Skip to main content

Quantum Magnetism

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials
  • 5917 Accesses

Abstract

Macroscopic quantum effects have been familiar since the discovery of superfluids and superconductors over 100 years ago. In the last few decades, it has been understood how large-scale quantum effects can also show up in “spin space.” The collective tunneling of many spins was observed in magnetic nanomolecules and in insulating dipolar-coupled spin arrays, and the tunneling of ferromagnetic domain walls has also been cleanly identified. To see large-scale coherence or entanglement effects, the decoherence caused by interactions with the environment (particularly with nuclear spins) must be controlled. Theory indicates ways of doing this, and systems ranging from classic magnetic compounds to deterministically doped silicon will make the job easier. Coherent control of quantum spin arrays, and large-scale quantum spin superpositions, is a likely prospect for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. London. F.: The λ-phenomenon of liquid He and the Bose-Einstein degeneracy. Nature 141, 643 (1938)

    Google Scholar 

  2. Feynman, R.P.: Spacetime approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  MATH  Google Scholar 

  3. Feynman, R.P.: The Feynman Lectures on Physics, vol. 3. Addison-Wesley (1965)

    Google Scholar 

  4. Shapere. A., Wilczek. F.: Geometric Phases in Physics. World Scientific (1989)

    Google Scholar 

  5. Klauder, J.R.: Path integrals and stationary phase approximations. Phys. Rev. D19, 2349 (1979)

    ADS  Google Scholar 

  6. Berry, M.V.: Quantal Phase factors accompanying adiabatic changes. Proc. Roy. Soc. A392, 45 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Auerbach. A.: Interacting Electrons and Quantum Magnetism. Springer (1994)

    Google Scholar 

  8. Aharonov. Y, Bohm. D.: Significance of electromagnetic potentials. Phys. Rev. 115, 485 (1959)

    Google Scholar 

  9. Haldane, F.D.M.: Non-linear field thery of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the 1-d easy-axis Néel state. Phys. Rev. Lett. 50, 1153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bogachek, E.N., Krive, I.V.: Quantum oscillations in small magnetic particles. Phys. Rev. B46, 14559 (1992)

    Article  ADS  Google Scholar 

  11. Garg. A.: Topologically Quenched Tunnel Splitting in Spin Systems without Kramers’ Degeneracy. Europhys. Lett. 22, 205 (1993)

    Google Scholar 

  12. Tupitsyn, I.S., Barbara, B.: Quantum tunneling of Magnetisation in molecular complexes with large spins: effect of the Environment. In: Miller, J.S., Drillon, M. (eds.) Magnetoscience- from Molecules to Materials, vol. 3, pp. 109–168. Wiley (2001)

    Google Scholar 

  13. Kramers. H.A.: Théorie générale de la rotation paramagnétique dans les cristaux. Proc. Acad. Sci. Amst. 33, 959 (1930)

    Google Scholar 

  14. Bennett, C.H., DiVincenzo, D.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  MATH  Google Scholar 

  15. Lo, H.-K., Popescu, S., Spiller, T.: Introduction to Quantum Computation and Information. World Scientific (1998)

    Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  17. Mohanty, P., Jariwala, E.M.Q., Webb, R.A.: Intrinsic decoherence in mesocopic systems. Phys. Rev. Lett. 78, 3366 (1997)

    Article  ADS  Google Scholar 

  18. Aleiner, I.L., Altshuler, B.L., Gershenson, M.E.: Interaction effects and phase relaxation in disordered systems. Waves Random Media 9, 201 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Prokof’ev, N.V., Stamp, P.C.E.: Theory of the spin bath. Rep. Prog. 63, 669 (2000)

    Article  ADS  Google Scholar 

  20. Caldeira, A.O., Leggett, A.J.: Quantum tunneling in a dissipative system. Ann. Phys. 149, 374 (1984)

    Article  ADS  Google Scholar 

  21. Leggett, A.J., Chakravarty. S, Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative 2-state system. Rev. Mod. Phys. 59, 1 (1987)

    Google Scholar 

  22. Weiss, U.: Quantum Dissipative Systems. World Scientific (1999)

    Google Scholar 

  23. Prokof’ev, N.V., Stamp, P.C.E.: Giant spins and topological decoherence: a Hamiltonian approach. J. Phys. CM 5, L663 (1993)

    Google Scholar 

  24. Anderson, P.W.: Infrared catastrophe in fermi gases with local scattering potentials. Phys. Rev. Lett. 18, 1049 (1967).

    Article  ADS  Google Scholar 

  25. Prokof’ev, N.V., Stamp, P.C.E.: Quantum relaxation of magnetisation in magnetic Particles. J. Low Temp. Phys. 104, 143 (1996)

    Article  ADS  Google Scholar 

  26. Dubé, M., Stamp, P.C.E.: Mechanisms of decoherence at low Temperatures. Chem. Phys. 268, 257 (2001)

    Article  Google Scholar 

  27. Prokof’ev, N.V., Stamp, P.C.E.: Low-T relaxation in a system of Magnetic molecules. Phys. Rev. Lett. 80, 5794 (1998)

    Article  ADS  Google Scholar 

  28. Ohm, T., et al.: Local field dynamics in a resonant quantum tunneling system of magnetic molecules. Europhys. J. B6, 595 (1998)

    Google Scholar 

  29. Thomas, L., et al.: Non-exponential scaling of the magnetisation relaxation in Mn12 acetate. Phys. Rev. Lett. 83, 2398 (1999)

    Article  ADS  Google Scholar 

  30. Wernsdorfer, W., Ohm, T., Sangregorio, C., Sessoli, R., Mailly, D., Paulsen, C.: Observation of the distribution of molecular spin states by resonant quantum tunneling of the magnetisation. Phys. Rev. Lett. 82, 3903 (1999)

    Article  ADS  Google Scholar 

  31. Wernsdorfer, W., Sessoli, R.: (1999) Quantum phase interference and parity effects in Magnetic molecular clusters. Science 284, 133

    Article  ADS  Google Scholar 

  32. Wernsdorfer, W., Caneschi, A., Sessoli, R., Gatteschi, D., Cornia, A., Paulsen, C.: Effect of nuclear spins on the quantum relaxation of the magnetisation for the molecular magnet Fe-8. Phys. Rev. Lett. 84, 2965 (2000)

    Article  ADS  Google Scholar 

  33. Morello, A., et al.: Quantum tunneling of magnetisation in Mn12-ac studied by Mn-55 NMR. Polyhedron 22, 1745–1749 (2003)

    Article  Google Scholar 

  34. Veldhorst, M., Yang, C.H., Hwang, J.C.C., Huang, W., Dehollain, J.P., Muhonen, J.T., Simmons, S., Laucht, A., Hudson, F.E., Itoh, K.M., Morello, A., Dzurak, A.S.: A two-qubit logic gate in silicon. Nature 526, 410(2015)

    Google Scholar 

  35. Sachdev, S.: Quantum Phase Transitions. Ch. 16. Cambridge University Press (1999)

    Google Scholar 

  36. Thill, M.J., Huse, D.A.: Equilibrium behaviour of quantum Ising spin glass. Physica 214A, 321 (1995)

    Article  ADS  Google Scholar 

  37. Brooke, J., Rosenbaum, T.F., Aeppli, G.: Tunable quantum tunneling of magnetic domain walls. Nature 413, 610 (2001)

    Article  ADS  Google Scholar 

  38. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimisation by simulated annealing. Science 220, 671 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Brooke, J., Bitko, D., Rosenbaum, T.F., Aeppli, G.: Quantum annealing of a disordered magnet. Science 284, 779 (1999)

    Article  ADS  Google Scholar 

  40. Giraud, R., Wernsdorfer, W., Tkachuk, A.M., Mailly, D., Barbara, B.: Nuclear spin driven quantum relaxation in LiY0.998 Ho0.002 F4. Phys. Rev. Lett. 87, 057203 (2001)

    Google Scholar 

  41. van Kampen, N.G.: Ten Theorems about Quantum Mechanical Measurements. Physica A153, 97 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  42. Washburn, S., Webb, R.A., Voss, R.F., Faris, S.M.: Effects of dissipation and temperature on macroscopic quantum tunneling. Phys. Rev. Lett. 54, 2712 (1985)

    Article  ADS  Google Scholar 

  43. Clarke, J., Cleland, A.N., Devoret, M., Esteve, D., Martinis, J.M.: Quantum mechanics of a macroscopic variable: the phase difference of a Josephson junction. Science 239, 992 (1998)

    Article  ADS  Google Scholar 

  44. Stamp, P.C.E.: Quantum dynamics and tunneling of domain walls in ferromagnetic insulators. Phys. Rev. Lett. 66, 2802 (1991)

    Article  ADS  Google Scholar 

  45. Paulsen, C., et al.: Macroscopic Quantum Tunnelling Effects of Bloch Walls in Small Ferromagnetic Particles. Europhys. Lett. 19, 643 (1992)

    Article  ADS  Google Scholar 

  46. Hong, K., Giordano, N.: Effect of microwaves on domain wall motion in this Ni wires. Europhys. Lett. 36, 147 (1996)

    Article  ADS  Google Scholar 

  47. Tatara, G., Fukuyama, H.: Macroscopic quantum tunneling of a domain wall in a ferromagnetic metal. Phys. Rev. Lett. 72, 772 (1994)

    Article  ADS  Google Scholar 

  48. Dubé, M., Stamp, P.C.E.: Effect of Phonons and Nuclear Spins on the tunneling of a Domain wall. J. Low Temp. Phys. 110, 779 (1998)

    Article  ADS  Google Scholar 

  49. Van der Wal, C.H., ter Haar, A.J.C., Wilhelm, F.K., Shouten, R.N.: Harmans, C.J.P.M., Orlando, T.P., Lloyd, S., Mooij, J.E.: Quantum Superposition of Macroscopic Persistent-Current states. Science 290, 773 (2000)

    Google Scholar 

  50. Vion, D., Aasime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.: Manipulating the Quantum State of an Electrical Circuit. Science 296, 886 (2002)

    Article  ADS  Google Scholar 

  51. Chiorescu, I., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869 (2003)

    Article  ADS  Google Scholar 

  52. Stamp, P.C.E., Tupitsyn, I.S.: Coherence window in the dynamics of quantum nanomagnets. Phys. Rev. B69, 014401 (2004)

    Article  ADS  Google Scholar 

  53. Gider, S., et al.: Classical and quantum magnetic phenomena in natural and artificial ferritin proteins. Science 268, 77 (1995)

    Article  ADS  Google Scholar 

  54. Kane, B.L.: A Si-based nuclear spin quantum computer. Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  55. Privman, V., Vagner, I.D., Kventsel, G.: Quantum computation in quantum-Hall systems Phys. Lett. A236, 141 (1998)

    Article  ADS  MATH  Google Scholar 

  56. Barrett, S.D., Milburn, G.J.: Measuring the decoherence rate in a semiconductor charge qubit. Phys. Rev. B68, 155307 (2003)

    Article  ADS  Google Scholar 

  57. Ghosh, S., Parthasarathy, R., Rosenbaum, T.F., Aeppli, G.: Coherent spin oscillations in a disordered magnet. Science 296, 2195 (2002)

    Article  ADS  Google Scholar 

  58. Viola, L., Lloyd, S.: Dynamical supression of decoherence in 2-state quantum systems. Phys. Rev. A58, 2733 (1998)

    Article  ADS  Google Scholar 

  59. Wu, L.A., Lidar, D.A.: Creating decoherence free subspaces using strong and fast pulses. Phys. Rev. Lett. 88, 207902 (2002)

    Article  ADS  Google Scholar 

  60. Manoharan, H.C., Lutz, C.P., Eigler, D.M.: Quantum Mirages formed by coherent projection of electronic structure. Nature 403, 512 (2000)

    Article  ADS  Google Scholar 

  61. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  62. Johnson, M.W., Amin, M.H.S, Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473 194 (2011)

    Article  ADS  Google Scholar 

  63. Vollhardt, D., Wölfle, P.: The superfluid phases of Helium 3. Taylor & Francis (1990)

    Google Scholar 

  64. Schmidt, M.A., Silevitch, D.M., Aeppli, G., Rosenbaum, T.F.: Using thermal boundary conditions to engineer the quantum state of a bulk ferromagnet. PNAS 111, 3689 (2014)

    Article  ADS  Google Scholar 

  65. Stamper-Kurn, D.M., Miesner, H.J., Chikkatur, A.P., Inouye, S., Stenger, J., Ketterle, W.: Quantum tunneling across spin domains in a BEC. Phys.Rev. Lett. 83, 661 (1999)

    Google Scholar 

  66. Ketterle, W.: Spinor condenstates and light scattering from Bose-Einstein condensates. Proc. Les Houches summer school LXXII (1999)

    Google Scholar 

  67. Watson, T.F., Philips, S.G.J., Kawakami, E., Ward, D.R., Scarlino, P., Veldhorst, M., Savage, D.E., Lagally, M.G., Mark Friesen, Coppersmith, S.N., Eriksson, M.A., Vandersypen, L.M.K.: A programmable two-qubit quantum processor in silicon. Nature 555, 263 (2018)

    Google Scholar 

  68. Shpyrko, O., Isaacs, E., Logan, J., Yejun Feng, Aeppli. G, Jaramillo, R., Kim, H.C., Rosenbaum, T.F., Zschack, P., Sprung, M., Narayanan, S., Sandy, A.R.: Direct measurement of antiferromagnetic domain fluctuations. Nature 447, 68–71 (2007). https://doi.org/10.1038/nature05776

    Article  ADS  Google Scholar 

  69. Silevitch, D.M., Tang, C., Aeppli, G., Rosenbaum, T.F.: Tuning high-Q nonlinear dynamics in a disordered quantum magnet. Nat. Commun. 10, 4001 (2019). https://doi.org/10.1038/s41467-019-11985-1

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriel Aeppli or Philip Stamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aeppli, G., Stamp, P. (2021). Quantum Magnetism. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_5

Download citation

Publish with us

Policies and ethics