, Cho YH (2006) Enhanced optical properties of InGaN MQWs with InGaN underlying layers. J Cryst Growth 287:558

    Article  Google Scholar 

  • Strittmatter A, Krost A, T€urck V, Straßburg M, Bimberg D, Bl€asing J, Hempel T, Christen J, Neubauer B, Gerthsen D, Christmann T, Meyer BK (1999) LP-MOCVD growth of GaN on silicon substrates – comparison between AlAs and ZnO nucleation layers. Mater Sci Eng B 59:29

    Article  Google Scholar 

  • Strittmatter A, Rodt S, Reißmann L, Bimberg D, Schröder H, Obermeier E, Riemann T, Christen J, Krost A (2001) Maskless epitaxial lateral overgrowth of GaN layers on structured Si(111) substrates. Appl Phys Lett 78:727

    Article  Google Scholar 

  • Sun CK, Keller S, Chiu TL,Wang G, Minsky MS, Bowers JE, DenBaars SP (1997a) Well-width dependent studies of InGaN-GaN single-quantum wells using time-resolved photoluminescence techniques. IEEE J Sel Top Quantum Electron 3:731

    Article  Google Scholar 

  • Sun CK, Chiu TL, Keller S,Wang G, Minsky MS, DenBaars SP, Bowers JE (1997b) Time-resolved photoluminescence studies of InGaN/GaN single-quantum-wells at room temperature. Appl Phys Lett 71:425

    Article  Google Scholar 

  • Takeuchi T, Sota S, Katsuragawa M, Komori M, Takeuchi H, Amano H, Akasaki I (1997) Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn J Appl Phys 36:L382

    Article  Google Scholar 

  • Tu PM, Chang CY, Huang SC, Chiu CH, Chang JR, Chang WT, Wuu DS, Zan HW, Lin CC, Kuo HC, Hsu CP (2011) Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier. Appl Phys Lett 98:211107

    Article  Google Scholar 

  • Uen W-Y, Li Z-Y, Lan S-M, Liao S-M (2005) Epitaxial growth of high-quality GaN on appropriately nitridated Si substrate by metal organic chemical vapor deposition. J Cryst Growth 280:335

    Article  Google Scholar 

  • Vampola KJ, Iza M, Keller S, DenBaars SP, Nakamura S (2009) Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Appl Phys Lett 94:061116

    Article  Google Scholar 

  • Vurgaftman I, Meyer JR (2003) Band parameters for nitrogen-containing semiconductors. J Appl Phys 94:3675

    Article  Google Scholar 

  • Wang CH, Chen JR, Chiu CH, Kuo HC, Li YL, Lu TC, Wang SC (2010) Temperature-dependent electroluminescence efficiency in blue InGaN–GaN light-emitting diodes with different well widths. IEEE Photon Technol Lett 22:236

    Article  Google Scholar 

  • Wei M, Wang X, Pan X, Xiao H, Wang CM, Hou Q, Wang Z (2011) Effect of AlN buffer thickness on GaN epilayer grown on Si(1 1 1). Mater Sci Semicond Process 14(97)

    Google Scholar 

  • Wetzel C, Volm D, Meyer BK, Pressel K, Nilsson S, Mokhov EN, Baranov PG (1994) GaN epitaxial layers grown on 6H–SiC by the sublimation sandwich technique. Appl Phys Lett 65:1033

    Article  Google Scholar 

  • Whelan JS, George T, Weber ER, Nozaki S, Wu AT, Umeno M (1990) Transmission electron microscopy investigation of dislocation bending by GaAsP/GaAs strained–layer superlattices on heteroepitaxial GaAs/Si. J Appl Phys 68:5115

    Article  Google Scholar 

  • Xie J, Ni X, Fan Q, Shimada R, Özg€ur Ü, Morkoç H (2008) On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers. Appl Phys Lett 93:121107

    Article  Google Scholar 

  • Yamaguchi M, Nishioka T, Sugo M (1989) Analysis of strained–layer superlattice effects on dislocation density reduction in GaAs on Si substrates. Appl Phys Lett 54:24

    Article  Google Scholar 

  • Yu SF, Lin RM, Chang SJ, Chu FC (2012) Efficiency droop characteristics in InGaN-based near ultraviolet-to-blue light-emitting diodes. Appl Phys Express 5:022102

    Article  Google Scholar 

  • Zamir S, Meyler B, Zolotoyabko E, Salzman J (2000) The effect of AlN buffer layer on GaN grown on (1 1 1)-oriented Si substrates by MOCVD. J Cryst Growth 218:181

    Article  Google Scholar 

  • Zamir S, Meyler B, Salzman J (2002) Reduction of cracks in GaN films grown on Si-on-insulator by lateral confined epitaxy. J Cryst Growth 243:375

    Article  Google Scholar 

  • Zehnder U, Weimar A, Strauss U, Fehrer M, Hahn B, Lugauer H-J, H€arle V (2001) Industrial production of GaN and InGaN-light emitting diodes on SiC-substrates. J Cryst Growth 230:497

    Article  Google Scholar 

  • Zhang H, Ye Z, Zhao B (2000) Investigation of preparation and properties of epitaxial growth GaN film on Si(1 1 1) substrate. J Cryst Growth 210:511

    Article  Google Scholar 

  • Zhang JC, Jiang DS, Sun Q, Wang JF, Wang YT, Liu JP, Chen J, Jin RQ, Zhu JJ, Ying H (2005) Influence of dislocations on photoluminescence of InGaN/GaN multiple quantum wells. Appl Phys Lett 87(7):071908

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Li, ZY., Kuo, HC., Shieh, CY., Chiu, CH., Tu, PM., Uen, WY. (2017). LED Materials: Epitaxy and Quantum Well Structures. In: Karlicek, R., Sun, CC., Zissis, G., Ma, R. (eds) Handbook of Advanced Lighting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-00176-0_10

Download citation

Publish with us

Policies and ethics