Encyclopedia of Molecular Pharmacology

Living Edition
| Editors: Stefan Offermanns, Walter Rosenthal

Adenylyl Cyclases

  • Carmen W. DessauerEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-21573-6_3-1



Adenylyl cyclases (AC) comprise a family of enzymes that catalyze the synthesis of adenosine 3′:5′-monophosphate (cyclic AMP, cAMP) from adenosine 5′-triphosphate (ATP). The second messenger cAMP regulates effects in all eukaryotic cells, through the activation of cAMP-dependent protein kinase (PKA), cAMP-gated ion channels (CNGs), hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, exchange proteins activated by cAMP (Epacs), and Popeye domain containing (Popdc) proteins, in addition to the regulation of a subset of cAMP- and cGMP-degrading enzymes (PDEs, phosphodiesteras​es) (Fig. 1). Cellular levels of cAMP levels reflect the balance of activities of adenylyl cyclases (ACs: 5′-ATP to cAMP + PPi) and cAMP phosphodiesteras​es (PDEs: cAMP to 5′-AMP). Adenylyl cyclases occur throughout the animal kingdom...
This is a preview of subscription content, log in to check access.


  1. Baldwin TA, Dessauer CW (2018) Function of adenylyl cyclase in heart: the AKAP connection. J Cardiovasc Dev Dis 5(1).  https://doi.org/10.3390/jcdd5010002
  2. Baldwin TA, Li Y, Brand CS, Watts VJ, Dessauer CW (2019) Insights into the regulatory properties of human adenylyl cyclase type 9. Mol Pharmacol 95(4):349–360.  https://doi.org/10.1124/mol.118.114595CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bitterman JL, Ramos-Espiritu L, Diaz A, Levin LR, Buck J (2013) Pharmacological distinction between soluble and transmembrane adenylyl cyclases. J Pharmacol Exp Ther 347(3):589–598.  https://doi.org/10.1124/jpet.113.208496CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brand CS, Hocker HJ, Gorfe AA, Cavasotto CN, Dessauer CW (2013) Isoform selectivity of adenylyl cyclase inhibitors: characterization of known and novel compounds. J Pharmacol Exp Ther 347(2):265–275.  https://doi.org/10.1124/jpet.113.208157CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brust TF, Alongkronrusmee D, Soto-Velasquez M, Baldwin TA, Ye Z, Dai M, Dessauer CW, van Rijn RM, Watts VJ (2017) Identification of a selective small-molecule inhibitor of type 1 adenylyl cyclase activity with analgesic properties. Sci Signal 10(467).  https://doi.org/10.1126/scisignal.aah5381
  6. Cesnek M, Skacel J, Jansa P, Dracinsky M, Smidkova M, Mertlikova-Kaiserova H, Soto-Velasquez MP, Watts VJ, Janeba Z (2018) Nucleobase modified Adefovir (PMEA) analogues as potent and selective inhibitors of adenylate cyclases from Bordetella pertussis and Bacillus anthracis. ChemMedChem 13(17):1779–1796.  https://doi.org/10.1002/cmdc.201800332CrossRefPubMedPubMedCentralGoogle Scholar
  7. Conley JM, Brand CS, Bogard AS, Pratt EP, Xu R, Hockerman GH, Ostrom RS, Dessauer CW, Watts VJ (2013) Development of a high-throughput screening paradigm for the discovery of small-molecule modulators of adenylyl cyclase: identification of an adenylyl cyclase 2 inhibitor. J Pharmacol Exp Ther 347(2):276–287.  https://doi.org/10.1124/jpet.113.207449CrossRefPubMedPubMedCentralGoogle Scholar
  8. Desaubry L, Shoshani I, Johnson RA (1996) Inhibition of adenylyl cyclase by a family of newly synthesized adenine nucleoside 3’-polyphosphates. J Biol Chem 271(24):14028–14034.  https://doi.org/10.1074/jbc.271.24.14028CrossRefPubMedGoogle Scholar
  9. Dessauer CW, Gilman AG (1997) The catalytic mechanism of mammalian adenylyl cyclase. Equilibrium binding and kinetic analysis of P-site inhibition. J Biol Chem 272(44):27787–27795CrossRefGoogle Scholar
  10. Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R (2017) International union of basic and clinical pharmacology. CI. Structures and small molecule modulators of mammalian adenylyl cyclases. Pharmacol Rev 69(2):93–139.  https://doi.org/10.1124/pr.116.013078CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gille A, Seifert R (2003) 2′(3′)-O-(N-methylanthraniloyl)-substituted GTP analogs: a novel class of potent competitive adenylyl cyclase inhibitors. J Biol Chem 278(15):12672–12679.  https://doi.org/10.1074/jbc.M211292200CrossRefPubMedGoogle Scholar
  12. Kleinboelting S, Diaz A, Moniot S, van den Heuvel J, Weyand M, Levin LR, Buck J, Steegborn C (2014) Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate. Proc Natl Acad Sci U S A 111(10):3727–3732.  https://doi.org/10.1073/pnas.1322778111CrossRefPubMedPubMedCentralGoogle Scholar
  13. Laux WH, Pande P, Shoshani I, Gao J, Boudou-Vivet V, Gosselin G, Johnson RA (2004) Pro-nucleotide inhibitors of adenylyl cyclases in intact cells. J Biol Chem 279(14):13317–13332.  https://doi.org/10.1074/jbc.M309535200CrossRefPubMedGoogle Scholar
  14. Levin LR, Buck J (2015) Physiological roles of acid-base sensors. Annu Rev Physiol 77:347–362.  https://doi.org/10.1146/annurev-physiol-021014-071821CrossRefPubMedGoogle Scholar
  15. Linder JU, Schultz JE (2003) The class III adenylyl cyclases: multi-purpose signalling modules. Cell Signal 15(12):1081–1089CrossRefGoogle Scholar
  16. Qi C, Sorrentino S, Medalia O, Korkhov VM (2019) The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science 364(6438):389–394.  https://doi.org/10.1126/science.aav0778CrossRefPubMedGoogle Scholar
  17. Ramos-Espiritu L, Kleinboelting S, Navarrete FA, Alvau A, Visconti PE, Valsecchi F, Starkov A, Manfredi G, Buck H, Adura C, Zippin JH, van den Heuvel J, Glickman JF, Steegborn C, Levin LR, Buck J (2016) Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase. Nat Chem Biol 12(10):838–844.  https://doi.org/10.1038/nchembio.2151CrossRefPubMedPubMedCentralGoogle Scholar
  18. Seifert R, Lushington GH, Mou TC, Gille A, Sprang SR (2012) Inhibitors of membranous adenylyl cyclases. Trends Pharmacol Sci 33(2):64–78.  https://doi.org/10.1016/j.tips.2011.10.006CrossRefPubMedGoogle Scholar
  19. Shoshani I, Boudou V, Pierra C, Gosselin G, Johnson RA (1999) Enzymatic synthesis of unlabeled and beta-(32)P-labeled beta-L-2′, 3′-dideoxyadenosine-5′-triphosphate as a potent inhibitor of adenylyl cyclases and its use as reversible binding ligand. J Biol Chem 274(49):34735–34741.  https://doi.org/10.1074/jbc.274.49.34735CrossRefPubMedGoogle Scholar
  20. Tang W-J, Guo Q (2009) The adenylyl cyclase activity of anthrax edema factor. Mol Asp Med 30(6):423–430.  https://doi.org/10.1016/j.mam.2009.06.001CrossRefGoogle Scholar
  21. Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278(5345):1907–1916CrossRefGoogle Scholar
  22. Tesmer JJ, Sunahara RK, Johnson RA, Gosselin G, Gilman AG, Sprang SR (1999) Two-metal-ion catalysis in adenylyl cyclase. Science 285(5428):756–760.  https://doi.org/10.1126/science.285.5428.756CrossRefPubMedGoogle Scholar
  23. Tesmer JJ, Dessauer CW, Sunahara RK, Murray LD, Johnson RA, Gilman AG, Sprang SR (2000) Molecular basis for P-site inhibition of adenylyl cyclase. Biochemistry 39(47):14464–14471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2020

Authors and Affiliations

  1. 1.Department of Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonUSA