Skip to main content

Modeling of Failure Resulting from High-Velocity Ballistic Impact

  • Reference work entry
  • First Online:
Handbook of Damage Mechanics

Abstract

This chapter presents an example of a high-velocity impact due to which the interacting bodies undergo severe deformation and damage. Based on literature sources fundamental for the topic, types of failure modes characteristic for thick metallic targets perforated by kinetic threats with high impact energy are shown and explained. A concept of the ballistic limit curve is introduced as a feature characterizing an impact configuration. The experimental example shows a range of phenomena occurring during an impact test and a research method aimed for their analysis. On its basis, a visualization of impact-induced changes in the aluminum target microstructure is presented. Furthermore, a finite element method (FEM) numerical analysis of threat–target interactions is performed employing a characterization of flow and fracture properties of the materials involved in the impact event. The modeling approach accounts for the strain rate and temperature sensitivity providing an insight into conditions leading to the deformation and failure of the colliding bodies. The given discussion will allow the reader to become familiar with processes modeled in experimental and numerical investigations encountered in the ballistic protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • F.H. Abed, Constitutive modelling of the mechanical behaviour of high strength ferritic steels for static and dynamic applications. Mech. Time-Depend. Mater. 14(4), 329–335 (2010)

    Article  Google Scholar 

  • F.H. Abed, S.I. Ranganathan, M.A. Serry, Constitutive modelling of nitrogen-alloyed austenitic stainless steel at low and high strain rates and temperatures. Mech. Mater. 77, 142–157 (2014)

    Article  Google Scholar 

  • M.E. Backman, W. Goldsmith, The mechanics of penetration of projectiles into targets. Int. J. Eng. Sci. 16, 1–99 (1978)

    Article  Google Scholar 

  • Y. Bai, T. Wierzbicki, Application of extended Mohr-Coulomb criterion to ductile fracture. Int. J. Fract. 161(1), 1–20 (2010)

    Article  MATH  Google Scholar 

  • K. Balch, High Frame Rate Electronic Imaging. Motion Video Products (1999). https://web.archive.org/web/20160304000301/http://www.motionvideoproducts.com/MVP%20papers/HSV%20White%20Paper.pdf. Accessed 05 July 2020

  • Ballistics (2020), https://en.wikipedia.org/wiki/Ballistics. Accessed 05 July 2020

  • Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46(1), 81–98 (2004)

    Article  Google Scholar 

  • T. Berstad, O.S. Hopperstad, M. Langseth, Elasto-viscoplastic constitutive models in the explicit finite element code LS-DYNA 3D, in: Proceedings of the Second International LS-DYNA 3D Conference, San Francisco, USA, 20–21 September 1994

    Google Scholar 

  • T. Børvik, M. Langseth, O.S. Hopperstad, K.A. Malo, Ballistic penetration of steel plates. Int. J. Impact Eng 22(9), 855–886 (1999)

    Article  Google Scholar 

  • T. Børvik, O.S. Hopperstad, T. Berstad, M. Langseth, A computational model of viscoplasticity and ductile damage for impact and penetration. Eur. J. Mech. A/Solids. 20(5), 685–712 (2001)

    Article  MATH  Google Scholar 

  • T. Børvik, M. Langseth, O.S. Hopperstad, K.A. Malo, Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: part I: experimental study. Int. J. Impact Eng 27(1), 19–35 (2002a)

    Article  Google Scholar 

  • T. Børvik, M. Langseth, O.S. Hopperstad, K.A. Malo, Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: part II: numerical simulations. Int. J. Impact Eng 27(1), 37–64 (2002b)

    Article  Google Scholar 

  • N.S. Brar, V.S. Joshi, B.W. Harris, Constitutive model constants for Al7075-T651 and Al7075-T6. AIP Conf. Proc. 1195(1), 945–948 (2009)

    Article  Google Scholar 

  • P.W. Bridgman, Studies in Large Plastic Flow and Fracture with Special Emphasis on the Effects of Hydrostatic Pressure, 1st edn. (McGraw-Hill, New York, 1952)

    MATH  Google Scholar 

  • Citizendium, Flash radiography (2020), https://en.citizendium.org/wiki/Flash_radiography. Accessed 05 July 2020

  • A.H. Clausen, T. Børvik, O.S. Hopperstad, A. Benallal, Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Mater. Sci. Eng. A 364(1), 260–272 (2004)

    Article  Google Scholar 

  • R. Cobden, A. Banbury, Aluminium: physical properties, characteristics and alloys, Talat lectures, 19–26 (1994)

    Google Scholar 

  • M.G. Cockcroft, D.J. Latham, Ductility and the workability of metals. J. Inst. Metals. 96(1), 33–39 (1968)

    Google Scholar 

  • G. Cooper, P. Gotts, Ballistic protection, in Ballistic Trauma (Springer, London, 2005), pp. 67–90

    Google Scholar 

  • A. Crosby, Throwing Fire: Projectile Technology Through History (Cambridge University Press, Cambrdige 2002)

    Google Scholar 

  • I. Crouch (ed.), The Science of Armour Materials (Woodhead Publishing, Duxford 2016)

    Google Scholar 

  • B. Dodd, Adiabatic Shear Localization: Occurrence, Theories, and Applications (Pergamon Press, Oxford 1992)

    Google Scholar 

  • J.D. Embury, R.B. Nicholson, The nucleation of precipitates: the system Al-Zn-Mg. Acta Metall. 13(4), 403–417 (1965)

    Article  Google Scholar 

  • T. Fras, L. Colard, E. Lach, A. Rusinek, B. Reck, Thick AA7020-T651 plates under ballistic impact of fragment-simulating projectiles. Int. J. Impact Eng 86, 336–353 (2015a)

    Google Scholar 

  • T. Fras, L. Colar, P. Pawlowski, Perforation of aluminum plates by fragment simulating projectiles. Int. J. Multiphysics 9(3), 267–286 (2015b)

    Google Scholar 

  • T. Fras, C.C. Roth, D. Mohr, Fracture of high-strength armour steel under impact loading. Int. J. Impact Eng 111, 147–164 (2018)

    Article  Google Scholar 

  • T. Fras, C.C. Roth, D. Mohr, Dynamic perforation of ultra-hard high-strength armor steel: impact experiments and modeling. Int. J. Impact Eng 131, 256–271 (2019)

    Article  Google Scholar 

  • T. Fras, C.C. Roth, D. Mohr, Two models of fracture applied to impact simulations. Bull. Pol. Acad. Sci-Tech. 68(2), 1–16 (2020)

    Google Scholar 

  • A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99(1), 2–15 (1977)

    Article  Google Scholar 

  • P.J. Hazell, Armour: Materials, Theory, and Design (CRC Press, Boca Raton 2015)

    Google Scholar 

  • T.W. Ipson, R.F. Recht, Perforation by Fragments of Arbitrary Shape, NWC TP 5927 Denver Research Institute, Naval Weapons Centre, China Lake (1977)

    Google Scholar 

  • G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in 7th Int. Symp. on Ballistics 1983

    Google Scholar 

  • G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)

    Article  Google Scholar 

  • G.H. Jonas, J.A. Zukas, Mechanics of penetration: analysis and experiment. Int. J. Eng. Sci. 16(11), 879–903 (1978)

    Article  Google Scholar 

  • R. Laible (ed.), Ballistic Materials and Penetration Mechanics, vol 5 (Elsevier, Amsterdam 2012)

    Google Scholar 

  • M.B. Liu, G.R. Liu, Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comp. Met. Eng. 17(1), 25–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Ls Dyna Manual. http://www.dynasupport.com/news/ls-dyna-971-manual-pdf. Accessed 05 July 2020

  • F. McClintock, A criterion of ductile fracture by the growth of holes. J. Appl. Mech. 35(2), 363–371 (1968)

    Article  Google Scholar 

  • D. Mohr, S.J. Marcadet, Micromechanically-motivated phenomenological Hosford-Coulomb model for predicting ductile fracture initiation at low stress triaxialites. Int. J. Solids Struct. 67(68), 40–55 (2015)

    Article  Google Scholar 

  • D. Mohr, M. Dunand, K.H. Kim, Evaluation of associated and non-associated quadratic plasticity models for advanced high strength steel sheets under multi-axial loading. Int. J. Plast. 26(7), 939–956 (2010)

    Article  MATH  Google Scholar 

  • K. Nahshon, J.W. Hutchinson, Modification of the Gurson model for shear failure. Eur. J. Mech. A-Solid. 27(1), 1–17 (2008)

    Article  MATH  Google Scholar 

  • K. Pack, C.C. Roth, The second Sandia Fracture Challenge: blind prediction of dynamic shear localization and full fracture characterization. Int. J. Fract. 198(1–2), 197–220 (2016)

    Article  Google Scholar 

  • K.O. Pedersen, T. Børvik, O.S. Hopperstad, Fracture mechanisms of aluminum alloy AA7075-T651 under various loading conditions. Mater. Design. 32(1), 97–107 (2011)

    Article  Google Scholar 

  • T. Pintat, Measurements of the work of deformation under shearing at high strain rates, in Impact Loading and Dynamic Behavior of Materials (Verlag, Dortmund 1988)

    Google Scholar 

  • Recht and Ipson Ballistic Perforation Dynamics; J. Appl. Mech. Sep 1963, 30(3), 384–390 https://doi.org/10.1115/1.3636566

  • J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17, 201–217 (1969)

    Article  Google Scholar 

  • Z. Rosenberg, E. Dekel, Terminal Ballistics (Springer, Berlin, 2012)

    Book  Google Scholar 

  • C.C. Roth, D. Mohr, Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: experiments and modelling. Int. J. Plast. 56, 19–44 (2014)

    Article  Google Scholar 

  • C.C. Roth, D. Mohr, Ductile fracture experiments with locally proportional loading histories. Int. J. Plast. 79, 328–354 (2016)

    Article  Google Scholar 

  • A. Rusinek, J.R. Klepaczko, Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int. J. Plast. 17(1), 87–115 (2001)

    Article  Google Scholar 

  • M. Saleh, L. Edwards, I.G. Crouch, Numerical modelling and computer simulations, in The Science of Armour Materials, (Woodhead Publishing, Duxford 2016), pp. 483–579

    Google Scholar 

  • L.E. Schwer, C.A. Windsor, Aluminum plate perforation: a comparative case study using lagrange with erosion, multi-material ALE, and smooth particle hydrodynamics, in 7th European LS-DYNA Conference, 2009

    Google Scholar 

  • Stanag AEP55, Procedures for evaluating the protection level of logistic and light armored vehicles, Nato 1 AEP-55, 2005

    Google Scholar 

  • S.M. Swaddiwudhipong, J. Islamb, Z.S. Liu, High velocity penetration/perforation using coupled smooth particle hydrodynamics-finite element method. Int. J. Protective Struct. 1(4), 489–506 (2010)

    Article  Google Scholar 

  • V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32(1), 157–169 (1984)

    Article  Google Scholar 

  • G.Z. Voyiadjis, F.H. Abed, Microstructural based models for BCC and FCC metals with temperature and strain rate dependency. Mech. Mater. 37(2), 355–378 (2005)

    Article  Google Scholar 

  • M.L. Wilkins, Mechanics of penetration and perforation. Int. J. Eng. Sci. 16, 793–807 (1978)

    Article  Google Scholar 

  • A.L. Wingrove, The influence of projectile geometry on adiabatic shear and target failure. Metall. Trans. A. 4, 1829–1833 (1973)

    Article  Google Scholar 

  • R.L. Woodward, The penetration of metal targets which fail by adiabatic shear plugging. Int. J. Mech. Sci. 20(9), 599–607 (1978)

    Article  Google Scholar 

  • R.L. Woodward, The interrelation of failure modes observed in the penetration of metallic targets. Int. J. Impact Eng 2(2), 121–129 (1984)

    Article  Google Scholar 

  • R.L. Woodward, Material failure at high strain rates, in High Velocity Impact Dynamics, ed. by J.A. Zukas (Wiley, New York, 1990), pp. 65–126

    Google Scholar 

  • F.J. Zerilli, R.W. Armstrong, Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61(5), 1816–1825 (1990)

    Article  Google Scholar 

  • J. Zukas, Introduction to Hydrocodes, vol 49 (Elsevier, Amsterdam 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Fras .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fras, T. (2022). Modeling of Failure Resulting from High-Velocity Ballistic Impact. In: Voyiadjis, G.Z. (eds) Handbook of Damage Mechanics . Springer, Cham. https://doi.org/10.1007/978-3-030-60242-0_69

Download citation

Publish with us

Policies and ethics