Encyclopedia of Molecular Pharmacology

Living Edition
| Editors: Stefan Offermanns, Walter Rosenthal

A-Kinase Anchoring Proteins (AKAPs)

  • Ryan Walker-Gray
  • Enno KlussmannEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-21573-6_219-1
  • 118 Downloads

Synonyms

Definition

AKAPs are a diverse family of about 50 scaffolding proteins, which are defined by their ability to bind the regulatory subunits of cyclic AMP-dependent protein kinase (PKA; Fig. 1) [reviewed in (Welch et al. 2010)]. PKA is an abundant and ubiquitously expressed protein kinase. However, despite its ubiquity in signaling processes, there are only four isoforms of the PKA regulatory subunit with which to impart specificity in localization. Instead, the diversity of AKAPs that tether PKA along with other signaling proteins, including G protein-coupled receptors, adenylyl cyclases, kinases, phosphodiesterases, and phosphatases, among others, to create multivalent signaling complexes, dictates their localization and integrates cellular signaling processes at specific sites and times. The compartmentalization of signaling by AKAPs contributes to the specificity of cellular...
This is a preview of subscription content, log in to check access.

References

  1. Baltzer S, Klussmann E (2019) Small molecules for modulating the localisation of the water channel aquaporin-2 – disease relevance and perspectives for targeting local cAMP signalling. Naunyn Schmiedeberg’s Arch Pharmacol 392:1049.  https://doi.org/10.1007/s00210-019-01686-3CrossRefGoogle Scholar
  2. Banky P, Roy M, Newlon MG, Morikis D, Haste NM, Taylor SS, Jennings PA (2003) Related protein – protein interaction modules present drastically different surface topographies despite A conserved helical platform. J Mol Biol 330:1117–1129.  https://doi.org/10.1016/S0022-2836(03)00552-7CrossRefPubMedGoogle Scholar
  3. Bers DM, Xiang YK, Zaccolo M (2019) Whole-cell cAMP and PKA activity are epiphenomena, nanodomain signaling matters. Physiology (Bethesda) 34:240–249.  https://doi.org/10.1152/physiol.00002.2019CrossRefGoogle Scholar
  4. Christian F, Szaszák M, Friedl S, Drewianka S, Lorenz D, Goncalves A, Furkert J, Vargas C, Schmieder P, Götz F, Zühlke K, Moutty M, Göttert H, Joshi M, Reif B, Haase H, Morano I, Grossmann S, Klukovits A, Verli J, Gáspár R, Noack C, Bergmann M, Kass R, Hampel K, Kashin D, Genieser HG, Herberg FW, Willoughby D, Cooper DMF, Baillie GS, Houslay MD, Von Kries JP, Zimmermann B, Rosenthal W, Klussmann E (2011) Small molecule AKAP-protein kinase A (PKA) interaction disruptors that activate PKA interfere with compartmentalized cAMP signaling in cardiac myocytes. J Biol Chem 286:9079–9096.  https://doi.org/10.1074/jbc.M110.160614CrossRefPubMedGoogle Scholar
  5. Dema A, Schröter MF, Perets E, Skroblin P, Moutty MC, Deàk VA, Birchmeier W, Klussmann E (2016) The A-kinase anchoring protein (AKAP) glycogen synthase kinase 3β interaction protein (GSKIP) regulates β-catenin through its interactions with both protein kinase A (PKA) and GSK3β. J Biol Chem 291:19618–19630.  https://doi.org/10.1074/jbc.M116.738047CrossRefPubMedPubMedCentralGoogle Scholar
  6. Diviani D, Raimondi F, Del Vescovo CD, Dreyer E, Reggi E, Osman H, Ruggieri L, Gonano C, Cavin S, Box CL, Lenoir M, Overduin M, Bellucci L, Seeber M, Fanelli F (2016) Small-molecule protein-protein interaction inhibitor of oncogenic rho signaling. Cell Chem Biol 23:1135–1146.  https://doi.org/10.1016/j.chembiol.2016.07.015CrossRefPubMedGoogle Scholar
  7. Ercu M, Klussmann E (2018) Roles of A-kinase anchoring proteins and phosphodiesterases in the cardiovascular system. J Cardiovasc Dev Dis 5:14.  https://doi.org/10.3390/jcdd5010014CrossRefPubMedCentralGoogle Scholar
  8. Gold MG, Lygren B, Dokurno P, Hoshi N, McConnachie G, Taskén K, Carlson CR, Scott JD, Barford D (2006) Molecular basis of AKAP specificity for PKA regulatory subunits. Mol Cell 24:383–395.  https://doi.org/10.1016/j.molcel.2006.09.006CrossRefPubMedGoogle Scholar
  9. Götz F, Roske Y, Schulz MS, Autenrieth K, Bertinetti D, Faelber K, Zühlke K, Kreuchwig A, Kennedy E, Krause G, Daumke O, Herberg FW, Heinemann U, Klussmann E (2016) AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA. Biochem J 473:1881–1894.  https://doi.org/10.1042/BCJ20160242CrossRefPubMedPubMedCentralGoogle Scholar
  10. Herberg FW, Dostmann WR, Zorn M, Davis SJ, Taylor SS (1994) Crosstalk between domains in the regulatory subunit of cAMP-dependent protein kinase: influence of amino terminus on cAMP binding and holoenzyme formation. Biochemistry 33:7485–7494.  https://doi.org/10.1021/bi00189a057CrossRefPubMedGoogle Scholar
  11. Keshwani MM, Klammt C, von Daake S, Ma Y, Kornev AP, Choe S, Insel PA, Taylor SS (2012) Cotranslational cis-phosphorylation of the COOH-terminal tail is a key priming step in the maturation of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 109:E1221–E1229.  https://doi.org/10.1073/pnas.1202741109CrossRefPubMedPubMedCentralGoogle Scholar
  12. Langeberg LK, Scott JD (2005) A-kinase-anchoring proteins. J Cell Sci 118:3217–3220.  https://doi.org/10.1242/jcs.02416CrossRefPubMedGoogle Scholar
  13. Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13:290–314.  https://doi.org/10.1038/nrd4228CrossRefPubMedPubMedCentralGoogle Scholar
  14. Musheshe N, Schmidt M, Zaccolo M (2018) cAMP: from long-range second messenger to nanodomain signalling. Trends Pharmacol Sci 39:209–222.  https://doi.org/10.1016/j.tips.2017.11.006CrossRefPubMedGoogle Scholar
  15. Newlon MG, Roy M, Morikis D, Carr DW, Westphal R, Scott JD, Jennings PA (2001) A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J 20:1651–1662.  https://doi.org/10.1093/emboj/20.7.1651CrossRefPubMedPubMedCentralGoogle Scholar
  16. Patel N, Stengel F, Aebersold R, Gold MG (2017) Molecular basis of AKAP79 regulation by calmodulin. Nat Commun 8(1):1681.  https://doi.org/10.1038/s41467-017-01715-wCrossRefPubMedPubMedCentralGoogle Scholar
  17. Sarma GN, Kinderman FS, Kim C, von Daake S, Chen L, Wang BC, Taylor SS (2010) Structure of D-AKAP2:PKA RI complex: insights into AKAP specificity and selectivity. Structure 18:155–166.  https://doi.org/10.1016/j.str.2009.12.012CrossRefPubMedPubMedCentralGoogle Scholar
  18. Schäfer G, Milic̈ J, Eldahshan A, Götz F, Zühlke K, Schillinger C, Kreuchwig A, Elkins JM, Abdulazeez KR, Oder A, Moutty MC, Masada N, Beerbaum M, Schlegel B, Niquet S, Schmieder P, Krause G, Vonkries JP, Cooper DMF, Knapp S, Rademann J, Rosenthal W, Klussmann E (2013) Highly functionalized terpyridines as competitive inhibitors of AKAP-PKA interactions. Angew Chemie – Int Ed 52:12187–12191.  https://doi.org/10.1002/anie.201304686CrossRefGoogle Scholar
  19. Schrade K, Tröger J, Eldahshan A, Zühlke K, Abdul Azeez KR, Elkins JM, Neuenschwander M, Oder A, Elkewedi M, Jaksch S, Andrae K, Li J, Fernandes J, Müller PM, Grunwald S, Marino SF, Vukićević T, Eichhorst J, Wiesner B, Weber M, Kapiloff M, Rocks O, Daumke O, Wieland T, Knapp S, Von Kries JP, Klussmann E (2018) An AKAP-Lbc-RhoA interaction inhibitor promotes the translocation of aquaporin-2 to the plasma membrane of renal collecting duct principal cells. PLoS One 13:e0191423.  https://doi.org/10.1371/journal.pone.0191423CrossRefPubMedPubMedCentralGoogle Scholar
  20. Smith FD, Esseltine JL, Nygren PJ, Veesler D, Byrne DP, Vonderach M, Strashnov I, Eyers CE, Eyers PA, Langeberg LK, Scott JD (2017) Local protein kinase a action proceeds through intact holoenzymes. Science (80- ) 356:1288–1293.  https://doi.org/10.1126/science.aaj1669CrossRefGoogle Scholar
  21. Song X, Wang S, Li L (2014) New insights into the regulation of Axin function in canonical Wnt signaling pathway. Protein Cell 5:186–193CrossRefGoogle Scholar
  22. Swan AH, Gruscheski L, Boland LA, Brand T (2019) The Popeye domain containing gene family encoding a family of cAMP-effector proteins with important functions in striated muscle and beyond. J Muscle Res Cell Motil 40:169.  https://doi.org/10.1007/s10974-019-09523-zCrossRefPubMedPubMedCentralGoogle Scholar
  23. Taylor SS, Kornev AP (2011) Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 36:65–77.  https://doi.org/10.1016/j.tibs.2010.09.006CrossRefPubMedGoogle Scholar
  24. Taylor SS, Ilouz R, Zhang P, Kornev AP (2012) Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol 13:646–658.  https://doi.org/10.1038/nrm3432CrossRefPubMedPubMedCentralGoogle Scholar
  25. Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP (2013) PKA: lessons learned after twenty years. Biochim Biophys Acta 1834:1271–1278.  https://doi.org/10.1016/j.bbapap.2013.03.007CrossRefPubMedPubMedCentralGoogle Scholar
  26. Vukicevic T, Schulz M, Faust D, Klussmann E (2016) The trafficking of the water channel aquaporin-2 in renal principal cells-a potential target for pharmacological intervention in cardiovascular diseases. Front Pharmacol 7:1–27.  https://doi.org/10.3389/fphar.2016.00023CrossRefGoogle Scholar
  27. Walker-Gray R, Stengel F, Gold MG (2017) Mechanisms for restraining cAMP-dependent protein kinase revealed by subunit quantitation and cross-linking approaches. Proc Natl Acad Sci U S A 114:10414–10419.  https://doi.org/10.1073/pnas.1701782114CrossRefPubMedPubMedCentralGoogle Scholar
  28. Welch EJ, Jones BW, Scott JD (2010) Networking with AKAPs: context-dependent regulation of anchored enzymes. Mol Interv 10:86–97.  https://doi.org/10.1124/mi.10.2.6CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970.  https://doi.org/10.1038/nrm1527CrossRefPubMedGoogle Scholar
  30. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715.  https://doi.org/10.1126/science.1069982CrossRefPubMedGoogle Scholar
  31. Zhang P, Smith-Nguyen EV, Keshwani MM, Deal MS, Kornev AP, Taylor SS (2012) Structure and allostery of the PKA RIIβ tetrameric holoenzyme. Science 335:712–716.  https://doi.org/10.1126/science.1213979CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2020

Authors and Affiliations

  1. 1.Max Delbrück Center for Molecular Medicine Berlin (MDC), Helmholtz AssociationBuch, BerlinGermany
  2. 2.DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany