Skip to main content

Climate-Resilient Agricultural Development in the Global South

  • Living reference work entry
  • First Online:
The Palgrave Handbook of Climate Resilient Societies

Abstract

Global warming is already having a profound effect on food production around the world and in the global south in particular. The United Nations Sustainable Development Goal, SDG2, on zero hunger calls for sustainable food production systems and resilient agricultural practices that increase productivity and production, while helping maintain ecosystems, and that strengthen capacity for adaptation to climate change, extreme weather, drought, flooding, and other natural disasters. It has been estimated that smallholder farmers provide up to 75% of the food supply in many developing countries. The success of efforts to develop rural economies, ensure food and nutrition security, and eradicate rural poverty will depend on building resilience to climate change in agricultural systems managed by smallholders and the widespread adoption of innovations in farming practices. However, although there are many “islands” of climate-resilient agriculture practiced in the global south, what has been lacking to date has been change at scale. Recently, there has been an increasing recognition that agriculture is part and parcel of wider food systems. Building resilience in the primary agriculture sector to climate change through technological interventions at the farm level, though necessary, is insufficient in itself for sustainability. For this, there is a need to broaden the perspective to include food systems as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aerni, P., Nichterlein, K., Rudgard, S., & Sonnino, A. (2015). Making agricultural innovation systems (AIS) work for development in tropical countries. Sustainability, 7, 831–850. https://doi.org/10.3390/su7010831.

    Article  Google Scholar 

  • Aggarwal, P. K., Campbell, J. B. M., Zougmoré, R. B., Khatri-Chhetri, A., Vermeulen, S. J., et al. (2018). The climate-smart village approach: Framework of an integrative strategy for scaling up adaptation options in agriculture. Ecology and Society, 23(1), 14. https://doi.org/10.5751/ES-09844-230114.

    Article  Google Scholar 

  • Ahmed, M. R., Khan, R. R., Kok, A., & Quazi, K. (2017). Remote sensing-based quantification of the impact of flash flooding on the rice production: A case study over northeastern Bangladesh. Sensors, 17(10), 2347.

    Article  Google Scholar 

  • Altieri, M. A., Funes-Monzote, F. R., & Petersen, P. (2012). Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agronomy for Sustainable Development, 32, 1–13. https://doi.org/10.1007/s13593-011-0065-6.

    Article  Google Scholar 

  • Altieri, M. A., Nicholls, C. I., Henao, A., et al. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35, 869–890. https://doi.org/10.1007/s13593-015-0285-2.

    Article  Google Scholar 

  • Aquastat. (2012). Irrigation in Southern and Eastern Asia in figures. Rome: FAO.

    Google Scholar 

  • Arenas-Calle, L. N., Whitfield, S., & Challinor, A. J. (2019). A climate smartness index (CSI) based on greenhouse gas intensity and water productivity: Application to irrigated rice. Frontiers in Sustainable Food Systems, 3, 105. https://doi.org/10.3389/fsufs.2019.00105.

    Article  Google Scholar 

  • Balwinder-Singh, Shirsath, P. B., Jat, M. L., McDonald, A. J., Srivastava, A. K., et al. (2020). Agricultural labor, COVID-19, and potential implications for food security and air quality in the breadbasket of India. Agricultural Systems, 185, 102954. https://doi.org/10.1016/j.agsy.2020.10295.

    Article  Google Scholar 

  • Barrett C.B., Christiaensen L., Sheahan M., Shimeles A. (2017). On the Structural Transformation of Rural Africa. World Bank Group

    Google Scholar 

  • Benton, T., & Bailey, R. (2019). The paradox of productivity: Agricultural productivity promotes food system inefficiency. Global Sustainability, 2(e6), 1–8.

    Google Scholar 

  • Béné, C., Oosterveer, P., Lamotte, L., Brouwer, I., de Haan, S., Prager, S., Talsma, E., Khoury, C. (2019) When food systems meet sustainability – Current narratives and implications for actions. World Development, 113, 116–130. https://doi.org/10.1016/j.worlddev.2018.08.011

  • Blum, M. L., Cofini, F., & Sulaiman, R. (2020). Agricultural extension in transition worldwide: Policies and strategies for reform. Rome: FAO. https://doi.org/10.4060/ca8199en.

    Book  Google Scholar 

  • Boer, R. (2009). Strategi Menghadapi Perubahan Iklim untuk Sektor Pangan. Centre for Climate Risk and Opportunity Management in Southeast Asia Pacific (CCROM – SEAP). Bogor: Bogor Agricultural University.

    Google Scholar 

  • Campbell, B., & Thornton, P. (2014). How many farmers in 2030 and how many will adopt climate resilient innovations? CCAFS info note. Copenhagen: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

    Google Scholar 

  • Carlson, K., Gerber, J., Mueller, N., et al. (2017). Greenhouse gas emissions intensity of global croplands. Nature Climate Change, 7, 63–68. https://doi.org/10.1038/nclimate3158.

  • Chowdhury, A. H., Odame, H. H., & Leeuwis, C. (2014). Transforming the roles of a public extension agency to strengthen innovation: Lessons from the National Agricultural Extension Project in Bangladesh. The Journal of Agricultural Education and Extension, 20(1), 7–25. https://doi.org/10.1080/1389224X.2013.8039.

    Article  Google Scholar 

  • Corbeels, M., Thierfelder, C., & Rusinamhodzi, L. (2015). Conservation agriculture in sub-Saharan Africa. In M. Farooq & K. Siddique (Eds.), Conservation agriculture. Cham: Springer. https://doi.org/10.1007/978-3-319-11620-4.

    Chapter  Google Scholar 

  • Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D. and Yan, J. 2009. The impact of sea level rise on developing countries: a comparative analysis. Climatic Change 93, 379–388. https://doi.org/10.1007/s10584-008-9499-5

  • DFID. (2002). Better livelihoods for poor people: The role of agriculture (Issues paper (Discussion draft)). London: DFID.

    Google Scholar 

  • DFID. (2015). DFID’s conceptual framework on agriculture. London: Department for International Development.

    Google Scholar 

  • Dorin, B., Hourcade, J.C., & Benoit-Cattin, M.A. (2013). World without farmers? The Lewis path revisited. CIRED working paper 47-2013, pp. 22. <hal-00841694>.

    Google Scholar 

  • ECLAC, FAO, IICA. (2012). The Outlook for Agriculture and Rural Development in the Americas: A Perspective on Latin America and the Caribbean. IICA, San José, Costa Rica

    Google Scholar 

  • Eriksen, S. H., Cramer, L. K., Vetrhus, I., & Thornton, P. (2019). Can climate interventions open up space for transformation? Examining the case of climate-smart agriculture (CSA) in Uganda. Frontiers in Sustainable Food Systems, 3, 111. https://doi.org/10.3389/fsufs.2019.00111.

    Article  Google Scholar 

  • Evangelista, P., Young, N., & Burnett, J. (2013). How will climate change spatially affect agriculture production in Ethiopia? Case studies of important cereal crops. Climatic Change, 119(3–4). https://doi.org/10.1007/s10584-013-0776-6.

  • FAO. (2014). Developing sustainable food value chains – Guiding principles. Rome: FAO.

    Google Scholar 

  • FAO. (2015). Natural capital impacts in agriculture. Rome: FAO.

    Google Scholar 

  • FAO. (2016). The state of food and agriculture: Climate change, agriculture and food security. Rome: FAO.

    Google Scholar 

  • FAO. (2018a). The State of Agricultural Commodity Markets 2018. Agricultural trade, climate change and food security. Rome. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • FAO. (2018b). The 10 elements of agroecology: Guiding the transition to sustainable food and agricultural systems. Rome: FAO.

    Google Scholar 

  • FAO. (2019). Digital technologies in agriculture and rural areas. Rome: FAO.

    Google Scholar 

  • FAO. (2020). The state of food and nutrition security in the world: Transforming food systems for affordable healthy diets. Rome: FAO.

    Google Scholar 

  • Faure G., Chiffoleau Y., Goulet F., Temple L., Touzard J-M. (eds) 2018. Innovation and development in agricultural and food systems. Éditions Quæ. Versailles.

    Google Scholar 

  • Gildemacher, P.R., & Wongtschowski, M. (2015). Catalysing innovation: From theory to action. KIT working papers 2015: 1.

    Google Scholar 

  • Glover, D., & Poole, N. (2019). Principles of innovation to build nutrition-sensitive food systems in South Asia. Food Policy, 82, 63–73. https://doi.org/10.1016/j.foodpol.2018.10.010.

    Article  Google Scholar 

  • Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical Transactions of the Royal Society B, 369, 20120273. https://doi.org/10.1098/rstb.2012.0273.

    Article  Google Scholar 

  • Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., et al. (2017). Natural climate solutions. Proceedings of National Academy Sciences, 114(44), 11645–11650. https://doi.org/10.1073/pnas.1710465114.

    Article  Google Scholar 

  • Habiyaremye, A., Kruss, G., & Booyens, I. (2019). Innovation for inclusive rural transformation: The role of the state. Innovation and Development. https://doi.org/10.1080/2157930X.2019.1596368.

  • Hall, A., & Dijkman, J. (2019). Public agricultural research in an era of transformation: The challenge of agri-food system innovation. Rome/Canberra: CGIAR Independent Science and Partnership Council (ISPC) Secretariat and Commonwealth Scientific and Industrial Research Organisation (CSIRO), IX + 67 pp.

    Google Scholar 

  • Harris, D., & Orr, A. (2014). Is rainfed agriculture really a pathway from poverty? Agricultural Systems, 123, 84–96. https://doi.org/10.1016/j.agsy.2013.09.005.

    Article  Google Scholar 

  • Hellin, J., & Fisher, E. (2018). Building pathways out of poverty through climate smart agriculture and effective targeting. Development in Practice. https://doi.org/10.1080/09614524.2018.1492516.

  • Herrero, M., Thornton, P. K., Power, B., Bogard, J. R., Remans, R., Fritz, S., et al. (2017). Farming and the geography of nutrient production for human use: A transdisciplinary analysis. The Lancet Planetary Health, 1(1), e33–e42. https://doi.org/10.1016/S2542-5196(17)30007-4.

    Article  Google Scholar 

  • HLPE. (2013). Investing in smallholder agriculture for food security. A report by the High-Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome.

    Google Scholar 

  • HLPE. (2017). Nutrition and food systems. A report by the High-Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome.

    Google Scholar 

  • HLPE. (2019). Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by the High-Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome.

    Google Scholar 

  • Huang, J., & Rozelle, S. (2018). China’s 40 years of agricultural development and reform. In R. Garnaut, L. Song, & C. Fang (Eds.), China’s 40 years of reform and development: 1978–2018 (pp. 487–506). Acton ACT: ANU Press. Retrieved September 26, 2020, from http://www.jstor.org/stable/j.ctv5cgbnk.32

  • Huyer, S., & Partey, S. (2020). Weathering the storm or storming the norms? Moving gender equality forward in climate-resilient agriculture. Climatic Change, 158, 1–12. https://doi.org/10.1007/s10584-019-02612-5.

    Article  Google Scholar 

  • IPCC. (2014). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri R. K., & Meyer L. A. (Eds.). IPCC, Geneva, Switzerland.

    Google Scholar 

  • IPCC. (2019). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, & J. Malley, (Eds.)]. In press.

    Google Scholar 

  • Jat, M. L., Chakraborty, D., Ladha, J. K., et al. (2020). Conservation agriculture for sustainable intensification in South Asia. Nature Sustainability, 3, 336–343. https://doi.org/10.1038/s41893-020-0500-2.

    Article  Google Scholar 

  • Keating, B. A., Herrero, M., Carberry, P. S., Gardner, J., & Cole, M. B. (2014). Food wedges: Framing the global food demand and supply challenge towards 2050. Global Food Security, 3, 125–132. https://doi.org/10.1016/j.gfs.2014.08.004.

    Article  Google Scholar 

  • Mani, M., Bandyopadhyay, S., Chonabayashi, S., Markandya, A., & Mosier, T. (2018). South Asia’s hotspots: The impact of temperature and precipitation changes on living standards. South Asia development matters. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-1155-5. License: Creative Commons Attribution CC BY 3.0 IGO.

    Book  Google Scholar 

  • Mellor, J. W. (2017). The economic transformation. In Agricultural development and economic transformation. Cham: Springer International Publishing AG.

    Chapter  Google Scholar 

  • OECD/FAO. (2016). Agriculture in sub-Saharan Africa: Prospects and challenges for the next decade. In OECD-FAO agricultural outlook 2016–2025. Paris: OECD.

    Google Scholar 

  • Oteros-Rozas, E.,Ravera, F., García-Llorente, M. (2019). How Does Agroecology Contribute to the Transitions towards Social-Ecological Sustainability? Sustainability, 11, 4372. https://doi.org/10.3390/su11164372

  • Pandey, S., Yadav, S., Hellin, J., Balié, J., Bhandari, H., Kumar, A., & Mondal, M. K. (2020). Why technologies often fail to scale: Policy and market failures behind limited scaling of alternate wetting and drying in rice in Bangladesh. Water, 12(5), 1510. https://doi.org/10.3390/w12051510.

    Article  Google Scholar 

  • Pigford, A. E., Hickey, G. M., & Klerkx, L. (2018). Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions. Agricultural Systems, 164, 116–121. https://doi.org/10.1016/j.agsy.2018.04.00.

    Article  Google Scholar 

  • Pimbert, M. (2017). Agroecology as an alternative vision to conventional development and climate smart agriculture. Development, 58(2–3), 286–298.

    Google Scholar 

  • Pingali, P. (2012). Green revolution: Impacts, limits, and the path ahead. PNAS, 109(31), 12302–12308.

    Article  Google Scholar 

  • Pound, B., Lamboll, R., Croxton, S., Gupta, N., & Bahadur, A.V. (2018). Climate-resilient agriculture in South Asia: An analytical framework and insights from practice. Learning paper. Oxford Policy Management.

    Google Scholar 

  • Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5–24. https://doi.org/10.3763/ijas.2010.0583.

    Article  Google Scholar 

  • Rashid, M. M., & Yasmeen, R. (2017). Cold injury and flash flood damage in Boro rice cultivation in Bangladesh: A review. Bangladesh Rice Journal, 21(1), 13–25.

    Article  Google Scholar 

  • Reardon, T., Echeverria, R., Berdegué, J., Minten, B., Liverpool-Tasie, S., Tschirley, D., & Zilberman, D. (2019). Rapid transformation of food systems in developing regions: Highlighting the role of agricultural research & innovations. Agricultural Systems, 172, 47–59. https://doi.org/10.1016/j.agsy.2018.01.022.

    Article  Google Scholar 

  • Reardon, T., Mishra, A. K., Nuthalapati, C. S. R., Bellemare, M. F., & Zilberman, D. (2020). COVID-19’s disruption of India’s transformed food supply chains. Economic and Political Weekly, 55(18), 18–22.

    Google Scholar 

  • Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., Fabrice DeClerck, F., Mihir Shah, M., Pasquale Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., & Smith, J. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46, 4–17. https://doi.org/10.1007/s13280-016-0793-6.

    Article  Google Scholar 

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of ground-water depletion in India. Nature, 460, 999–1002.

    Article  Google Scholar 

  • Rosenzweig, C., et al. (2018). Coordinating AgMIP data and models across global and regional scales for 1.5 °C and 2.0 °C assessments. Philosophical Transactions of the Royal Society A, 376, 20160455. https://doi.org/10.1098/rsta.2016.0455.

    Article  Google Scholar 

  • Ros-Tonen, M. A. F., Bitzer, V., Laven, A., de Leth, D. O., Leynseele, Y. V., & Vos, A. (2019). Conceptualizing inclusiveness of smallholder value chain integration. Current Opinion in Environmental Sustainability, 41, 10–17. https://doi.org/10.1016/j.cosust.2019.08.006.

    Article  Google Scholar 

  • Sammaddar, A., Cuevas, R. P., Custodio, M. C., Ynion, J., Chakravarti, A. R., Mohanty, S. K., & Demont, M. (2020). Capturing diversity and cultural drivers of food choice in eastern India. International Journal of Gastronomy and Food Science, 22, 100249. https://doi.org/10.1016/j.ijgfs.2020.100249.

    Article  Google Scholar 

  • Sharma, S., Rout, K. K., Khanda, C. M., Tripathi, R., et al. (2019). Field-specific nutrient management using Rice Crop Manager decision support tool in Odisha, India. Field Crops Research, 241, 107578. https://doi.org/10.1016/j.fcr.2019.107578.

    Article  Google Scholar 

  • Speratti, A., et al. (2015). Conservation Agriculture in Latin America. In M. Farooq & K. Siddique (Eds.), Conservation agriculture. Cham: Springer. https://doi.org/10.1007/978-3-319-11620-4_16.

    Chapter  Google Scholar 

  • Sulaiman, R.V. (2015). Agricultural innovation systems. Note 13. GFRAS Good Practice Notes for Extension and Advisory Services. Lindau: GFRAS.

    Google Scholar 

  • Sulaiman, R.V., Onima, V.T., Mittal, N., Puskur, R., & Meah, N. (2019). Extension and advisory services in scaling up climate smart agriculture in South Asia, Agricultural Extension in South Asia, Policy Brief No. 3. https://crispindia.org/wp-content/uploads/2019/12/AESA_POLICYBRIEF-3_2019.pdf

  • Swinnen, J., & MacDermott (Eds.). (2020). Covid-19 and global food security. Washington, DC: IFPRI.

    Google Scholar 

  • Tanzania National Climate Strategy. (2012). https://www.preventionweb.net/english/policies/v.php?id=59982&cid=0

  • TCI (Tata–Cornell Institute). (2020). Food, agriculture, and nutrition in India 2020: Leveraging agriculture to achieve zero hunger. Ithaca: TCI.

    Google Scholar 

  • Temple, L., Chiffoleau, Y., & Touzard, J.-M. (2018). A history of innovation and its uses in agriculture. In G. Faure, Y. Chiffoleau, F. Goulet, L. Temple, & J.-M. Touzard (Eds.), Innovation and development in agricultural and food systems. Versailles: Éditions Quæ.

    Google Scholar 

  • Thompson, J., & Scoones, I. (2009). Addressing the dynamics of agri-food systems: An emerging agenda for social science research. Environmental Science & Policy. https://doi.org/10.1016/j.envsci.2009.03.001.

  • Totin, E., Segnon, A. C., Schut, M., Affognon, H., Zougmoré, R., Rosenstock, T., & Thornton, P. K. (2018). Institutional perspectives of climate-smart agriculture: A systematic literature review. Sustainability, 10, 1990. https://doi.org/10.3390/su10061990.

    Article  Google Scholar 

  • UNFCCC NDC Registry (interim) https://www4.unfccc.int/sites/NDCStaging/Pages/Home.aspx. Accessed 27 Sept 2020.

  • United Nations. (2015). Transforming our world: The 2030 Agenda for Sustainable Development. United Nations – Sustainable Development knowledge platform. https://sustainabledevelopment.un.org/post2015/transformingourworld

  • Utami, J., & dan Suhatmini, H. (2011). El Nino, La Nina dan Penawaran Pangan di Jawa, Indonesia. Jurnal Ekonomi Pembangunan, 12(2), 257–271.

    Google Scholar 

  • Veettil, P., Raghu, P., & Ashok, A. (2020). Information quality, adoption of climate-smart varieties and their economic impact in flood-risk areas. Environment and Development Economics, 1–24. https://doi.org/10.1017/S1355770X20000212.

  • Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., et al. (2019). Food in the Anthropocene: The EAT–lancet commission on healthy diets from sustainable food systems. Lancet, 393, 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4.

    Article  Google Scholar 

  • Woodhill, J., Hasnain, S., & Griffith, A. (2020). Farmers and food systems: What future for small scale agriculture? Oxford: Environmental Change Institute, University of Oxford.

    Google Scholar 

  • World Bank. (2012). Agricultural innovation systems: An investment sourcebook. Washington, DC: The World Bank.

    Book  Google Scholar 

  • World Bank. https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS. Accessed 27 Sept 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafees Meah .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Meah, N., Sharma, S. (2021). Climate-Resilient Agricultural Development in the Global South. In: The Palgrave Handbook of Climate Resilient Societies. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-32811-5_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32811-5_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-32811-5

  • Online ISBN: 978-3-030-32811-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics