Skip to main content

Generation of Ear Cartilage for Auricular Reconstruction

  • Living reference work entry
  • First Online:
Organ Tissue Engineering

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 111 Accesses

Abstract

Auricular reconstruction is among the most challenging surgical procedures in plastic and reconstructive surgery because of the lack of an ideal auricle substitute that can guarantee a long-lasting outcome while involving minimal donor site morbidity. Tissue-engineered cartilage may provide an ideal autologous solution. After the first report on generation of human ear-shaped cartilage in a nude mouse model in 1997, cartilages with human ear shape have been engineered in vitro, in nude mice, and in immunocompetent animals using various cells and scaffolds. Recently, our group reported a pilot clinical trial of in vitro engineered human ear-shaped cartilage and its clinical translation for auricular reconstruction. This bench-to-bed process spanning over the past two decades can provide an in-depth understanding of the development of cartilage tissue engineering for auricular reconstruction. The current chapter will illustrate the research achievements and application challenges inherent in generating translational tissue-engineered cartilage for auricular reconstruction, particularly focusing on the global trends and new research directions of each associated building block or step, namely, seed cells, scaffolds, three-dimensional printing, in vitro microenvironment simulation, preclinical evaluation, and clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed MR, Mehmood A et al (2014) Combination of ADMSCs and chondrocytes reduces hypertrophy and improves the functional properties of osteoarthritic cartilage. Osteoarthr Cartil 22(11):1894–1901

    Article  Google Scholar 

  • Ball ST, Goomer RS et al (2004) Preincubation of tissue engineered constructs enhances donor cell retention. Clin Orthop Relat Res 420:276–285

    Article  Google Scholar 

  • Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224

    Article  Google Scholar 

  • Berghaus A (2007) Implants for reconstructive surgery of the nose and ears. GMS Curr Top Otorhinolaryngol Head Neck Surg 6:Doc06

    Google Scholar 

  • Bichara DA, O’Sullivan NA et al (2012) The tissue-engineered auricle: past, present, and future. Tissue Eng Part B Rev 18(1):51–61

    Article  Google Scholar 

  • Bichara DA, Pomerantseva I et al (2014) Successful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model. Tissue Eng Part A 20(1–2):303–312

    Article  Google Scholar 

  • Bly RA, Bhrany AD et al (2016) Microtia reconstruction. Facial Plast Surg Clin North Am 24(4):577–591

    Article  Google Scholar 

  • Bonaventure J, Kadhom N et al (1994) Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res 212(1):97–104

    Article  Google Scholar 

  • Brent B (1992) Auricular repair with autogenous rib cartilage grafts: two decades of experience with 600 cases. Plast Reconstr Surg 90(3):355–374; discussion 375–376

    Article  Google Scholar 

  • Brent B (2002) Microtia repair with rib cartilage grafts: a review of personal experience with 1000 cases. Clin Plast Surg 29(2):257–71, vii

    Article  Google Scholar 

  • Brittberg M, Lindahl A et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  Google Scholar 

  • Browe DC, Coleman CM et al (2019) Hypoxia activates the PTHrP–MEF2C pathway to attenuate hypertrophy in mesenchymal stem cell derived cartilage. Sci Rep 9(1):13274

    Article  Google Scholar 

  • Cao Y, Vacanti JP et al (1997) Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 100(2):297–302; discussion 303–304

    Article  Google Scholar 

  • Castro-Vinuelas R, Sanjurjo-Rodriguez C et al (2018) Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur Cell Mater 36:96–109

    Article  Google Scholar 

  • Catros S, Fricain JC et al (2011) Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3(2):025001

    Article  Google Scholar 

  • Chang SC, Tobias G et al (2003) Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding. Plast Reconstr Surg 112(3):793–799; discussion 800–801

    Article  Google Scholar 

  • Chen JL, Duan L et al (2014) Extracellular matrix production in vitro in cartilage tissue engineering. J Transl Med 12:88

    Article  Google Scholar 

  • Cheng A, Hardingham TE et al (2014) Generating cartilage repair from pluripotent stem cells. Tissue Eng Part B Rev 20(4):257–266

    Article  Google Scholar 

  • Chetty A, Steynberg T et al (2008) Hydroxyapatite-coated polyurethane for auricular cartilage replacement: an in vitro study. J Biomed Mater Res A 84(2):475–482

    Article  Google Scholar 

  • Chiu L, Weber JF et al (2019) Engineering of scaffold-free tri-layered auricular tissues for external ear reconstruction. Laryngoscope 129(8):E272–E283

    Article  Google Scholar 

  • Concaro S, Gustavson F et al (2009) Bioreactors for tissue engineering of cartilage. Adv Biochem Eng Biotechnol 112:125–143

    Google Scholar 

  • De Bari C, Dell’Accio F et al (2004) Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 50(1):142–150

    Article  Google Scholar 

  • De Miguel MP, Fuentes-Julian S et al (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12(5):574–591

    Article  Google Scholar 

  • Deponti D, Di Giancamillo A et al (2012) Fibrin-based model for cartilage regeneration: tissue maturation from in vitro to in vivo. Tissue Eng Part A 18(11–12):1109–1122

    Article  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  Google Scholar 

  • Faust HJ, Guo Q et al (2019) Chapter 53. Cartilage tissue engineering. In: Atala A, Lanza R, Mikos AG, Nerem R (eds) Principles of regenerative medicine, 3rd edn. Academic Press, Boston, pp 937–952

    Chapter  Google Scholar 

  • Firmin F (1998) Ear reconstruction in cases of typical microtia. Personal experience based on 352 microtic ear corrections. Scand J Plast Reconstr Surg Hand Surg 32(1):35–47

    Article  Google Scholar 

  • Friedenstein AJ, Petrakova KV et al (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247

    Article  Google Scholar 

  • Gibson JD, O’Sullivan MB et al (2017) Regeneration of articular cartilage by human ESC-derived mesenchymal progenitors treated sequentially with BMP-2 and Wnt5a. Stem Cells Transl Med 6(1):40–50

    Article  Google Scholar 

  • Gillies H (1920) Plastic surgery of the face. H. Frowde, Hodder & Sougton, London

    Book  Google Scholar 

  • Gong YY, Xue JX et al (2011) A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials 32(9):2265–2273

    Article  MathSciNet  Google Scholar 

  • Graceffa V, Vinatier C et al (2019) Chasing chimeras – the elusive stable chondrogenic phenotype. Biomaterials 192:199–225

    Article  Google Scholar 

  • Grimaud E, Heymann D et al (2002) Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev 13(3):241–257

    Article  Google Scholar 

  • Guenther HL, Guenther HE et al (1982) Effect of insulin-like growth factor on collagen and glycosaminoglycan synthesis by rabbit articular chondrocytes in culture. Experientia 38(8):979–981

    Article  Google Scholar 

  • Haisch A (2010) Ear reconstruction through tissue engineering. Adv Otorhinolaryngol 68:108–119

    Google Scholar 

  • He A, Liu L et al (2017) Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model. Sci Rep 7:40489

    Article  Google Scholar 

  • Hopp B, Smausz T et al (2005) Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng 11(11–12):1817–1823

    Article  Google Scholar 

  • Horton WJ, Higginbotham JD et al (1989) Transforming growth factor-beta and fibroblast growth factor act synergistically to inhibit collagen II synthesis through a mechanism involving regulatory DNA sequences. J Cell Physiol 141(1):8–15

    Article  Google Scholar 

  • Huselstein C, Li Y et al (2012) Mesenchymal stem cells for cartilage engineering. Biomed Mater Eng 22(1–3):69–80

    Google Scholar 

  • Ichinose S, Yamagata K et al (2005) Detailed examination of cartilage formation and endochondral ossification using human mesenchymal stem cells. Clin Exp Pharmacol Physiol 32(7):561–570

    Article  Google Scholar 

  • Jessop ZM, Javed M et al (2016) Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering. Stem Cell Res Ther 7:19

    Article  Google Scholar 

  • Jia L, Zhang Y et al (2020) Regeneration of human-ear-shaped cartilage with acellular cartilage matrix-based biomimetic scaffolds. Appl Mater Today 20:100639

    Article  Google Scholar 

  • Jonitz A, Lochner K et al (2012) TGF-beta1 and IGF-1 influence the re-differentiation capacity of human chondrocytes in 3D pellet cultures in relation to different oxygen concentrations. Int J Mol Med 30(3):666–672

    Article  Google Scholar 

  • Kagimoto S, Takebe T et al (2016) Autotransplantation of monkey ear perichondrium-derived progenitor cells for cartilage reconstruction. Cell Transplant 25(5):951–962

    Article  Google Scholar 

  • Kamil SH, Vacanti MP et al (2004) Microtia chondrocytes as a donor source for tissue-engineered cartilage. Laryngoscope 114(12):2187–2190

    Article  Google Scholar 

  • Kang N, Liu X et al (2012) Effects of co-culturing BMSCs and auricular chondrocytes on the elastic modulus and hypertrophy of tissue engineered cartilage. Biomaterials 33(18):4535–4544

    Article  Google Scholar 

  • Kang N, Liu X et al (2013) Different ratios of bone marrow mesenchymal stem cells and chondrocytes used in tissue-engineered cartilage and its application for human ear-shaped substitutes in vitro. Cells Tissues Organs 198(5):357–366

    Article  Google Scholar 

  • Kang HW, Lee SJ et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319

    Article  Google Scholar 

  • Kawanabe Y, Nagata S (2006) A new method of costal cartilage harvest for total auricular reconstruction: part I. Avoidance and prevention of intraoperative and postoperative complications and problems. Plast Reconstr Surg 117(6):2011–2018

    Article  Google Scholar 

  • Kimura T, Yasui N et al (1984) Chondrocytes embedded in collagen gels maintain cartilage phenotype during long-term cultures. Clin Orthop Relat Res 186:231–239

    Google Scholar 

  • Kobayashi S, Takebe T et al (2011) Reconstruction of human elastic cartilage by a CD44+ CD90+ stem cell in the ear perichondrium. Proc Natl Acad Sci U S A 108(35):14479–14484

    Article  Google Scholar 

  • Koch L, Deiwick A et al (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109(7):1855–1863

    Article  Google Scholar 

  • Lee HH et al (2013) Hypoxia enhances chondrogenesis and prevents terminal differentiation through P13K/Akt/FoxO dependent anti-apoptotic effect. Sci Rep 3:2683

    Google Scholar 

  • Levorson EJ, Santoro M et al (2014) Direct and indirect co-culture of chondrocytes and mesenchymal stem cells for the generation of polymer/extracellular matrix hybrid constructs. Acta Biomater 10(5):1824–1835

    Article  Google Scholar 

  • Li D, Zhu L et al (2017) Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet. Acta Biomater 54:321–332

    Article  Google Scholar 

  • Liu K, Zhou GD et al (2008) The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Biomaterials 29(14):2183–2192

    Article  Google Scholar 

  • Liu X, Sun H et al (2010a) In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 31(36):9406–9414

    Article  Google Scholar 

  • Liu Y, Zhang L et al (2010b) In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials 31(8):2176–2183

    Article  Google Scholar 

  • Liu Y, Li D et al (2016) Prolonged in vitro precultivation alleviates post-implantation inflammation and promotes stable subcutaneous cartilage formation in a goat model. Biomed Mater 12(1):015006

    Article  Google Scholar 

  • Liu Y, Zhou G et al (2017) Recent progress in cartilage tissue engineering – our experience and future directions. Engineering 3(1):28–35

    Article  Google Scholar 

  • Loeser RF, Shanker G (2000) Autocrine stimulation by insulin-like growth factor 1 and insulin-like growth factor 2 mediates chondrocyte survival in vitro. Arthritis Rheum 43(7):1552–1559

    Article  Google Scholar 

  • Longobardi L, O’Rear L et al (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res 21(4):626–636

    Article  Google Scholar 

  • Luo X, Zhou G et al (2009) In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomed Mater 4(2):025006

    Article  Google Scholar 

  • Malda J, Visser J et al (2013) 25th Anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Article  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638

    Article  Google Scholar 

  • Martin I, Jakob M et al (2018) From tissue engineering to regenerative surgery. EBioMedicine 28:11–12

    Article  Google Scholar 

  • Mauck RL, Nicoll SB et al (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9(4):597–611

    Article  Google Scholar 

  • Melchels FP, Feijen J et al (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130

    Article  Google Scholar 

  • Michael S, Sorg H et al (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 8(3):e57741

    Article  Google Scholar 

  • Miot S, Brehm W et al (2012) Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur Cell Mater 23:222–236

    Article  Google Scholar 

  • Moretti M, Wendt D et al (2005) Effects of in vitro preculture on in vivo development of human engineered cartilage in an ectopic model. Tissue Eng 11(9–10):1421–1428

    Article  Google Scholar 

  • Morita Y, Yamamoto S et al (2015) Development of a new co-culture system, the “separable-close co-culture system,” to enhance stem-cell-to-chondrocyte differentiation. Biotechnol Lett 37(9):1911–1918

    Article  Google Scholar 

  • Munirah S, Samsudin OC et al (2010) Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy. Tissue Cell 42(5):282–292

    Article  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  Google Scholar 

  • Nagata S (1993) A new method of total reconstruction of the auricle for microtia. Plast Reconstr Surg 92(2):187–201

    Article  Google Scholar 

  • Nayyer L, Patel KH et al (2012) Tissue engineering: revolution and challenge in auricular cartilage reconstruction. Plast Reconstr Surg 129(5):1123–1137

    Article  Google Scholar 

  • Ohara K, Nakamura K et al (1997) Chest wall deformities and thoracic scoliosis after costal cartilage graft harvesting. Plast Reconstr Surg 99(4):1030–1036

    Article  Google Scholar 

  • Okubo R, Asawa Y et al (2019) Proliferation medium in three-dimensional culture of auricular chondrocytes promotes effective cartilage regeneration in vivo. Regen Ther 11:306–315

    Article  Google Scholar 

  • Olshinka A, Louis M et al (2017) Autologous ear reconstruction. Semin Plast Surg 31(3):146–151

    Article  Google Scholar 

  • Otto IA, Melchels FP et al (2015) Auricular reconstruction using biofabrication-based tissue engineering strategies. Biofabrication 7(3):032001

    Article  Google Scholar 

  • Paput L, Czeizel AE et al (2012) Possible multifactorial etiology of isolated microtia/anotia – a population-based study. Int J Pediatr Otorhinolaryngol 76(3):374–378

    Article  Google Scholar 

  • Park C (2000) Subfascial expansion and expanded two-flap method for microtia reconstruction. Plast Reconstr Surg 106(7):1473–1487

    Article  Google Scholar 

  • Park C, Lee TJ et al (1991) A single-stage two-flap method of total ear reconstruction. Plast Reconstr Surg 88(3):404–412

    Article  Google Scholar 

  • Pedde RD, Mirani B et al (2017) Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater 29(19):1606061

    Article  Google Scholar 

  • Pelttari K, Winter A et al (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54(10):3254–3266

    Article  Google Scholar 

  • Pelttari K, Pippenger B et al (2014) Adult human neural crest-derived cells for articular cartilage repair. Sci Transl Med 6(251):251ra119

    Article  Google Scholar 

  • Pomerantseva I, Bichara DA et al (2016) Ear-shaped stable auricular cartilage engineered from extensively expanded chondrocytes in an immunocompetent experimental animal model. Tissue Eng Part A 22(3–4):197–207

    Article  Google Scholar 

  • Reighard CL, Hollister SJ et al (2018) Auricular reconstruction from rib to 3D printing. J 3D Print Med 2(1):35–41

    Article  Google Scholar 

  • Rosa RG, Joazeiro PP et al (2014) Growth factor stimulation improves the structure and properties of scaffold-free engineered auricular cartilage constructs. PLoS One 9(8):e105170

    Article  Google Scholar 

  • Rotter N, Bonassar LJ et al (2002) Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage. Biomaterials 23(15):3087–3094

    Article  Google Scholar 

  • Sah RL, Chen AC et al (1994) Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys 308(1):137–147

    Article  Google Scholar 

  • Saim AB, Cao Y et al (2000) Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope 110(10 Pt 1):1694–1697

    Article  Google Scholar 

  • Shakibaei M, Seifarth C et al (2006) Igf-I extends the chondrogenic potential of human articular chondrocytes in vitro: molecular association between Sox9 and Erk1/2. Biochem Pharmacol 72(11):1382–1395

    Article  Google Scholar 

  • Shieh SJ, Terada S et al (2004) Tissue engineering auricular reconstruction: in vitro and in vivo studies. Biomaterials 25(9):1545–1557

    Article  Google Scholar 

  • Taihi I, Nassif A et al (2019) Head to knee: cranial neural crest-derived cells as promising candidates for human cartilage repair. Stem Cells Int 2019:9310318

    Article  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  Google Scholar 

  • Tanzer RC (1959) Total reconstruction of the external ear. Plast Reconstr Surg Transplant Bull 23(1):1–15

    Article  Google Scholar 

  • Tay AG, Farhadi J et al (2004) Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 10(5–6):762–770

    Article  Google Scholar 

  • Thoms BL, Dudek KA et al (2013) Hypoxia promotes the production and inhibits the destruction of human articular cartilage. Arthritis Rheum 65(5):1302–1312

    Article  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  Google Scholar 

  • Trippel SB (1995) Growth factor actions on articular cartilage. J Rheumatol Suppl 43:129–132

    Google Scholar 

  • Uppal RS, Sabbagh W et al (2008) Donor-site morbidity after autologous costal cartilage harvest in ear reconstruction and approaches to reducing donor-site contour deformity. Plast Reconstr Surg 121(6):1949–1955

    Article  Google Scholar 

  • Vunjak-Novakovic G, Martin I et al (1999) Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res 17(1):130–138

    Article  Google Scholar 

  • Walton RL, Beahm EK (2002) Auricular reconstruction for microtia: part II. Surgical techniques. Plast Reconstr Surg 110(1):234–249; quiz 250–251, 387

    Article  Google Scholar 

  • Wang M, Rahnama R et al (2013) Trophic stimulation of articular chondrocytes by late-passage mesenchymal stem cells in coculture. J Orthop Res 31(12):1936–1942

    Article  Google Scholar 

  • Wang Z, Abdulla R et al (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7(4):045009

    Article  Google Scholar 

  • Wiggenhauser PS, Schantz JT et al (2017) Cartilage engineering in reconstructive surgery: auricular, nasal and tracheal engineering from a surgical perspective. Regen Med 12(3):303–314

    Article  Google Scholar 

  • Wu L, Leijten JC et al (2011) Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A 17(9–10):1425–1436

    Article  Google Scholar 

  • Wu L, Prins HJ et al (2012) Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A 18(15–16):1542–1551

    Article  Google Scholar 

  • Xue J, Feng B et al (2013) Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials 34(11):2624–2631

    Article  Google Scholar 

  • Yan D, Zhou G et al (2009) The impact of low levels of collagen IX and pyridinoline on the mechanical properties of in vitro engineered cartilage. Biomaterials 30(5):814–821

    Article  Google Scholar 

  • Yanaga H, Imai K et al (2009) Generating ears from cultured autologous auricular chondrocytes by using two-stage implantation in treatment of microtia. Plast Reconstr Surg 124(3):817–825

    Article  Google Scholar 

  • Yanaga H, Imai K et al (2013) Two-stage transplantation of cell-engineered autologous auricular chondrocytes to regenerate chondrofat composite tissue: clinical application in regenerative surgery. Plast Reconstr Surg 132(6):1467–1477

    Article  Google Scholar 

  • Yang YH, Barabino GA (2011) Requirement for serum in medium supplemented with insulin-transferrin-selenium for hydrodynamic cultivation of engineered cartilage. Tissue Eng Part A 17(15–16):2025–2035

    Article  Google Scholar 

  • Yin Z, Li D et al (2020) Regeneration of elastic cartilage with accurate human-ear shape based on PCL strengthened biodegradable scaffold and expanded microtia chondrocytes. Appl Mater Today 20:100724

    Article  Google Scholar 

  • Zhang L, He A et al (2014) Regeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs. Biomaterials 35(18):4878–4887

    Article  MathSciNet  Google Scholar 

  • Zhou G, Jiang H et al (2018) In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine 28:287–302

    Article  Google Scholar 

  • Zhu Y, Zhang Y et al (2015) The influence of Chm-I knockout on ectopic cartilage regeneration and homeostasis maintenance. Tissue Eng Part A 21(3–4):782–792

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the support from the Program of Shanghai Academic/Technology Research Leader (19XD1431100).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, Y., Cao, Y. (2020). Generation of Ear Cartilage for Auricular Reconstruction. In: Eberli, D., Lee, S.J., Traweger, A. (eds) Organ Tissue Engineering. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-18512-1_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18512-1_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18512-1

  • Online ISBN: 978-3-030-18512-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics