Skip to main content

Magnetic Oxides and Other Compounds

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

Magnetic oxides are important functional magnetic materials, both as permanent magnets and as soft magnetic materials for high-frequency and microwave applications. They have been central in developing our understanding of exchange in strongly correlated insulating and barely metallic systems, including the effects of magnetic frustration and disorder. Oxide thin films are playing an increasing role in spin electronics. This chapter begins with an outline of the natural distribution of magnetic elements, with an initial emphasis on naturally occurring oxide minerals, especially oxides, hydroxides, and silicates of iron and other magnetic cations. Principles of 3d oxide magnetism and crystal chemistry are introduced. Structure and intrinsic magnetic properties of the main structural families of binary and ternary oxides and related compounds, including halides, chalcogenides, and pnictides, are then presented in tabular form. Magnetism of 4d, 5d, and 5f oxides is also covered. Then methods of preparing oxide thin films are presented, and specific features of single oxide films, interfaces, and heterostructures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, P.W.: Exchange in insulators: Superexchange, direct exchange and double exchange: Ch2. In: Rado, G.T., Suhl, H. (eds.) Magnetism I, pp. 25–83. Academic Press, New York (1963)

    Chapter  Google Scholar 

  2. Artman, J.O., Murphy, J.C., Foner, C.S.: Magnetic anisotropy in antiferromagnetic corundum-type sesquioxides. Phys. Rev. 138, A912 (1965)

    Article  ADS  Google Scholar 

  3. Ballet, O., Coey, J.M.D., Mangin, P., Townsend, M.G.: Ferrous talc - a planar antiferromagnet. Solid State Comm. 55, 787–790 (1985)

    Article  ADS  Google Scholar 

  4. Ballet, O., Fuess, H., Wacker, K., Untersteller, E., Treutmann, W., et al.: Magnetic measurements of the synthetic olivine single crystals A2SiO4 with a = Fe, co or Ni. J. Phys. Condens. Matter. 1, 4955–4979 (1989)

    Article  ADS  Google Scholar 

  5. Ballhausen, C.J.: Introduction to Ligand Field Theory. McGraw Hill, New York (1962)

    MATH  Google Scholar 

  6. Bender, G., Koch, C., Oxborrow, C.A., Mørup, S., Madsen, M.B., Quinn, A.J., et al.: Magnetic properties of feroxhyte (δ-FeOOH). Phys. Chem. Miner. 22, 333–341 (1995)

    ADS  Google Scholar 

  7. Bibes, M., Villegas, J.E., Barthélémy, A.: Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60, 5 (2011)

    Article  ADS  Google Scholar 

  8. Blank, D.H.A., Dekkers, M., Rijnders, G.: Pulsed laser deposition in Twente: from research tool towards industrial deposition. J. Phys. D. Appl. Phys. 47, 34006 (2014)

    Article  Google Scholar 

  9. Bonnenberg, D., Boyd, E.L., Calhoun, B.A., Folen, V.J., Gräper, W., et al.: Landholdt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series Group III, Vol 4 a and b, Magnetic and Other Properties of Oxides and Related Compounds. Springer, Berlin (1970)

    Google Scholar 

  10. Brabers, V.A.M.: Progress in spinel ferrite research, Ch 3. In: Buschow, K.H.J. (ed.) Handbook of Ferromagnetic Materials, vol. 8, pp. 189–324. Elsevier, Amsterdam (1995)

    Google Scholar 

  11. Bramwell, S.T., Gingras, M.J.P.: Spin ice state in frustrated magnetic pyrochlore materials. Science. 294, 1495–1501 (2001)

    Article  ADS  Google Scholar 

  12. Brodsky, M.B.: Magnetic properties of the actinide elements and their metallic compounds. Rep. Prog. Phys. 41, 1548 (1978)

    Article  ADS  Google Scholar 

  13. Burns, R.G.: Mineralogical Applications of Crystal Field Theory, 2nd edn. Cambridge University Press, London (1993)

    Book  Google Scholar 

  14. Cao, G., McCall, S., Shepard, M., Crow, J.E., Guertin, R.P.: Thermal, magnetic and transport properties of single-crystal Sr1−xCaxRuO3 (0 < x < 1.0). Phys. Rev. B. 56, 321–329 (1997)

    Article  ADS  Google Scholar 

  15. Castelnovo, C., Moessner, R., Sondhi, S.L.: Magnetic monopoles in spin ice. Nature. 451, 42–45 (2009)

    Article  ADS  Google Scholar 

  16. Catalano, S., Gibert, M., Fowlie, J., Íñiguez, J., Triscone, J.-M., et al.: Rare-earth nickelates RNiO3: thin films and heterostructures. Rep. Prog. Phys. 81, 046501 (2018)

    Article  ADS  Google Scholar 

  17. Cho, A.Y., Arthur, J.R.: Molecular beam epitaxy. Prog. Solid State Chem. 10, 157 (1975)

    Article  Google Scholar 

  18. Christen, H.M., Eres, G.: J. Phys. Conden. Mat. 20, 264005 (2008)

    Article  ADS  Google Scholar 

  19. Coey, J.M.D.: Hard magnetic materials – a perspective. IEEE Trans. Magnetics. 47, 4671–4681 (2011)

    Article  ADS  Google Scholar 

  20. Coey, J.M.D.: Magnetism in d0 oxides. Nat. Mater. 18 (2019)

    Google Scholar 

  21. Coey, J.M.D.: Magnetism of dilute oxides, Ch 10. In: Tsymbal, E.Y., Zutic, I. (eds.) Handbook of Spin Transport and Magnetism, 2nd edn. CRC Press, Boca Raton (2019)

    Google Scholar 

  22. Coey, J.M.D., Chambers, S.A.: Oxide dilute magnetic semiconductors – fact or fiction? MRS Bull. 33, 1053 (2008)

    Article  Google Scholar 

  23. Coey, J.M.D., Ghose, S.: Magnetic phase transitions in silicate minerals, Ch 9. In: Ghose, S., Coey, J.M.D., Salje, E. (eds.) Structural and Magnetic Phase Transitions in Minerals, pp. 162–184. Springer, New York (1988)

    Chapter  Google Scholar 

  24. Coey, J.M.D., Readman, P.W.: New spin structure in an amorphous ferric gel. Nature. 246, 476–478 (1973)

    Article  ADS  Google Scholar 

  25. Coey, J.M.D., Smith, P.A.I.: Magnetic nitrides. J. Magn. Magn. Mater. 200, 405–424 (1999)

    Article  ADS  Google Scholar 

  26. Coey, J.M.D., Barry, A., Brotto, J.-M., Rakoto, H., Brennan, S., et al.: Spin flop in goethite. J. Phys. 7, 759–768 (1995)

    Google Scholar 

  27. Coey, J.M.D., Viret, M., von Molnar, S.: Mixed-valence manganites. Adv. Phys. 48, 167–293 (1999)

    Article  ADS  Google Scholar 

  28. Coey, J.M.D., Stamenov, P., Gunning, R.D., Venkatesan, M., Paul, K.: Ferromagnetism in defect-ridden oxides and related materials. New J. Phys. 12, 053025 (2010)

    Article  ADS  Google Scholar 

  29. Coey, J.M.D., Venkatesan, M., Xu, H.-J.: Introduction to magnetic oxides Ch 1. In: Ogale, S.B., Venkatesan, T.V., Blamire, M.G. (eds.) Functional Magnetic Oxides, pp. 1–30. Wiley-VCH, Weinheim (2013)

    Google Scholar 

  30. Coey, J.M.D., Ariando, Pickett, W.E.: Magnetism at the edge; new phenomena at oxide interfaces. Mater. Res. Bull. 38, 1040–1047 (2013)

    Article  Google Scholar 

  31. Coey, J.M.D., Venkatesan, M., Stamenov, P.: Surface magnetism of strontium titanate. J. Phys. Condens. Matter. 28, 485001 (2016)

    Article  Google Scholar 

  32. Coey, J.M.D., Ackland, K., Venkatesan, M., Sen, S.: Collective magnetic response of CeO2 nanoparticles. Nat. Phys. 12, 694–699 (2016)

    Article  Google Scholar 

  33. Connolly, T.F., Copenhaver, E.D.: Bibliography of Magnetic Materials and Magnetic Transition Temperatures. Springer, New York (1972)

    Book  Google Scholar 

  34. Corliss, L., Elliott, N., Hastings, J.: Magnetic structures of the polymorphic forms of manganous sulfide. Phys. Rev. 104, 924–928 (1956)

    Article  ADS  Google Scholar 

  35. Cornell, R.M., Schwertmann, U.: The Iron Oxides; Structure, Properties, Reactions, Occurrence and Uses. VCH, Weinheim (2003)

    Google Scholar 

  36. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 287, 1019 (2000)

    Article  ADS  Google Scholar 

  37. Dijkkamp, D., Venkatesan, T., Ogale, X.-D.W.S.B., Inam, A., et al.: Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett. 51, 619 (1987)

    Article  ADS  Google Scholar 

  38. Dionne, G.F.: Magnetic Oxides. Springer, New York (2009)

    Book  Google Scholar 

  39. Dunlop, D.J., Özdemir, Ö.: Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  40. Dzyaloshinsky, I.: A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids. 4, 241–255 (1958)

    Article  ADS  Google Scholar 

  41. Esaki, L., Stiles, P.J., von Molnar, S.: Magnetointernal field emission in junctions of magnetic insulators. Phys. Rev Lett. 19, 852 (1967)

    Article  ADS  Google Scholar 

  42. Eschenfelder, A.H.: Magnetic Bubble Technology. Springer, Berlin (1980)

    Book  Google Scholar 

  43. Frederichs, T., von Dobeneck, T., Bleil, U., Dekkers, M.J.: Towards the identification of siderite, rhodochrosite and vivianite in sediments by their low-temperature magnetic properties. Phys. Chem. Earth. 28, 669–679 (2003)

    Article  ADS  Google Scholar 

  44. Fuess, H., Ballet, O., Lottermoser, W.: Magnetic phase transitions in olivines, Ch 10. In: Ghose, S., Coey, J.M.D., Salje, E. (eds.) Structural and Magnetic Phase Transitions in Minerals, pp. 185–201. Springer, New York (1988)

    Chapter  Google Scholar 

  45. Gardner, J.S., Gingras, M.J.P., Greedan, J.E.: Magnetic pyrochlore oxides. Rev. Mod. Phys. 82, 53–107 (2010)

    Article  ADS  Google Scholar 

  46. George, S.M.: Atomic layer deposition: an overview. Polymer. 1550, 125 (2010)

    Google Scholar 

  47. Gilleo, M.A.: Ferromagnetic insulators: garnets, Ch 1. In: Wohlfarth, E.P. (ed.) Handbook of Ferromagnetic Materials, vol. 2, pp. 1–54. Amsterdam, North Holland (1980)

    Chapter  Google Scholar 

  48. Gong, C., Zhang, X.: Two dimensional magnetic crystals and emergent heterostructure devices. Science. 363 (2019)

    Google Scholar 

  49. Goniakowski, J., Finocchi, F., Noguera, C.: Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71, 016501 (2008)

    Article  ADS  Google Scholar 

  50. Goodenough, J.B.: Magnetism and the Chemical Bond. Wiley-Interscience, New York (1963)

    Google Scholar 

  51. Greaves, C.: A powder neutron diffraction investigation of vacancy ordering and covalence in γFe2O3. J. Solid State Chem. 49, 325 (1983)

    Article  ADS  Google Scholar 

  52. Greenwood, N.N., Gibb, T.C.: Mössbauer Spectroscopy. Chapman and Hall, London (1971)

    Book  Google Scholar 

  53. Hazen, R.M., Jeanloz, R.: Wüstite (Fe1-xO): a review of its defect structure and physical properties. Rev. Geosci. Space Sci. 22, 37 (1984)

    Article  ADS  Google Scholar 

  54. Hemberger, J., Krimmel, A., Kurz, T., Krug von Nidda, H.-A., Ivanov, V.Y., et al.: Structural, magnetic, and electrical properties of single-crystalline La1−xSrxMnO3 (0.4 < x < 0.85). Phys. Rev. B. 66, 094410 (2002)

    Article  ADS  Google Scholar 

  55. Hill, R.J.: Physical vapour deposition, 2nd edn. Temescal, Berkley (1986)

    Google Scholar 

  56. Hill, A.H., Jiao, F., Bruce, P.G., Harrison, A., Kockelmann, W., Ritter, C.: Neutron diffraction study of mesoporous and bulk hematite, r-Fe2O3. Chem. Mater. 20, 4891–4899 (2008)

    Google Scholar 

  57. Hoffmann, A., Bader, S.D.: Opportunities at the frontiers of spintronics. Phys. Rev. Appl. 4, 047001 (2015)

    Article  ADS  Google Scholar 

  58. Hurlbut, C.S., Klein, C.: Manual of Mineralogy, 19th edn. Wiley, New York (1977)

    Google Scholar 

  59. Jungwirth, T., Wang, K.Y., Mašek, J., Edmonds, K.W., König, J., et al.: Prospects for high temperature ferromagnetism in (Ga, Mn) as semiconductors. Phys. Rev. B. 72, 165204 (2005)

    Article  ADS  Google Scholar 

  60. Kalid, M., Setzer, A., Ziese, M., Esquinazi, P., Spemann, D., et al.: Ubiquity of ferromagnetic signals in common diamagnetic oxides. Phys. Rev. B. 81, 214414 (2010)

    Article  ADS  Google Scholar 

  61. Kanamori, J.: Anisotropy and magnetostriction of ferromagnetic and antiferromagnetic materials, Ch 4. In: Rado, G.T., Suhl, H. (eds.) Magnetism I, pp. 127–203. Academic Press, New York (1963)

    Chapter  Google Scholar 

  62. Khomski, D.I.: Transition Metal Compounds. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  63. Kojima, H.: Fundamental properties of hexagonal ferrites with the magnetoplumbite structure, Ch. 5. In: Wohlfarth, E.P. (ed.) Handbook of Ferromagnetic Materials, vol. 3, pp. 305–391. Amsterdam, North Holland (1982)

    Chapter  Google Scholar 

  64. Krupicka, S., Novak, P.: Oxide spinels, Ch 4. In: Wohlfarth, E.P. (ed.) Handbook of Ferromagnetic Materials, vol. 3, pp. 189–303. North Holland, Amsterdam (1982)

    Chapter  Google Scholar 

  65. Kuneš, J., Anisimov, V.I., Skornyakov, S.L., Lukoyanov, A.V., Vollhardt, D.: NiO: correlated band structure of a charge-transfer insulator. Phys. Rev. Lett. 99, 156404 (2007)

    Article  ADS  Google Scholar 

  66. Lester, C., Ramos, S., Perry, R.S., Croft, T.P., Bewley, R.I., et al.: Field-tunable spin-density-wave phases in Sr3Ru2O7. Nat. Mater. 14, 373–378 (2015)

    Article  ADS  Google Scholar 

  67. Lu, H.-C., Chamorro, J.R., Wan, C., McQueen, T.M.: Universal single-ion physics in spin-orbit-coupled d5 and d4 ions. Inorg. Chem. 57, 14443–14449 (2018)

    Article  Google Scholar 

  68. Mackenzie, A.P., Maeno, Y.: The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003)

    Article  ADS  Google Scholar 

  69. Manipatruni, S., Nikonov, D.E., Lin, C.-C., Gosavi, T.A., Liu, H.-C., et al.: Scalable energy-efficient magnetoelectric spin-orbit logic. Nature. 565, 35–43 (2019)

    Article  ADS  Google Scholar 

  70. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., et al.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science. 291, 854 (2001)

    Article  ADS  Google Scholar 

  71. McGuire, M.A.: Crystal and magnetic structures in layered transition metal dihalides. Crystals. 7, 120–145 (2017)

    Article  Google Scholar 

  72. Mikhaylovskiy, R.V., Hendry, E., Secchi, A., Mentink, J.H., Eckstein, M., et al.: Ultrafast optical modification of exchange interactions in iron oxides. Nat. Commun. 6, 8190 (2015)

    Article  ADS  Google Scholar 

  73. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    Article  ADS  Google Scholar 

  74. Morrish, A.H.: Canted Antiferromagnetism: Hematite. World Scientific, Singapore (1994)

    Google Scholar 

  75. Mott, N.F.: Metal-Insulator Transitions, 2nd edn. Taylor and Francis, London (1990)

    Google Scholar 

  76. Ney, A., Ollefs, K., Ye, S., Kammermeier, T., Ney, V., et al.: Absence of intrinsic ferromagnetic interactions of isolated and paired co dopant atoms in Zn1-xCoxO with high structural perfection. Phys. Rev. Lett. 100, 157201 (2008)

    Article  ADS  Google Scholar 

  77. Ney, V., Henne, B., Lumetzberger, J., Wilhelm, F., Ollefs, K., et al.: Coalescence-driven magnetic order of the uncompensated antiferromagnetic Co doped ZnO. Phys. Rev. B. 94, 224405 (2016)

    Article  ADS  Google Scholar 

  78. Obradors, X., Solans, X., Collomb, A., Samaras, D., et al.: Crystal structure of strontium hexaferrite. J. Solid State Chem. 72, 218–224 (1988)

    Article  ADS  Google Scholar 

  79. Ohtomo, A., Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature. 427, 423–426 (2004)

    Article  ADS  Google Scholar 

  80. Pan, F., Song, C., Liu, X.-J., Yang, Y.-C., Zeng, F.: Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. Reports. 62, 1 (2008)

    Article  Google Scholar 

  81. Park, J.H., Vescovo, E., Kim, H.J., Kwon, C., Ramesh, R., et al.: Direct evidence for a half-metallic ferromagnet. Nature. 392, 794 (1998)

    Article  ADS  Google Scholar 

  82. Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., et al.: Giant tunneling magnetoresistance with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004)

    Article  ADS  Google Scholar 

  83. Parkinson, G.S.: Iron oxide surfaces. Surf. Sci. Reports. 71, 272–365 (2016)

    Article  ADS  Google Scholar 

  84. Pearce, C.I., Pattrick, R.A.D., Vaughan, D.J.: Electric and magnetic properties of sulphides. Rev. Mineral. Geochem. 61, 127–180 (2006)

    Article  Google Scholar 

  85. Pegg, J.T., Aparicio-Angles, X., Storr, M., de Leeuw, N.H.: DFT + U study of the structures and properties of the actinide dioxides. J. Nucle. Mater. 492, 269–278 (2017)

    Article  ADS  Google Scholar 

  86. Penney, T., Shafer, M.W., Torrance, J.B.: Insulator-metal transition and long-range magnetic order in EuO. Phys. Rev. B. 5, 3669 (1972)

    Article  ADS  Google Scholar 

  87. Philipp, J.B., Majewski, P., Alff, L., Erb, A., Gross, R., et al.: Structural and doping effects in half-metallic double perovskites A2CrWO6 (A=Sr, Ba, and Ca) Phys. Rev. B. 68, 144431 (2003)

    Article  Google Scholar 

  88. Porter, S.B., Venkatesan, M., Dunne, P., Doudin, B., Rode, K., et al.: Magnetic dead layers in La0.7Sr0.3MnO3 revisited. IEEE Trans. Magn. 56, 6000904 (2017)

    Google Scholar 

  89. Pullar, R.C.: Hexagonal ferrites a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  Google Scholar 

  90. Schaefer, H.: Chemical Transport Reactions. Academic Press, New York (1964)

    Google Scholar 

  91. Schwertmann, U., Murad, E.: Effects of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner. 31, 277 (1983)

    Article  ADS  Google Scholar 

  92. Sen, M.S., Wright, J.P., Attfield, J.P.: Charge order and three-site distortions in the structure of magnetite. Nature. 481, 173 (2011)

    Article  ADS  Google Scholar 

  93. Serga, A.A., Chumak, A.V., Hildebrands, B.: YIG magnonics. J. Phys. D. Appl. Phys. 43, 264002 (2010)

    Article  ADS  Google Scholar 

  94. Skomski, R., Coey, J.M.D.: Permanent Magnetism, pp. 257–264. IOP Publishing, Bristol (1999)

    Google Scholar 

  95. Skomski, R., Coey, J.M.D.: Magnetic anisotropy – how much is enough for a permanent magnet? Scripta Mater. 112, 3–8 (2016)

    Article  Google Scholar 

  96. Smit, J., Wijn, H.P.J.: Ferrites. Philips Technical Library, Eindhoven (1959)

    Google Scholar 

  97. Stäblein, H.: Hard ferrites and plastoferrites, Ch. 7. In: Wohlfarth, E.P. (ed.) Handbook of Ferromagnetic Materials, vol. 3, pp. 441–601. Amsterdam, North Holland (1982)

    Chapter  Google Scholar 

  98. Steinbeiss, E.: Ch 13. In: Ziese, M., Thornton, M.J. (eds.) Spin Electronics, pp. 296–315. Springer Verlag, Berlin (2001)

    Google Scholar 

  99. Sze, S.M., Lee, M.K.: Semiconductor Devices: Physics and Technology, Ch 12, 3rd edn. Wiley, New York (2012)

    Google Scholar 

  100. Takayama, T., Kato, A., Dinnebier, R., Nuss, J., Kono, H., et al.: Hyperhoneycomb iridate β-Li2IrO3 as a platform for Kitaev magnetism. Phys. Rev. Lett. 114, 077202 (2015)

    Article  ADS  Google Scholar 

  101. Tanabe, Y., Sugano, S.: On the absorption spectra of complex ions I – III. J. Phys. Soc. Jpn. 9, 753 (1954).; 9 766 (1954); 11 864 (1956)

    Article  ADS  Google Scholar 

  102. Tietze, T., Gacic, M., Schütz, G., Jacob, G., Brück, S., et al.: XMCD studies on Co and Li doped ZnO magnetic semiconductors. New J. Phys. 10, 055009 (2008)

    Article  ADS  Google Scholar 

  103. Treves, D.: Studies on orthoferrites at the Weizmann Institute of Science. J. Appl. Phys. 36, 1033–1039 (1965)

    Article  ADS  Google Scholar 

  104. Valenzuela, R.: Magnetic Ceramics. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  105. van Stapele, R.P.: Sulphospinels, Ch 8. In: Wohlfarth, E.P. (ed.) Ferromagnetic Materials, vol. 3, pp. 607–745. Amsterdam, North Holland (1982)

    Google Scholar 

  106. Varignon, J., Vila, L., Barthélemy, A., Bibes, M.: A new spin for oxide interfaces. Nat. Phys. 14, 322–325 (2018)

    Article  Google Scholar 

  107. Vasala, S., Karppinen, M.: A2B′B″O6 perovskites: a review. Prog. Solid State Chem. 43, 1–36 (2015)

    Article  Google Scholar 

  108. Verwey, E.J.W.: Electronic conduction of magnetite (Fe3O4) and its transition point at low temperature. Nature. 144, 327 (1937).; Verwey E.J.W., Haayman, P.W. Electronic conduction and transition point of magnetite (Fe3O4). Physica 8, 979 (1941)

    Article  ADS  Google Scholar 

  109. von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., Samwer, K.: Giant negative magnetoresistance in perovskite-like La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 (1993)

    Article  ADS  Google Scholar 

  110. Walz, F.: The Verwey transition, − a topical review. J. Phys. Cond. Matter. 14, R285 (2002)

    Article  ADS  Google Scholar 

  111. Wang, Z.-S., Oureshi, N., Yasin, S., Mukhin, A., Ressouche, E., et al.: Magnetoelectric effect and phase transitions in CuO in external magnetic fields. Nat. Comm. 7, 10295 (2016)

    Article  ADS  Google Scholar 

  112. Wasey, A.H.M.A., Karmakar, D., Das, G.P.: Manifestation of long-range ordered state in VX2 (X = Cl, Br, I) systems. J. Phys. Condens. Matter. 25, 476001 (2013)

    Article  ADS  Google Scholar 

  113. Xu, Y.-B., Awschalom, D.D., Nitta, J. (eds.): Handbook of Spintronics. Springer, Berlin (2015)

    Google Scholar 

  114. Yang, F.-Y., P. C.: Hammel: FMR-driven spin pumping in Y3Fe5O12-based structures. J. Phys. D. Appl. Phys. 51, 253001 (2018)

    Article  ADS  Google Scholar 

  115. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004)

    Article  ADS  Google Scholar 

  116. Zener, C.: Interactions between the d-shells in the transition metals. Phys. Rev. 81, 40; 82 403 (1951)

    Article  ADS  MATH  Google Scholar 

  117. Zhang, Z., Satpathy, S.: Electron states, magnetism and the Verwey transition in magnetite. Phys. Rev. B. 44, 13319 (1991)

    Article  ADS  Google Scholar 

  118. Zhao, D.-P., Zhang, L.-G., Malik, I.A., Liao, M.-H., Cui, W.-Q., et al.: Finite temperature magnetism of CrSe and CrTe. Nano Res. 11, 3116–3121 (2018)

    Article  Google Scholar 

  119. Ziese, M., Thornton, M.J.: Spin Electronics Lecture Notes on Physics, vol. 569. Springer, Berlin (2001)

    Book  Google Scholar 

Download references

Acknowledgments

The author is grateful to Science Foundation Ireland for continued support, including contracts 10/IN.1/I3006, 13/ERC/I2561 and 16/IA/4534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. D.  Coey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Coey, J.M.D. (2021). Magnetic Oxides and Other Compounds. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_17

Download citation

Publish with us

Policies and ethics