Skip to main content

Tissue-Engineered Thymus

  • Living reference work entry
  • First Online:
  • 161 Accesses

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

Impaired thymus function due to aging or other clinical conditions may have a number of consequences for the immune system such as an enhanced predisposition to infection and autoimmunity, slow response to vaccines with age, and possible risk of cancer development. Current approaches for exogenous thymus regeneration focus on the modulation of growth factors and hormones secreted by thymic epithelial cells. Bioengineering approach to create and use transplantable thymus tissue can offer effective regenerative strategy. This chapter aims to describe the cellular architecture and function of primary lymphoid organ thymus and discuss the current and potential bioengineering approaches to regenerate the thymus. Continued research to understand the mechanisms that regulate thymic recovery after injuries and strategies that can boost its endogenous repair is essential for furthering current and developing new promising regenerative technologies.

This is a preview of subscription content, log in via an institution.

References

  • Abbas A (2004) Diseases of immunity. In: Kumar V, Abbas A, Fausto N (eds) Robbins and Cotran, pathologic basis of disease. W. B. Saunders, Philadelphia, pp 193–267

    Google Scholar 

  • Alpdogan O, van den Brink M (2005) IL-7 and IL-15: therapeutic cytokines for immunodeficiency. Trends Immunol 26:56

    Article  Google Scholar 

  • Alpdogan O et al (2003) Insulin-like growth factor-I enhances lymphoid and myeloid reconstitution after allogeneic bone marrow transplantation. Transplantation 75:1977–1983

    Article  Google Scholar 

  • Alpdogan O et al (2006) Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 107:2453–2460

    Article  Google Scholar 

  • Aspinall R (1997) Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J Immunol 158:3037–3045

    Google Scholar 

  • Awong G et al (2013) Human proT-cells generated in vitro facilitate hematopoietic stem cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood 122:4210–4219

    Article  Google Scholar 

  • Baik S, Jenkinson EJ, Lane PJ, Anderson G, Jenkinson WE (2013) Generation of both cortical and Aire + medullary thymic epithelial compartments from CD205 + progenitors. Eur J Immunol 43:589–594

    Article  Google Scholar 

  • Banks W (1993) Applied veterinary histology. Mosby, St. Louis

    Google Scholar 

  • Beaudette-Zlatanova BC et al (2011) A human thymic epithelial cell culture system for the promotion of lymphopoiesis from hematopoietic stem cells. Exp Hematol 39:570–579

    Article  Google Scholar 

  • Blazar BR, Murphy WJ, Abedi M (2012) Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol 12:443–458

    Article  Google Scholar 

  • Bleul CC et al (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441:992–996

    Article  Google Scholar 

  • Boehm T, Swann JB (2013) Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 13:831–838

    Article  Google Scholar 

  • Bonfanti P, Claudinot S, Amici AW, Farley A, Blackburn CC, Barrandon Y (2010) Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells. Nature 466(7309):978–982

    Article  Google Scholar 

  • Bosch M, Khan FM, Storek J (2012) Immune reconstitution after hematopoietic cell transplantation. Curr Opin Hematol 19:324–335

    Article  Google Scholar 

  • Bredenkamp N, Ulyanchenko S, O’Neill KE, Manley NR, Vaidya HJ, Blackburn CC (2014) An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat Cell Biol 16:902–908

    Article  Google Scholar 

  • Brown T Jr, Suter M, Slauson D (2002) Immunopathology. In: Slauson D, Cooper B (eds) Mechanisms of disease. A textbook of comparative general pathology. Mosby, St. Louis, pp 247–297

    Google Scholar 

  • Bruijntjes JP, Kuper CF, Robinson JE, Schuurman HJ (1993) Epithelium-free area in the thymic cortex of rats. Dev Immunol 3:113–122

    Article  Google Scholar 

  • Calderón L, Boehm T (2012) Synergistic, context-dependent and hierarchical functions of epithelial components in thymic microenvironments. Cell 149:159–172

    Article  Google Scholar 

  • Chaudhry MS, Velardi E, Dudakov JA, van den Brink MR (2016) Thymus: the next (re)generation. Immunol Rev 271(1):56–71

    Article  Google Scholar 

  • Chen BJ, Cui X, Sempowski GD, Chao NJ (2003) Growth hormone accelerates immune recovery following allogeneic T-cell-depleted bone marrow transplantation in mice. Exp Hematol 31:953–958

    Article  Google Scholar 

  • Chen L, Xiao S, Manley NR (2009) Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113:567–574

    Article  Google Scholar 

  • Chinn IK, Blackburn CC, Manley NR, Sempowski GD (2012) Changes in primary lymphoid organs with aging. Semin Immunol 24:309–320

    Article  Google Scholar 

  • Chu YW et al (2008) Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion. Blood 112:2836–2846

    Article  Google Scholar 

  • Chung B, Montel-Hagen A, Ge S, Blumberg G, Kim K, Klein S et al (2014) Engineering the human thymic microenvironment to support thymopoiesis in vivo. Stem Cells 32(9):2386–2396

    Article  Google Scholar 

  • Coder BD, Wang H, Ruan L, Su D-M (2015) Thymic involution perturbs negative selection leading to autoreactive T cells that induce chronic inflammation. J Immunol 194:5825–5837

    Article  Google Scholar 

  • Corbeaux T et al (2010) Thymopoiesis in mice depends on a Foxn1 positive thymic epithelial cell lineage. Proc Natl Acad Sci U S A 107:16613–16618

    Article  Google Scholar 

  • Cuddihy AR, Ge S, Zhu J, Jang J, Chidgey A, Thurston G et al (2009) VEGF-mediated cross-talk within the neonatal murine thymus. Blood 113(12):2723–2731

    Article  Google Scholar 

  • Davies EG (2013) Immunodeficiency in DiGeorge syndrome and options for treating cases with complete athymia. Front Immunol 4:322

    Article  Google Scholar 

  • de Barros SC, Vicente R, Chebli K, Jacquet C, Zimmermann VS, Taylor N (2013) Intrathymic progenitor cell transplantation across histocompatibility barriers results in the persistence of early thymic progenitors and T-cell differentiation. Blood 121(11):2144–2153

    Article  Google Scholar 

  • De Smedt M, Hoebeke I, Plum J (2004) Human bone marrow CD34+ progenitor cells mature to T cells on OP9-DL1 stromal cell line without thymus microenvironment. Blood Cells Mol Dis 33:227–232

    Article  Google Scholar 

  • Deobagkar-Lele M, Chacko SK, Victor ES, Kadthur JC, Nandi D (2013) Interferon-γ- and glucocorticoid-mediated pathways synergize to enhance death of CD4(+) CD8(+) thymocytes during Salmonella enterica serovar typhimurium infection. Immunology 138:307–321

    Article  Google Scholar 

  • Dertschnig S, Hauri-Hohl MM, Vollmer M, Holländer GA, Krenger W (2015) Impaired thymic expression of tissue-restricted antigens licenses the de novo generation of autoreactive CD4+ T cells in acute GVHD. Blood 125:2720–2723

    Article  Google Scholar 

  • Dijkstra C, Sminia T (1990) Normal anatomy, histology, immunohistology, ultrastructure, rat. In: Jones T, Ward J, Mohr U, Hunt R (eds) Hematopoietic system. Monographs on pathology of laboratory animals. Springer, Berlin, pp 249–256

    Google Scholar 

  • Dion M-L, Poulin J-F, Bordi R et al (2004) HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21:757–768

    Article  Google Scholar 

  • Dixit VD (2010) Thymic fatness and approaches to enhance thymopoietic fitness in aging. Curr Opin Immunol 22:521–528

    Article  Google Scholar 

  • Dixit VD, Sridaran R, Edmonsond MA, Taub D, Thompson WE (2003) Gonadotropin-releasing hormone attenuates pregnancy-associated thymic involution and modulates the expression of antiproliferative gene product prohibitin. Endocrinology 144:1496–1505

    Article  Google Scholar 

  • Dooley J, Liston A (2012) Molecular control over thymic involution: from cytokines and microRNA to aging and adipose tissue. Eur J Immunol 42:1073–1079

    Article  Google Scholar 

  • Douek DC, McFarland RD, Keiser PH et al (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690–695

    Article  Google Scholar 

  • Dudakov JA, van den Brink MR (2011) Greater than the sum of their parts: combination strategies for immune regeneration following allogeneic hematopoietic stem cell transplantation. Best Pract Res Clin Haematol 24(3):467–476

    Article  Google Scholar 

  • Dudakov JA, Goldberg GL, Reiseger JJ, Vlahos K, Chidgey AP, Boyd RL (2009) Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice. J Immunol 183:7084–7094

    Article  Google Scholar 

  • Dudakov JA et al (2012) Interleukin-22 drives endogenous thymic regeneration in mice. Science 336:91–95

    Article  Google Scholar 

  • Duheron V, Hess E, Duval M, Decossas M, Castaneda B, Klopper JE, Amoasii L, Barbaroux JB, Williams IR, Yagita H et al (2011) Receptor activator of NFkappaB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit. Proc Natl Acad Sci U S A 108:5342–5347

    Article  Google Scholar 

  • Duijvestijn AM, Hoefsmit ECM (1981) Ultrastructure of the rat thymus: the micro-environment of T-lymphocyte maturation. Cell Tissue Res 218(2):279–292

    Google Scholar 

  • Elmore S (2006) Enhanced histopathology evaluation of thymus. Toxicol Pathol 34:656–665

    Article  Google Scholar 

  • Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M, Coppola A, Bertera S, Rudert WA, Banerjee I, Bottino R, Trucco M (2015) Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol Ther 23(7):1262–1277

    Article  Google Scholar 

  • Fang RHT, Colantonio AD, Uittenbogaart CH (2008) The role of the thymus in HIV infection: a 10 year perspective. AIDS 22:171–184

    Article  Google Scholar 

  • Ferrara JLM, Levine JE, Reddy P, Holler E (2009) Graft-versus-host disease. Lancet 373:1550–1561

    Article  Google Scholar 

  • Fletcher AL et al (2009) Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J Immunol 183:823–831

    Article  Google Scholar 

  • Frank J, Pignata C, Panteleyev AA, Prowse DM, Baden H, Weiner L et al (1999) Exposing the human nude phenotype. Nature 398:473–474

    Article  Google Scholar 

  • Garfin PM et al (2013) Inactivation of the RB family prevents thymus involution and promotes thymic function by direct control of Foxn1 expression. J Exp Med 210:1087–1097

    Article  Google Scholar 

  • Gentil Dit Maurin A, Lemercier C, Collin-Faure V, Marche PN, Jouvin-Marche E, Candéias SM (2015) Developmental regulation of p53-dependent radiation-induced thymocyte apoptosis in mice. Clin Exp Immunol 179:30–38

    Article  Google Scholar 

  • Goldberg GL et al (2009) Luteinizing hormone-releasing hormone enhances T cell recovery following allogeneic bone marrow transplantation. J Immunol 182:5846–5854

    Article  Google Scholar 

  • Goldberg GL et al (2010) Sex steroid ablation enhances immune reconstitution following cytotoxic antineoplastic therapy in young mice. J Immunol 184:6014–6024

    Article  Google Scholar 

  • Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol 14:428–436

    Article  Google Scholar 

  • Gottrand G, Taleb K, Ragon I et al (2012) Intrathymic injection of lentiviral vector curtails the immune response in the periphery of normal mice. J Gene Med 14:90–99

    Article  Google Scholar 

  • Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, Goodnow CC, Boyd RL (2006) Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108:3777–3785

    Article  Google Scholar 

  • Griffith AV, Fallahi M, Venables T, Petrie HT (2012) Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 11:169–177

    Article  Google Scholar 

  • Griffith AV et al (2015) Metabolic damage and premature thymus aging caused by stromal catalase deficiency. Cell Rep 12:1071–1079

    Article  Google Scholar 

  • Gruver AL, Sempowski GD (2008) Cytokines, leptin, and stress-induced thymic atrophy. J Leukoc Biol 84:915–923

    Article  Google Scholar 

  • Gui J, Mustachio LM, Su D-M, Craig RW (2012) Thymus size and age-related thymic involution: early programming, sexual dimorphism, progenitors and stroma. Aging Dis 3:280–290

    Google Scholar 

  • Haley PJ (2003) Species differences in the structure and function of the immune system. Toxicology 188(1):49–71

    Article  Google Scholar 

  • Hauri-Hohl MM et al (2007) Donor T-cell alloreactivity against host thymic epithelium limits T-cell development after bone marrow transplantation. Blood 109:4080–4088

    Article  Google Scholar 

  • Hick RW, Gruver AL, Ventevogel MS, Haynes BF, Sempowski GD (2006) Leptin selectively augments thymopoiesis in leptin deficiency and lipopolysaccharide-induced thymic atrophy. J Immunol 177:169–176

    Article  Google Scholar 

  • Hince M, Sakkal S, Vlahos K, Dudakov J, Boyd R, Chidgey A (2008) The role of sex steroids and gonadectomy in the control of thymic involution. Cell Immunol 252:122–138

    Article  Google Scholar 

  • Hollander GA, Krenger W, Blazar BR (2010) Emerging strategies to boost thymic function. Curr Opin Pharmacol 10:443–453

    Article  Google Scholar 

  • Holmes R, Zúñiga-Pflücker JC (2009) The OP9-DL1 system: generation of T-lymphocytes from embryonic or hematopoietic stem cells in vitro. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot5156

  • Hozumi K et al (2008) Delta-like 4 is indispensable in thymic environment specific for T cell development. J Exp Med 205:2507–2513

    Article  Google Scholar 

  • Hsu H-C et al (2003) Age-related thymic involution in C57BL/6J × DBA/2J recombinant-inbred mice maps to mouse chromosomes 9 and 10. Genes Immun 4:402–410

    Article  Google Scholar 

  • Hu Z, Yang Y-G (2012) Human lymphohematopoietic reconstitution and immune function in immunodeficient mice receiving cotransplantation of human thymic tissue and CD34(þ) cells. Cell Mol Immunol 9:232–236

    Article  Google Scholar 

  • Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357(9270):1777–1789

    Article  Google Scholar 

  • Kelly RM, Highfill SL, Panoskaltsis-Mortari A, Taylor PA, Boyd RL, Hollander GA, Blazar BR (2008) Keratinocyte growth factor and androgen blockade work in concert to protect against conditioning regimen-induced thymic epithelial damage and enhance T-cell reconstitution after murine bone marrow transplantation. Blood 111:5734–5744

    Article  Google Scholar 

  • Khong DM et al (2015) Enhanced hematopoietic stem cell function mediates immune regeneration following sex steroid blockade. Stem Cell Rep 4:445–458

    Article  Google Scholar 

  • Kirkwood TB (1977) Evolution of ageing. Nature 270:301–304

    Article  Google Scholar 

  • Knyszynski A, Adler-Kunin S, Globerson A (1992) Effects of growth hormone on thymocyte development from progenitor cells in the bone marrow. Brain Behav Immun 6:327–340

    Article  Google Scholar 

  • Krenger W, Holländer GA (2008) The immunopathology of thymic GVHD. Semin Immunopathol 30:439–456

    Article  Google Scholar 

  • Krenger W, Rossi S, Hollander GA (2000) Apoptosis of thymocytes during acute graft-versus-host disease is independent of glucocorticoids. Transplantation 69:2190–2193

    Article  Google Scholar 

  • La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC (2005) Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105:1431–1439

    Article  Google Scholar 

  • Lai L, Jin J (2009) Generation of thymic epithelial cell progenitors by mouse embryonic stem cells. Stem Cells 27(12):3012–3020

    Google Scholar 

  • Lai L, Cui C, Jin J, Hao Z, Zheng Q, Ying M et al (2011) Mouse embryonic stem cell-derived thymic epithelial cell progenitors enhance T-cell reconstitution after allogeneic bone marrow transplantation. Blood 118:3410–3418

    Article  Google Scholar 

  • Lapp WS, Ghayur T, Mendes M, Seddik M, Seemayer TA (1985) The functional and histological basis for graft-versus-host-induced immunosuppression. Immunol Rev 88:107–133

    Article  Google Scholar 

  • Lynch HE, Goldberg GL, Chidgey A, van den Brink MRM, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30:366–373

    Article  Google Scholar 

  • Mackall CL (1999) T-cell immunodeficiency following cytotoxic antineoplastic therapy: a review. Oncologist 4:370–378

    Article  Google Scholar 

  • Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM et al (1995) Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 332:143–149

    Article  Google Scholar 

  • Mackall CL, Fry TJ, Gress RE (2011) Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 11:330–342

    Article  Google Scholar 

  • Manley NR, Condie BG (2010) Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation. Prog Mol Biol Transl Sci 92:103–120

    Article  Google Scholar 

  • Markert ML, Devlin BH, Mccarthy EA (2010) Thymus transplantation. Clin Immunol 135:236–246

    Article  Google Scholar 

  • Mendes-da-Cruz DA, Silva JS, Cotta-de-Almeida V, Savino W (2006) Altered thymocyte migration during experimental acute Trypanosoma cruzi infection: combined role of fibronectin and the chemokines CXCL12 and CCL4. Eur J Immunol 36:1486–1493

    Article  Google Scholar 

  • Min D et al (2002) Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99:4592–4600

    Article  Google Scholar 

  • Mittelstadt PR, Monteiro JP, Ashwell JD (2012) Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness. J Clin Invest 122:2384–2394

    Article  Google Scholar 

  • Montecino-Rodriguez E, Clark R, Dorshkind K (1998) Effects of insulin-like growth factor administration and bone marrow transplantation on thymopoiesis in aged mice. Endocrinology 139:4120–4126

    Article  Google Scholar 

  • Murphy WJ, Durum SK, Anver MR, Longo DL (1992) Immunologic and hematologic effects of neuroendocrine hormones. Studies on DW/J dwarf mice. J Immunol 148:3799–3805

    Google Scholar 

  • Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372:103–107

    Article  Google Scholar 

  • Nobrega C et al (2010) Dissemination of mycobacteria to the thymus renders newly generated T cells tolerant to the invading pathogen. J Immunol 184:351–358

    Article  Google Scholar 

  • Norment AM, Bevan MJ (2000) Role of chemokines in thymocyte development. Semin Immunol 12:445–455

    Article  Google Scholar 

  • Nowell CS, Bredenkamp N, Tetelin S, Jin X, Tischner C, Vaidya H et al (2011) Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS Genet 7(11)

    Google Scholar 

  • Nunes-Alves C, Nobrega C, Behar SM, Correia-Neves M (2013) Tolerance has its limits: how the thymus copes with infection. Trends Immunol 34:502–510

    Article  Google Scholar 

  • Nunes-Cabaco H, Caramalho I, Sepulveda N, Sousa AE (2011) Differentiation of human thymic regulatory T cells at the double positive stage. Eur J Immunol 41:3604–3614

    Article  Google Scholar 

  • Olsen NJ, Watson MB, Henderson GS, Kovacs WJ (1991) Androgen deprivation induces phenotypic and functional changes in the thymus of adult male mice. Endocrinology 129:2471–2476

    Article  Google Scholar 

  • Osada M et al (2006) The Wnt signaling antagonist Kremen1 is required for development of thymic architecture. Clin Dev Immunol 13:299–319

    Article  Google Scholar 

  • Pan B et al (2014) Acute ablation of DP thymocytes induces up-regulation of IL-22 and Foxn1 in TECs. Clin Immunol 150:101–108

    Article  Google Scholar 

  • Patiño JAG, Marino MW, Ivanov VN, Nikolich-Zugich J (2000) Sex steroids induce apoptosis of CD8+CD4+ double-positive thymocytes via TNF-alpha. Eur J Immunol 30:2586–2592

    Article  Google Scholar 

  • Pearse G (2006) Normal structure, function and histology of the thymus. Toxicol Pathol 34(5):504–514

    Article  Google Scholar 

  • Perales MA et al (2012) Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation. Blood 120:4882–4891

    Article  Google Scholar 

  • Pérez AR et al (2007) Thymus atrophy during Trypanosoma cruzi infection is caused by an immuno-endocrine imbalance. Brain Behav Immun 21:890–900

    Article  Google Scholar 

  • Pinto S, Schmidt K, Egle S, Stark HJ, Boukamp P, Kyewski B (2013) An organotypic coculture model supporting proliferation and differentiation of medullary thymic epithelial cells and promiscuous gene expression. J Immunol 190:1085–1093

    Article  Google Scholar 

  • Posselt AM, Barker CF, Tomaszewski JE et al (1990) Induction of donor-specific unresponsiveness by intrathymic islet transplantation. Science 249:1293–1295

    Article  Google Scholar 

  • Pradhan I, Tajima A, Bertera S, Trucco M, Fan Y (2018) Modulating thymic negative selection with bioengineered thymus organoids. In: Soboloff J, Kappes DJ (eds) Signaling mechanisms regulating T cell diversity and function. CRC Press/Taylor & Francis, Boca Raton. Chapter 4

    Google Scholar 

  • Prelog M (2006) Aging of the immune system: a risk factor for autoimmunity? Autoimmun Rev 5:136–139

    Article  Google Scholar 

  • Przybylski GK, Kreuzer K-A, Siegert W, Schmidt CA (2007) No recovery of T-cell receptor excision circles (TRECs) after non-myeloablative allogeneic hematopoietic stem cell transplantation is correlated with the onset of GvHD. J Appl Genet 48:397–404

    Article  Google Scholar 

  • Rafii S, Butler JM, Ding BS (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529:316–325

    Article  Google Scholar 

  • Redelman D, Welniak LA, Taub D, Murphy WJ (2008) Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network. Cell Immunol 252:111–121

    Article  Google Scholar 

  • Rode I, Martins VC, Küblbeck G, Maltry N, Tessmer C, Rodewald HR (2015) Foxn1 protein expression in the developing, aging, and regenerating thymus. J Immunol 195(12):5678–5687

    Article  Google Scholar 

  • Rodewald HR (2008) Thymus organogenesis. Annu Rev Immunol 26:355–388

    Article  Google Scholar 

  • Rodewald HR, Paul S, Haller C, Bluethmann H, Blum C (2001) Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414:763–768

    Article  Google Scholar 

  • Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242

    Article  Google Scholar 

  • Rossi S et al (2002) Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood 100:682–691

    Article  Google Scholar 

  • Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441:988–991

    Article  Google Scholar 

  • Rozmyslowicz T, Murphy SL, Conover DO, Gaulton GN (2010) HIV-1 infection inhibits cytokine production in human thymic macrophages. Exp Hematol 38:1157–1166

    Article  Google Scholar 

  • Rudd BD et al (2011) Nonrandom attrition of the naive CD8+ T cell pool with aging governed by T cell receptor: pMHC interactions. Proc Natl Acad Sci U S A 108:13694–13699

    Article  Google Scholar 

  • Sachs DH, Sykes M, Kawai T, Cosimi AB (2011) Immuno-intervention for the induction of transplantation tolerance through mixed chimerism. Semin Immunol 23:165–173

    Article  Google Scholar 

  • Safieddine N, Keshavjee S (2011) Anatomy of the thymus gland. Thorac Surg Clin 21(2):191–5,viii

    Google Scholar 

  • Saunders DJ, Georgiou HM, Wu L, Shortman K (1995) Induction of limited growth and differentiation of early thymic precursor cells by thymic epithelial cell lines. Immunol Lett 47(1–2):45–51

    Article  Google Scholar 

  • Savino W (2006) The thymus is a common target organ in infectious diseases. PLoS Pathog 2:e62

    Article  Google Scholar 

  • Shanley DP, Aw D, Manley NR, Palmer DB (2009) An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol 30(7):374–381

    Article  Google Scholar 

  • Stanley SK et al (1993) Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse. J Exp Med 178:1151–1163

    Article  Google Scholar 

  • Steinmann GG, Klaus B, Müller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol 22:563–575

    Article  Google Scholar 

  • Storek J, Witherspoon RP, Storb R (1995) T cell reconstitution after bone marrow transplantation into adult patients does not resemble T cell development in early life. Bone Marrow Transplant 16:413–425

    Google Scholar 

  • Su M et al (2015) Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells. Sci Rep 5:9882

    Article  Google Scholar 

  • Sun X, Xu J, Lu H, Liu W, Miao Z, Sui X, Liu H, Su L, Du W, He Q, Chen F, Shi Y, Deng H (2013) Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. Cell Stem Cell 13(2):230–236

    Article  Google Scholar 

  • Sutherland JS et al (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175:2741–2753

    Article  Google Scholar 

  • Sutherland JS et al (2008) Enhanced immune system regeneration in humans following allogeneic or autologous hemopoietic stem cell transplantation by temporary sex steroid blockade. Clin Cancer Res 14:1138–1149

    Article  Google Scholar 

  • Tajima A, Liu W, Pradhan I et al (2015) Bioengineering mini functional thymic units with EAK16-II/EAKIIH6 self-assembling hydrogel. Clin Immunol 160(1):82–89

    Article  Google Scholar 

  • Tajima A, Pradhan I, Trucco M, Fan Y (2016) Restoration of thymus function with bioengineered thymus organoids. Curr Stem Cell Rep 2(2):128–139

    Article  Google Scholar 

  • Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6:127–135

    Article  Google Scholar 

  • Tizard I (2004) Veterinary immunology. An introduction, 7th edn. WB Saunders, Philadelphia

    Google Scholar 

  • Tomimori Y, Mori K, Koide M, Nakamichi Y, Ninomiya T, Udagawa N, Yasuda H (2009) Evaluation of pharmaceuticals with a novel 50-hour animal model of bone loss. J Bone Miner Res 24:1194–1205

    Article  Google Scholar 

  • Tsai PT, Lee RA, Wu H (2003) BMP4 acts upstream of FGF in modulating thymic stroma and regulating thymopoiesis. Blood 102:3947–3953

    Article  Google Scholar 

  • Tsuji Y, Kinoshita Y, Hato F, Tominaga K, Yoshida K (1994) The in vitro proliferation of thymus epithelial cells stimulated with growth hormone and insulin-like growth factor-I. Cell Mol Biol (Noisy-le-Grand) 40:1135–1142

    Google Scholar 

  • Ueno T et al (2002) Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 16:205–218

    Article  Google Scholar 

  • Vacchio MS, Papadopoulos V, Ashwell JD (1994) Steroid production in the thymus: implications for thymocyte selection. J Exp Med 179:1835–1846

    Article  Google Scholar 

  • Vallejo AN, Michel JJ, Bale LK, Lemster BH, Borghesi L, Conover CA (2009) Resistance to age-dependent thymic atrophy in long-lived mice that are deficient in pregnancy-associated plasma protein A. Proc Natl Acad Sci U S A 106:11252–11257

    Article  Google Scholar 

  • Van Ewijk (1984) Immunohistology of lymphoid and non-lymphoid cells in the thymus in relation to T lymphocyte differentiation. American Journal of Anatomy 170(3):311–330

    Google Scholar 

  • van Ewijk W, Brekelmans PJ, Jacobs R, Wisse E (1988) Lymphoid microenvironments in the thymus and lymph node. Scanning Microsc 2:2129–2140

    Google Scholar 

  • van Lent AU et al (2009) IL-7 enhances thymic human T cell development in “human immune system” Rag2-/-IL-2Rgammac-/- mice without affecting peripheral T cell homeostasis. J Immunol 183:7645–7655

    Article  Google Scholar 

  • Velardi E et al (2014) Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. J Exp Med 211:2341–2349

    Article  Google Scholar 

  • Ventevogel MS, Sempowski GD (2013) Thymic rejuvenation and aging. Curr Opin Immunol 25(4):516–522

    Article  Google Scholar 

  • von Gaudecker B (1991) Functional histology of the human thymus. Anat Embryol 183:1–15. https://doi.org/10.1007/BF00185830

    Article  Google Scholar 

  • Williams KM et al (2008) CCL25 increases thymopoiesis after androgen withdrawal. Blood 112:3255–3263

    Article  Google Scholar 

  • Williams KM, Mella H, Lucas PJ, Williams JA, Telford W, Gress RE (2009) Single cell analysis of complex thymus stromal cell populations: rapid thymic epithelia preparation characterizes radiation injury. Clin Transl Sci 2:279–285

    Article  Google Scholar 

  • Wils EJ, van der Holt B, Broers AE, Posthumus-van Sluijs SJ, Gratama JW, Braakman E, Cornelissen JJ (2011) Insufficient recovery of thymopoiesis predicts for opportunistic infections in allogeneic hematopoietic stem cell transplant recipients. Haematologica 96:1846–1854

    Article  Google Scholar 

  • Wils EJ et al (2012) Keratinocyte growth factor and stem cell factor to improve thymopoiesis after autologous CD34+ cell transplantation in rhesus macaques. Biol Blood Marrow Transplant 18:55–65

    Article  Google Scholar 

  • Wong K, Liser NL, Barsanti M, Lim JM, Hammet MV, Khong DM, Siatskas C, Gray DH, Boyd RL, Chidgey AP (2014) Multilineage potential and self-renewal define an epithelial progenitor cell population in the adult thymus. Cell Rep 8:1198–1209

    Article  Google Scholar 

  • Wu T, Young JS, Johnston H, Ni X, Deng R, Racine J, Wang M, Wang A, Todorov I, Wang J, Zeng D (2013) Thymic damage, impaired negative selection, and development of chronic graft-versus-host disease caused by donor CD4+ and CD8+ T cells. J Immunol 191(1):488–499

    Article  Google Scholar 

  • Yamada K, Scalea J (2012) Thymic transplantation in pig-to-nonhuman primates for the induction of tolerance across xenogeneic barriers. Methods Mol Biol 885:191–212

    Article  Google Scholar 

  • Yang H, Youm YH, Dixit VD (2009) Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J Immunol 183:3040–3052

    Article  Google Scholar 

  • Youm YH, Yang H, Sun Y, Smith RG, Manley NR, Vandanmagsar B, Dixit VD (2009) Deficient ghrelin receptor-mediated signaling compromises thymic stromal cell microenvironment by accelerating thymic adiposity. J Biol Chem 284:7068–7077

    Article  Google Scholar 

  • Zakrzewski JL, Kochman AA, Lu SX et al (2006) Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat Med 12(9):1039–1047

    Article  Google Scholar 

  • Zhang F et al (2004) Adenovirus E4 gene promotes selective endothelial cell survival and angiogenesis via activation of the vascular endothelial-cadherin/Akt signaling pathway. J Biol Chem 279:11760–11766

    Article  Google Scholar 

  • Zhang SL et al (2014) Chemokine treatment rescues profound T-lineage progenitor homing defect after bone marrow transplant conditioning in mice. Blood 124:296–304

    Article  Google Scholar 

  • Zhou J, Wang X, Luo G et al (2012) Partial tolerance induced by transplantation of spatially separated thymuses: a cue for T cell retolerization in thymus grafts. Scand J Immunol 75:401–408

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Prafulla Chandra (Wake Forest Institute for Regenerative Medicine) for the editorial help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gauri Kulkarni or John D. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kulkarni, G., Jackson, J.D. (2020). Tissue-Engineered Thymus. In: Eberli, D., Lee, S.J., Traweger, A. (eds) Organ Tissue Engineering. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-18512-1_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18512-1_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18512-1

  • Online ISBN: 978-3-030-18512-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics