Encyclopedia of Molecular Pharmacology

Living Edition
| Editors: Stefan Offermanns, Walter Rosenthal


  • Lokesh Kumar BhattEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-030-21573-6_206-1


Arteriosclerosis (see Definition)


Atherosclerosis is an arterial disorder that comes from Greek words athera which means porridge and sclereni which means hardening of arteries. It is an inflammatory disorder, in which the lipid plaques along with inflammatory responses accumulate inside the arteries resulting in hardening and narrowing of the arteries and therefore restricting blood flow. Plaques are waxy substances that consist of lipids and oxidized lipids along with many inflammasomes. Plaques are complex, heterogenous composition which include fibrous caps, necrotic cells, and inflammatory responses (Barrett et al. 2019). Blockade of coronary artery (that supplies blood to the heart) with plaques hampers the blood flow to the heart, and the cardiac cells become deprived of oxygen. Symptoms of atherosclerosis in coronary artery include angina, vomiting, coughing, and anxiety, which eventually leads to myocardial ischemia. Plaques causing atherosclerosis of...

This is a preview of subscription content, log in to check access.


  1. Ardies CM, Roberts CK (2014) Atherosclerosis. In: Diet, exercise, and chronic disease: the biological basis of prevention, 6th edn. Elsevier.  https://doi.org/10.1201/b16783
  2. Barrett HE, Van der Heiden K, Farrell E, Gijsen FJH, Akyildiz AC (2019) Calcifications in atherosclerotic plaques and impact on plaque biomechanics. J Biomech 87:1–12.  https://doi.org/10.1016/j.jbiomech.2019.03.005CrossRefPubMedGoogle Scholar
  3. Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114(12):1852–1866.  https://doi.org/10.1161/CIRCRESAHA.114.302721CrossRefPubMedGoogle Scholar
  4. Chan DC, Barrett PHR, Watts GF (2014) The metabolic and pharmacologic bases for treating atherogenic dyslipidaemia. Best Pract Res Clin Endocrinol Metab 28(3):369–385.  https://doi.org/10.1016/j.beem.2013.10.001CrossRefPubMedGoogle Scholar
  5. Do RQ, Nicholls SJ, Schwartz GG (2014) Evolving targets for lipid-modifying therapy. EMBO Mol Med 6(10):1215–1230.  https://doi.org/10.15252/emmm.201404000CrossRefPubMedPubMedCentralGoogle Scholar
  6. Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32(9):2045–2051.  https://doi.org/10.1161/ATVBAHA.108.179705CrossRefPubMedPubMedCentralGoogle Scholar
  7. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145(3):341–355.  https://doi.org/10.1016/j.cell.2011.04.005CrossRefPubMedPubMedCentralGoogle Scholar
  8. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721.  https://doi.org/10.1038/nri3520CrossRefPubMedPubMedCentralGoogle Scholar
  9. Rached FH, Chapman MJ, Kontush A (2014) An overview of the new frontiers in the treatment of atherogenic dyslipidemias. Clin Pharmacol Ther 96(1):57–63.  https://doi.org/10.1038/clpt.2014.85CrossRefPubMedGoogle Scholar
  10. Sahebkar A, Watts GF (2013) New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc Drugs Ther 27(6):559–567.  https://doi.org/10.1007/s10557-013-6479-4CrossRefPubMedGoogle Scholar
  11. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17(11):1410–1422.  https://doi.org/10.1038/nm.2538CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2020

Authors and Affiliations

  1. 1.Department of PharmacologySVKM’s Dr. Bhanuben Nanavati College of PharmacyVile Parle (W)India