Skip to main content

Two-Dimensional Hamiltonian Systems

  • Reference work entry
  • First Online:
Operator Theory

Abstract

This survey article contains various aspects of the direct and inverse spectral problem for two-dimensional Hamiltonian systems , that is, two-dimensional canonical systems of homogeneous differential equations of the form

$$\displaystyle{Jy^{{\prime}}(x) = -zH(x)y(x),\ x \in [0,L],\ \ 0 < L \leq \infty,\ z \in \mathbb{C},}$$

with a real non-negative definite matrix function H ≥ 0 and a signature matrix J, and with a standard boundary condition of the form y 1(0+) = 0. Additionally it is assumed that Weyl’s limit point case prevails at L. In this case the spectrum of the canonical system is determined by its Titchmarsh–Weyl coefficient Q which is a Nevanlinna function, that is, a function which maps the upper complex half-plane analytically into itself. In this article an outline of the Titchmarsh–Weyl theory for Hamiltonian systems is given and the solution of the direct spectral problem is shown. Moreover, Hamiltonian systems comprehend the class of differential equations of vibrating strings with a non-homogeneous mass-distribution function as considered by M.G. Kreĭn. The inverse spectral problem for two-dimensional Hamiltonian systems was solved by L. de Branges by use of his theory of Hilbert spaces of entire functions, showing that each Nevanlinna function is the Titchmarsh–Weyl coefficient of a uniquely determined normed Hamiltonian. More detailed results of this connection for, e.g., systems with a semibounded or discrete or finite spectrum are presented, and also some results concerning spectral perturbation, which allow an explicit solution of the inverse spectral problem in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achiezer, N.I.: The Classical Moment Problem. Oliver & Boyd, Edinburgh (1965)

    Google Scholar 

  2. Achieser, N.I., Glasmann, I.M.: Theorie der linearen Operatoren im Hilbert Raum. Akademie-Verlag, Berlin (1954)

    MATH  Google Scholar 

  3. Arov, D.Z., Dym, H.: J-inner matrix functions, interpolation and inverse problems for canonical systems, I: Foundations. Integr. Equ. Oper. Theory 29(4), 373–454 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arov, D.Z., Dym, H.: J-inner matrix functions, interpolation and inverse problems for canonical systems, II: The inverse monodromy problem. Integr. Equ. Oper. Theory 36(1), 11–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arov, D.Z., Dym, H.: J-inner matrix functions, interpolation and inverse problems for canonical systems, III: More on the inverse monodromy problem. Integr. Equ. Oper. Theory 36(2), 127–181 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arov, D.Z., Dym, H.: J-inner matrix functions, interpolation and inverse problems for canonical systems, IV: Direct and inverse bitangential input scattering problems. Integr. Equ. Oper. Theory 43(1), 1–67 (2002)

    Google Scholar 

  7. Arov, D.Z., Dym, H.: J-inner matrix functions, interpolation and inverse problems for canonical systems, V: The inverse input scattering problem for Wiener class and rational p × q input scattering matrices. Integr. Equ. Oper. Theory 43(1), 68–129 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arov, D.Z., Dym, H.: The bitangential inverse input impedance problem for canonical systems, I: Weyl-Titchmarsh classification, existence and uniqueness. Integr. Equ. Oper. Theory 47(1), 3–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arov, D.Z., Dym, H.: The bitangential inverse input impedance problem for canonical systems II: Formulas and examples. Integr. Equ. Oper. Theory 51(2), 155–213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Atkinson, F.V.: Discrete and Continuous Boundary Problems. Academic, New York (1964)

    MATH  Google Scholar 

  11. Behncke, H., Hinton, D.: Two singular point linear Hamiltonian systems with an interface condition. Math. Nachr. 283(3), 365–378 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Behrndt, J., Hassi, S., de Snoo, H., Wietsma, R.: Square-integrable solutions and Weyl functions for singular canonical systems. Math. Nachr. 284(11/12), 1334–1384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Branges, L.: Some Hilbert spaces of entire functions. Trans. Am. Math. Soc. 96, 259–295 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Branges, L.: Some Hilbert spaces of entire functions II. Trans. Am. Math. Soc. 99, 118–152 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Branges, L.: Some Hilbert spaces of entire functions III. Trans. Am. Math. Soc. 100, 73–115 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Branges, L.: Some Hilbert spaces of entire functions IV. Trans. Am. Math. Soc. 105, 43–83 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Branges, L.: Hilbert Spaces of Entire Functions. Prentice Hall, Englewood Cliffs (1968)

    MATH  Google Scholar 

  18. Coddington, E.A.: The spectral representation of ordinary self-adjoint differential operators. Ann. Math. 60, 192–211 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  19. Coddington, E.A.: Generalized resolutions of the identity for symmetric ordinary differential operators. Ann. Math. 68, 378–392 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dijksma, A., Langer, H., de Snoo, H.S.V.: Hamiltonian systems with eigenvalue depending boundary conditions. Oper. Theory Adv. Appl. 35, 37–83 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Dijksma, A., Langer, H., de Snoo, H.S.V.: Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions. Math. Nachr. 161, 107–154 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Donoghue, W.F.: Monotone Matrix Functions and Analytic Continuation. Springer, New York (1974)

    Book  MATH  Google Scholar 

  23. Dym, H., Iacob, A.: Positive definite extensions, canonical equations and inverse problems. Operator Theory Adv. Appl. 12, 141–240 (1984)

    MathSciNet  MATH  Google Scholar 

  24. Dym, H., Kravitsky, N.: On recovering the mass distribution of a string from its spectral function. In: Gohberg, I., Kac, M. (eds.) Topics in Functional Analysis, Advances in Mathematics Supplementary Studies, vol. 3, pp. 45–90 Academic, New York (1978)

    Google Scholar 

  25. Dym, H., Kravitsky, N.: On the inverse spectral problem for the string equation. Integr. Equ. Oper. Theory 1/2, 270–277 (1978)

    Google Scholar 

  26. Dym, H., McKean, H.P.: Gaussian Processes, Function Theory, and the Inverse Spectral Problem. Academic, New York (1976)

    MATH  Google Scholar 

  27. Gohberg, I., Kaashoek, M.A., Sakhnovich, A.L.: Canonical systems with rational spectral densities: explicit formulas and applications. Math. Nachr. 194, 93–125 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gohberg, I., Krein, M.G.: Theory and Applications of Volterra Operators in Hilbert Space. Translation of Mathematical Monographs, vol. 24, American Mathematical Society, Providence (1970)

    Google Scholar 

  29. Hassi, S., de Snoo, H.S.V., Winkler, H.: Boundary-value problems for two-dimensional canonical systems. Integr. Equ. Oper. Theory 36, 445–479 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hinton, D.B., Schneider, A.: On the Titchmarsh-Weyl coefficients for singular S-Hermitian systems I. Math. Nachr. 163, 323–342 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hinton, D.B., Schneider, A.: Titchmarsh-weyl coefficients for odd-order linear Hamiltonian systems. J. Spectral Math. Appl. 1, 1–36 (2006)

    Google Scholar 

  32. Hinton, D.B., Shaw, J.K.: On Titchmarsh-Weyl M(λ)-functions for linear Hamiltonian systems. J. Differ. Equ. 40, 316–342 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hinton, D.B., Shaw, J.K.: Hamiltonian systems of limit point or limit circle type with both endpoints singular. J. Differ. Equ. 50, 444–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kac, I.S.: On the Hilbert spaces generated by monotone Hermitian matrix functions. Zap. Mat. Otd. Fiz.-Mat. Fak. i Har’kov. Mat. Obsc. 22, 95–113 (1951)

    Google Scholar 

  35. Kac, I.S.: On the multiplicity of the spectrum of a second-order differential operator. Dokl. Akad. Nauk. SSSR Ser. Mat. 145, 510–514 (1962, in Russian). English translation: Sov. Math. 3, 1035–1039 (1962)

    Google Scholar 

  36. Kac, I.S.: Linear relations, generated by a canonical differential equation on an interval with a regular endpoint, and expansibility in eigenfunctions. Deposited paper 517.9, Odessa (1984, in Russian)

    Google Scholar 

  37. Kac, I.S.: Expansibility in eigenfunctions of a canonical differential equation on an interval with singular endpoints and associated linear relations. Deposited paper 517.984, Odessa (1986, in Russian)

    Google Scholar 

  38. Kac, I.S.: Spectral theory of strings. Ukr. Math. J. 46(3), 155–176 (1994, in Russian)

    Google Scholar 

  39. Kac, I.S.: A criterion for the discreteness of a singular canonical system. Funkt. Anal. i Prilozhen. 29(3), 75–78 (1995, in Russian). English translation: Funct. Anal. Appl. 29(3), 207–210 (1995)

    Google Scholar 

  40. Kac, I.S.: On the nature of the de Branges Hamiltonian. Ukr. Math. J. 59(5), 718–743 (2007)

    Article  MathSciNet  Google Scholar 

  41. Kac, I.S., Krein, M.G.: R-functions–Analytic functions mapping the upper halfplane into itself. Am. Math. Soc. Transl. (2) 103, 1–18 (1974)

    Google Scholar 

  42. Kac, I.S., Krein, M.G.: On the spectral functions of the string. Am. Math. Soc. Transl. (2) 103, 19–102 (1974)

    Google Scholar 

  43. Kaltenbäck, M., Woracek, H.: Pontryagin spaces of entire functions I. Integr. Equ. Oper. Theory 33, 34–97 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kaltenbäck, M., Woracek, H.: Pontryagin spaces of entire functions II. Integr. Equ. Oper. Theory 33, 305–380 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kaltenbäck, M., Woracek, H.: Pontryagin spaces of entire functions III. Acta Sci. Math. (Szeged) 69, 241–310 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Kaltenbäck, M., Woracek, H.: Pontryagin spaces of entire functions IV. Acta Sci. Math. (Szeged) 72(3/4), 709–835 (2006)

    Google Scholar 

  47. Kaltenbäck, M., Woracek, H.: Pontryagin spaces of entire functions VI. Acta Sci. Math. (Szeged) 76, 511–56 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Kaltenbäck, M., Woracek, H.: Pontryagin spaces of entire functions V. Acta Sci. Math. (Szeged) 77, 223–336 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Kaltenbäck, M., Woracek, H.: Canonical differential equations of Hilbert-Schmidt type. Oper. Theory Adv. Appl. 175, 159–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kaltenbäck, M., Winkler, H., Woracek, H.: Strings, dual strings and related canonical systems. Math. Nachr. 280(13/14), 1518–1536 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kogan, V.I., Rofe-Beketov, F.S.: On square-integrable solutions of symmetric systems of differential equations of arbitrary order. Proc. Roy. Soc. Edinburgh Sect. A 74, 5–40 (1976)

    MathSciNet  MATH  Google Scholar 

  52. Krall, A.M.: Hilbert Space, Boundary Value Problems and Orthogonal Polynomials. Operation Theory Advance Application, vol. 133. Birkhäuser, Basel (2002)

    Google Scholar 

  53. Krein, M.G.: Topics in differential and integral equations and operator theory. In: Gohberg, I. (ed.) Translation from the Russian by Iacob, A. Operation Theory Advance Application, vol. 7. Birkhäuser, Basel (1983)

    Google Scholar 

  54. Krein, M.G.: On a generalization of investigations of Stieltjes. Dokl. Akad. Nauk. SSSR 87, 881–884 (1952, in Russian)

    Google Scholar 

  55. Krein, M.G.: On some cases of the effective determination of the density of a non-homogeneous string from its spectral funktion. Dokl. Akad. Nauk. SSSR 93, 617–620 (1953, in Russian)

    Google Scholar 

  56. Krein, M.G.: On a fundamental approximation problem in the theory of extrapolation and filtration of stationary random processes. Dokl. Akad. Nauk. SSSR 94, 13–16 (1954, in Russian). English translation: Select. Transl. Math. Stat. Probab. 4, 127–131 (1963)

    Google Scholar 

  57. Krein, M.G., Langer, H.: On some extension problems which are closely connected with the theory of hermitian operators in a space \(\Pi _{\kappa }.\) III. Indefinite analogues of the Hamburger and Stieltjes moment problems, Part (1). Beiträge Anal. 14, 25–40 (1979), Part (2): Beiträge zur Anal. 15, 27–45 (1981)

    Google Scholar 

  58. Krein, M.G., Langer, H.: On some continuation problems which are closely connected with the theory of operators in spaces \(\Pi _{\kappa }.\) IV. Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions. J. Oper. Theory 13, 299–417 (1985)

    MathSciNet  MATH  Google Scholar 

  59. Langer, H.: Spektralfunktionen einer Klasse von Differentialoperatoren zweiter Ordnung mit nichtlinearem Eigenwertparameter. Ann. Acad. Sci. Fenn. Ser. A I Math. 2, 269–301 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  60. Langer, H., Mennicken, R.: A transformation of right-definite S-hermitian systems to canonical systems. Differ. Integr. Equ. 3, 901–908 (1990)

    MathSciNet  MATH  Google Scholar 

  61. Langer, H., Winkler, H.: Direct and inverse spectral problems for generalized strings. Integr. Equ. Oper. Theory 30, 409–431 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lesch, M., Malamud, M.M.: On the deficiency indices and self-adjointness of symmetric Hamiltonian systems. J. Differ. Equ. 189, 556–615 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  63. Orcutt, B.C.: Canonical differential equations. Doctoral dissertation, University of Virginia (1969)

    Google Scholar 

  64. Potapov, V.P.: The multiplicative structure of J–contractive matrix functions. Am. Math. Soc. Transl. (2), 15 131–243 (1960)

    Google Scholar 

  65. Rovnyak, J., Sakhnovich, L.A.: Some indefinite cases of spectral problems for canonical systems of difference equations. Linear Algebra Appl. 343/344, 267–289 (2002)

    Google Scholar 

  66. Rovnyak, J., Sakhnovich, L.A.: Spectral problems for some indefinite cases of canonical differential equations. J Oper. Theory 51(1), 115–139 (2004)

    MathSciNet  MATH  Google Scholar 

  67. Rovnyak, J., Sakhnovich, L.A.: Inverse problems for canonical differential equations with singularities. IWOTA 2005 Proceedings. Oper. Theory Adv. Appl. 179, 257–288 (2007)

    Google Scholar 

  68. Rovnyak, J., Sakhnovich, L.A.: Pseudospectral functions for canonical differential systems. In: Adamyan, V., et al. (eds.) Modern Analysis and Applications: The Mark Krein Centenary Conference, vol. 2. Operation Theory Advance Application, vol. 191, pp. 187–219. Birkhäuser, Basel (2009)

    Chapter  Google Scholar 

  69. Sakhnovich, A.L.: Spectral functions of a canonical system of order 2n. Math. USSR Sbornik 71, 355–369 (1992)

    Article  MathSciNet  Google Scholar 

  70. Sakhnovich, L.A.: Factorization problems and operator identities. Russ. Math. Surv. 41, 1–64 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  71. Sakhnovich, L.A.: Nonlinear Equations and Inverse Problems on a Semi-Axis. pp. 1–55. Institute of Mathematics, Academy of Sciences of the UkrSSr, Kiev (1987, in Russian). Preprint

    Google Scholar 

  72. Sakhnovich, L.A.: The method of operator identities and problems of analysis. Algebra Anal. 5, 4–80 (1993)

    MathSciNet  Google Scholar 

  73. Sakhnovich, L.A.: Spectral Theory of Canonical Differential Systems. Method of Operator Identities. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  74. Sakhnovich, L.A.: Dirac type and canonical systems: spectral and Weyl-Titchmarsh matrix functions, direct and inverse problems. Inverse Prob. 18(2), 331–348 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  75. Schneider, A.: Zur Einordnung selbstadjungierter rand-eigenwertprobleme bei gewöhnlichen differentialgleichungen in die theorie S-hermitescher rand-eigenwertprobleme. Math. Ann. 178, 277–294 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  76. de Snoo, H.S.V., Winkler, H.: Two-dimensional trace-normed canonical systems of differential equations and selfadjoint interface conditions. Integr. Equ. Oper. Theory 51, 73–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  77. de Snoo, H.S.V., Winkler, H.: Canonical systems of differential equations with selfadjoint interface conditions on graphs. Proc. R. Soc. Edinburgh 135 A, 297–315 (2005)

    Google Scholar 

  78. Stieltjes, T.J.: Œuvres Completes/Collected Papers. vols I, II, reprint of the 1914–1918 edition. Springer, Berlin (1993)

    Google Scholar 

  79. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations, Part 1, 2nd edn. Oxford University Press, Oxford (1962)

    MATH  Google Scholar 

  80. Weyl, H.: Über gewöhnliche differentialgleichungen mit singularitäten und die zugehörigen entwicklungen willküricher funktionen. Math. Ann. 68, 220–269 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  81. Winkler, H.: The inverse spectral problem for canonical systems. Integr. Equ. Oper. Theory. 22, 360–374 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  82. Winkler, H.: On transformations of canonical systems. Oper. Theory Adv. Appl. 80, 276–288 (1995)

    MathSciNet  MATH  Google Scholar 

  83. Winkler, H.: Canonical systems with a semibounded spectrum. Oper. Theory Adv. Appl. 106, 397–417 (1998)

    MathSciNet  MATH  Google Scholar 

  84. Winkler, H.: Spectral estimations for canonical systems. Math. Nachr. 220, 115–141 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  85. Winkler, H., Woracek, H.: On semibounded canonical systems. Linear Algebra Appl. 429, 1082–1092 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  86. Winkler, H., Woracek, H.: Reparameterizations of non trace-normed Hamiltonians. Oper. Theory Adv. Appl. 221, 667–690 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Basel

About this entry

Cite this entry

Winkler, H. (2015). Two-Dimensional Hamiltonian Systems. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0667-1_11

Download citation

Publish with us

Policies and ethics