Skip to main content

Heterogenous Impacts of Climate on Agricultural Industries Farm Exit Patterns in the Murray-Darling Basin of Australia

  • Living reference work entry
  • First Online:
  • 71 Accesses

Abstract

Over time, the number of farm businesses in the Murray-Darling Basin (MDB) in Australia has fallen considerably. This chapter applies a fixed effects regression model to regional-level data to assess the heterogeneous impacts of climate on four major agricultural industries in the MDB (livestock, dairy, broadacre, and horticulture). Two climate variables (annual average daily maximum temperature and annual total rainfall) are used to predict net change in farmer number of each industry during four 5-year periods between 1991 and 2011. The results suggest that hotter annual average maximum temperature and lower annual rainfall result in farm exit in all industries. However, the impacts of temperature and rainfall on net change in farmer number vary across different industries, with also a much larger impact of increased temperatures on farm exit than rainfall reductions. Farm numbers in broadacre and livestock industries (that are more likely to be dryland agricultural based) are more impacted by hotter temperatures and reduced rainfall than dairy and horticultural industries. Policies – both at the macro-scale for climate change and the micro-scale for adaptation – are urgently needed in Australia.

This is a preview of subscription content, log in via an institution.

References

  • ABARES. (2019). Agricultural commodities. Canberra: Australian Bureau of Agricultural and Resource Economics and Sciences. https://www.agriculture.gov.au/sites/default/files/sitecollectiondocuments/abares/agriculture-commodities/AgCommodities201903_v1.0.0.pdf

  • Abram, N. J., Henley, B. J., Gupta, A. S., Lippmann, T. J., Clarke, H., Dowdy, A. J., … Boer, M. M. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2(1), 1–17.

    Article  Google Scholar 

  • Ackerman, F., & Stanton, E. A. (2013). Climate impacts on agriculture: A challenge to complacency? Development and Environmental Institute, Tufts University, Somerville, Massachusetts, USA. http://www.ase.tufts.edu/gdae/Pubs/wp/13-01AckermanClimateImpacts.pdf

  • AFI. (2019). Change in the air: Defining the need for an Australian agricultural climate change strategy. Surry Hills: Australian Farm Institute (AFI).

    Google Scholar 

  • Ahmad, M. I., Oxley, L., & Ma, H. (2020). What makes farmers exit farming: A case study of Sindh Province, Pakistan. Sustainability, 12(8), 3160.

    Article  Google Scholar 

  • Ali, S., Liu, Y., Ishaq, M., Shah, T., Ilyas, A., & Din, I. U. (2017). Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Food, 6(6), 39.

    Article  Google Scholar 

  • Alston, M., & Whittenbury, K. (2013). Does climatic crisis in Australia’s food bowl create a basis for change in agricultural gender relations? Agriculture and Human Values, 30(1), 115–128.

    Article  Google Scholar 

  • AMPC. (2016). Strategic risks facing the Australian red meat industry. North Sydney: Australian Meat Processor Corporation. https://www.ampc.com.au/uploads/pdf/strategic-plans/42161_AMPC_RiskDocumentvLR.pdf

  • Auffhammer, M., Ramanathan, V., & Vincent, J. R. (2012). Climate change, the monsoon, and rice yield in India. Climatic Change, 111(2), 411–424.

    Article  Google Scholar 

  • Bakar, K. S., & Jin, H. (2018). Spatio-temporal quantitative links between climatic extremes and population flows: A case study in the Murray-Darling Basin, Australia. Climatic Change, 148(1), 139–153.

    Article  Google Scholar 

  • BoM. (2013). ACORN-SAT station data and network maximum temperature data. Melbourne: Bureau of Meteorology. http://www.bom.gov.au/climate/change/acorn-sat/#TABS=1

  • BoM. (2021a). Australian climate variability and change – Time series graphs. Annual mean temperature anomaly in the Murray-Darling Basin (1910–2020). Melbourne: Bureau of Meteorology. http://www.bom.gov.au/climate/change/index.shtml#tabs=Tracker&tracker=timeseries&tQ=graph%3Dtmean%26area%3Dmdb%26season%3D0112%26ave_yr%3D0

  • BoM. (2021b). Australian climate variability and change – Time series graphs. Annual rainfall anomaly in the Murray-Darling Basin (1900–2020). Melbourne: Bureau of Meteorology. http://www.bom.gov.au/climate/change/index.shtml#tabs=Tracker&tracker=timeseries&tQ=graph%3Drranom%26area%3Dmdb%26season%3D0112%26ave_yr%3D0

  • Botterill, L. (2010). Risk management as policy. The experience of Australia’s National Drought Policy. In Economics of drought and drought preparedness in climate change context (pp. 241–248). CIHEAM.

    Google Scholar 

  • Ciscar, J. C., Rising, J., Kopp, R. E., & Feyen, L. (2019). Assessing future climate change impacts in the EU and the USA: Insights and lessons from two continental-scale projects. Environmental Research Letters, 14(8), 084010.

    Article  Google Scholar 

  • Crimp, S. J., Zheng, B., Khimashia, N., Gobbett, D. L., Chapman, S., Howden, M., & Nicholls, N. (2016). Recent changes in southern Australian frost occurrence: Implications for wheat production risk. Crop and Pasture Science, 67(8), 801–811.

    Article  Google Scholar 

  • CSIRO. (2012). Climate and water availability in southeastern Australia: A synthesis of findings from Phase 2 of the South Eastern Australian Climate Initiative. Canberra: Commonwealth Scientific and Industrial Research Association (CSIRO). http://www.seaci.org/publications/documents/SEACI-2Reports/SEACI_Phase2_SynthesisReport.pdf

  • CSIRO and BoM. (2007). Climate change in Australia: Technical report 2007. Canberra: CSIRO and Australian Bureau of Meteorology.

    Google Scholar 

  • Darragh, L., Laurie, A., Heath, R., & McRobert, K. (2018). The impact of energy costs on the Australian agriculture sector. Surry Hills: Australian Farm Institute. https://energyconsumersaustralia.worldsecuresystems.com/grants/910/Ag%20Energy%20ECA_AFI.pdf

  • Davis, K. F., Chhatre, A., Rao, N. D., Singh, D., & DeFries, R. (2019). Sensitivity of grain yields to historical climate variability in India. Environmental Research Letters, 14(6), 064013.

    Article  Google Scholar 

  • Department of Agriculture. Australian agriculture: Reducing emissions and adapting to a changing climate. Australia: Department of Agriculture. Accessed December 2013 at: https://www.agriculture.gov.au/sites/default/files/style%20library/images/daff/__data/assets/pdffile/0006/2359815/reducing-emissons-adapting-changing-climate.pdf

  • Dong, F., Hennessy, D. A., & Jensen, H. H. (2010). Contract and exit decisions in finisher hog production. American Journal of Agricultural Economics, 92(3), 667–684.

    Article  Google Scholar 

  • Edwards, B., Gray, M., & Hunter, B. (2009). A sunburnt country: The economic and financial impact of drought on rural and regional families in Australia in an era of climate change. Australian Journal of Labour Economics, 12(1), 109–131.

    Google Scholar 

  • Ellis, N. R., & Albrecht, G. A. (2017). Climate change threats to family farmers’ sense of place and mental wellbeing: A case study from the Western Australian Wheatbelt. Social Science & Medicine, 175, 161–168.

    Article  Google Scholar 

  • Filkov, A. I., Ngo, T., Matthews, S., Telfer, S., & Penman, T. D. (2020). Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. Journal of Safety Science and Resilience, 1(1), 44–56.

    Article  Google Scholar 

  • Fishman, R. (2016). More uneven distributions overturn benefits of higher precipitation for crop yields. Environmental Research Letters, 11(2), 024004.

    Article  Google Scholar 

  • Ghahramani, A., & Moore, A. D. (2015). Systemic adaptations to climate change in southern Australian grasslands and livestock: Production, profitability, methane emission and ecosystem function. Agricultural Systems, 133, 158–166.

    Article  Google Scholar 

  • Goetz, S. J., & Debertin, D. L. (2001). Why farmers quit: A county-level analysis. American Journal of Agricultural Economics, 83(4), 1010–1023.

    Article  Google Scholar 

  • Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2973–2989.

    Article  Google Scholar 

  • Grafton, R. Q., & Wheeler, S. A. (2018). Economics of water recovery in the Murray-Darling Basin, Australia. Annual Review of Resource Economics, 10, 487–510.

    Article  Google Scholar 

  • Gunn, K. M., Holly, M. A., Veith, T. L., Buda, A. R., Prasad, R., Rotz, C. A., … Stoner, A. M. (2019). Projected heat stress challenges and abatement opportunities for US milk production. PLoS One, 14(3), e0214665.

    Article  Google Scholar 

  • Hayes, K., Blashki, G., Wiseman, J., Burke, S., & Reifels, L. (2018). Climate change and mental health: Risks, impacts and priority actions. International Journal of Mental Health Systems, 12(1), 1–12.

    Article  Google Scholar 

  • Hochman, Z., Gobbett, D. L., & Horan, H. (2017). Climate trends account for stalled wheat yields in Australia since 1990. Global Change Biology, 23(5), 2071–2081.

    Article  Google Scholar 

  • Hoffmann, U. (2013). Section B: Agriculture: A key driver and a major victim of global warming. Lead article, in, 3–5.

    Google Scholar 

  • Hull, L. (2016). Dairy’s (climate) changing future. Melbourne: University of Melbourne. https://pursuit.unimelb.edu.au/articles/dairy-s-climate-changing-future

  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change (Eds.) Field, C., Barros, V., Stocker, T., Qin, D., Dokken, D., Ebi, K., … Midgley, P. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change (Eds.) Field, C., Barros, V., Dokken, D., & Mach, K. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Jeffery, M. (2017). Restore the soil: Prosper the nation. Report to the Prime Minister. Canberra: National Advocate for Soil Health. https://www.agriculture.gov.au/sites/default/files/sitecollectiondocuments/ag-food/publications/restore-soil-prosper.pdf

  • Kazukauskas, A., Newman, C., Clancy, D., & Sauer, J. (2013). Disinvestment, farm size, and gradual farm exit: The impact of subsidy decoupling in a European context. American Journal of Agricultural Economics, 95(5), 1068–1087.

    Article  Google Scholar 

  • Kiem, A. S., & Austin, E. K. (2013). Drought and the future of rural communities: Opportunities and challenges for climate change adaptation in regional Victoria, Australia. Global Environmental Change, 23(5), 1307–1316.

    Article  Google Scholar 

  • Kimhi, A. (2000). Is part-time farming really a step in the way out of agricultural? American Journal of Agricultural Economics, 82(1), 38–48.

    Article  Google Scholar 

  • Kimhi, A., & Bollman, R. (1999). Family farm dynamics in Canada and Israel: The case of farm exits. Agricultural Economics, 21(1), 69–79.

    Article  Google Scholar 

  • Kirby, M., Bark, R., Connor, J., Qureshi, M. E., & Keyworth, S. (2014). Sustainable irrigation: How did irrigated agriculture in Australia’s Murray-Darling Basin adapt in the millennium drought? Agricultural Water Management, 145, 154–162.

    Article  Google Scholar 

  • KPMG. (2016). Northern Basin community modelling: Economic assessment of water recovery scenarios. Sydney: KPMG Australia. https://www.mdba.gov.au/sites/default/files/pubs/S%26E-economic-modelling-report-KPMG.pdf

  • Last, P. R., White, W. T., Gledhill, D. C., Hobday, A. J., Brown, R., Edgar, G. J., & Pecl, G. (2011). Long-term shifts in abundance and distribution of a temperate fish fauna: A response to climate change and fishing practices. Global Ecology and Biogeography, 20(1), 58–72.

    Article  Google Scholar 

  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616–620.

    Article  Google Scholar 

  • Ludwig, F., & Asseng, S. (2006). Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agricultural Systems, 90(1–3), 159–179.

    Article  Google Scholar 

  • McColl, J., & Young, M. (2006). Drought and structural adjustment. Farm Policy, 3, 13–21.

    Google Scholar 

  • McRobert, K., Admassu, S., Fox, T., & Heath, R. (2019). Change in the air: Defining the need for an Australian agricultural climate change strategy. Surry Hills: Australian Farm Institute. https://www.farminstitute.org.au/product/change-in-the-air-defining-the-need-for-an-australian-agricultural-climate-change-strategy/

  • Mishra, A. K., & El-Osta, H. S. (2016). Determinants of decisions to enter the US farming sector. Journal of Agricultural and Applied Economics, 48(1), 73–98.

    Article  Google Scholar 

  • Mistry, M. N., Wing, I. S., & De Cian, E. (2017). Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change. Environmental Research Letters, 12(7), 075007.

    Article  Google Scholar 

  • Möllers, J., & Fritzsch, J. (2010). Individual farm exit decisions in Croatian family farms. Post-Communist Economies, 22(1), 119–128.

    Article  Google Scholar 

  • Moore, F. C., & Lobell, D. B. (2015). The fingerprint of climate trends on European crop yields. Proceedings of the National Academy of Sciences, 112(9), 2670–2675.

    Article  Google Scholar 

  • Nauges, C., Wheeler, S., & Zuo, A. (2016). Elicitation of irrigators’ risk preferences from observed behaviour. Australian Journal of Agricultural and Resource Economics, 60(3), 442–458.

    Article  Google Scholar 

  • OECD. (2017). Agricultural policy monitoring and evaluation 2017. Organization for Economic Cooperation and Development. Paris: OECD Publishing.

    Google Scholar 

  • Palutikof, J. P. (2010). The view from the front line: Adapting Australia to climate change. Global Environmental Change, 2(20), 218–219.

    Article  Google Scholar 

  • Pearce, T. D., Rodríguez, E. H., Fawcett, D., & Ford, J. D. (2018). How is Australia adapting to climate change based on a systematic review? Sustainability, 10(9), 3280.

    Article  Google Scholar 

  • Pieralli, S., Hüttel, S., & Odening, M. (2017). Abandonment of milk production under uncertainty and inefficiency: The case of western German Farms. European Review of Agricultural Economics, 44(3), 425–454.

    Article  Google Scholar 

  • Porter, J., Xie, L., Challinor, A., Cochrane, K., Howden, S., Iqbal, M., … Travasso, M. (2014). Food security and food production systems Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 485–533). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Praveen, B., & Sharma, P. (2019). A review of literature on climate change and its impacts on agriculture productivity. Journal of Public Affairs, 19(4), e1960.

    Article  Google Scholar 

  • Quiggin, J., Adamson, D., Chambers, S., & Schrobback, P. (2010). Climate change, uncertainty, and adaptation: The case of irrigated agriculture in the Murray-Darling Basin in Australia. Canadian Journal of Agricultural Economics/Revue canadienne d’agroeconomie, 58(4), 531–554.

    Article  Google Scholar 

  • Rae, A. N., & Zhang, X. (2009). China’s booming livestock industry: Household income, specialization, and exit. Agricultural Economics, 40(6), 603–616.

    Article  Google Scholar 

  • Rickards, L., & Howden, S. M. (2012). Transformational adaptation: Agriculture and climate change. Crop and Pasture Science, 63(3), 240–250.

    Article  Google Scholar 

  • RMCG. (2016). Basin plan-GMID socio-economic impact assessment. Prepared for GMID Water Leadership Forum. Bendigo: RMCG. https://www.mda.asn.au/Source/news/Basin%20Plan%20Impact%20GMID_Final_13%20October.pdf

  • Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., … Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111(9), 3268–3273.

    Article  Google Scholar 

  • Rowhani, P., Lobell, D. B., Linderman, M., & Ramankutty, N. (2011). Climate variability and crop production in Tanzania. Agricultural and Forest Meteorology, 151(4), 449–460.

    Article  Google Scholar 

  • Sauer, J., & Park, T. (2009). Organic farming in Scandinavia – Productivity and market exit. Ecological Economics, 68(8–9), 2243–2254.

    Article  Google Scholar 

  • Schauberger, B., Archontoulis, S., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., … Frieler, K. (2017). Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 8(1), 1–9.

    Article  Google Scholar 

  • Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of Sciences, 106(37), 15594–15598.

    Article  Google Scholar 

  • Seidl, C., Wheeler, S. A., & Zuo, A. (2021). The drivers associated with Murray-Darling Basin irrigators’ future farm adaptation strategies. Journal of Rural Studies, 83, 187–200.

    Google Scholar 

  • Shortridge, J. (2019). Observed trends in daily rainfall variability result in more severe climate change impacts to agriculture. Climatic Change, 157(3), 429–444.

    Article  Google Scholar 

  • Steffen, W., Hughes, L., & Perkins, S. (2014). Opinion: Climate Council: Heatwaves are getting hotter and more frequent. Australian Medicine, 26(4), 38.

    Google Scholar 

  • Tack, J., Barkley, A., & Nalley, L. L. (2015). Effect of warming temperatures on US wheat yields. Proceedings of the National Academy of Sciences, 112(22), 6931–6936.

    Article  Google Scholar 

  • Troy, T. J., Kipgen, C., & Pal, I. (2015). The impact of climate extremes and irrigation on US crop yields. Environmental Research Letters, 10(5), 054013.

    Article  Google Scholar 

  • Turnbull, C., & Lovett, S. (2009). Climate change and the Australian horticulture industry. Sydney, Australia: Fact Sheet, Horticulture Australia Limited. http://www.vegetableclimate.com/wp-content/uploads/2013/10/Horticulture-and-climate-change-CCRSPI.pdf

  • Van Vuuren, D., Ochola, W., Riha, S., Giampietro, M., Ginzo, H., Henrichs, T., … Kuppannan, P. (2009). Outlook on agricultural change and its drivers. B. Watson (Ed.), International Assessment of Agricultural Science and Technology Development, Island Press, Washington DC.

    Google Scholar 

  • Wheeler, S. A. (2014). Insights, lessons and benefits from improved regional water security and integration in Australia. Water Resources and Economics, 8, 57–78.

    Article  Google Scholar 

  • Wheeler, S. A., & Cheesman, J. (2013). Key findings from a survey of sellers to the restoring the balance programme. Economic Papers: A Journal of Applied Economics and Policy, 32(3), 340–352.

    Article  Google Scholar 

  • Wheeler, S., & Marning, A. (2019). Turning water into wine: Exploring water security perceptions and adaptation behaviour amongst conventional, organic and biodynamic grape growers. Land Use Policy, 82, 528–537.

    Article  Google Scholar 

  • Wheeler, S. A., & Zuo, A. (2017). The impact of drought and water scarcity on irrigator farm exit intentions in the Murray-Darling Basin. Australian Journal of Agricultural and Resource Economics, 61(3), 404–421.

    Article  Google Scholar 

  • Wheeler, S., Zuo, A., & Bjornlund, H. (2014). Investigating the delayed on-farm consequences of selling water entitlements in the Murray-Darling Basin. Agricultural Water Management, 145, 72–82.

    Article  Google Scholar 

  • Wheeler, S., Connor, J., Grafton, Q., Crase, L., & Quiggin, J. (2018a). Submission to the Murray-Darling Basin’s Royal Commission.

    Google Scholar 

  • Wheeler, S., Zuo, A., & Loch, A. (2018b). Water torture: Unravelling the psychological distress of irrigators in Australia. Journal of Rural Studies, 62, 183–194.

    Article  Google Scholar 

  • Wheeler, S. A., Xu, Y., & Zuo, A. (2020). Modelling the climate, water and socio-economic drivers of farmer exit in the Murray-Darling Basin. Climatic Change, 158(3), 551–574.

    Article  Google Scholar 

  • Wheeler, S. A., Nauges, C., & Zuo, A. (2021). How stable are Australian farmers’ climate change risk perceptions? New evidence of the feedback loop between risk perceptions and behaviour. Global Environmental Change, 68, 1–14.

    Google Scholar 

  • Williams, A., White, N., Mushtaq, S., Cockfield, G., Power, B., & Kouadio, L. (2015). Quantifying the response of cotton production in eastern Australia to climate change. Climatic Change, 129(1), 183–196.

    Article  Google Scholar 

  • Wittwer, G., & Dixon, J. (2013). Effective use of public funding in the Murray-Darling Basin: A comparison of buybacks and infrastructure upgrades. Australian Journal of Agricultural and Resource Economics, 57(3), 399–421.

    Article  Google Scholar 

  • World Bank. (2008). Agriculture for development policy brief: Adaptation and mitigation of climate change in agriculture. World Development Report 2008. https://openknowledge.worldbank.org/handle/10986/5990

  • World Bank. (2020). Agriculture, forestry and fishing, value added (% of GDP). World Bank Data. https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?most_recent_value_desc=true

  • Zuo, A., Wheeler, S. A., Boxall, P., Adamowicz, W. L., & Hatton MacDonald, D. (2015a). Identifying water prices at which Australian farmers will exit irrigation: Results of a stated preference survey. Economic Record, 91, 109–123.

    Article  Google Scholar 

  • Zuo, A., Nauges, C., & Wheeler, S. (2015b). Farmers’ exposure to risk and their temporary water trading. European Review of Agricultural Economics, 42(1), 1–24.

    Article  Google Scholar 

Download references

Acknowledgments

The Australian Research Council provided funding for this study through FT140100773 and DP200101191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Ann Wheeler .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xu, Y., Wheeler, S.A., Zuo, A. (2021). Heterogenous Impacts of Climate on Agricultural Industries Farm Exit Patterns in the Murray-Darling Basin of Australia. In: The Palgrave Handbook of Climate Resilient Societies. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-32811-5_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32811-5_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-32811-5

  • Online ISBN: 978-3-030-32811-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics