Skip to main content

Tissue-Engineered Teeth

  • Living reference work entry
  • First Online:
Organ Tissue Engineering

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 64 Accesses

Abstract

Clinical practice in the field of dentistry has remained largely unchanged for over a century. Recently, significant advances in the fields of tissue engineering and regenerative medicine (TERM) have provided new opportunities for dental therapies to advance in ways that will provide patients with more effective therapies to regenerate living dental tissue, while at the same time preserving natural dental tissues as much as possible. Since regenerative dental therapies are based on knowledge and understanding of natural tooth development, here we first describe early tooth development, including morphogenesis of tooth crown and root structures, and review new, relevant findings in tooth development biology. With respect to regenerative approaches for dental tissue repair, we next describe the three components recognized as doctrine in tissue engineering strategies – dental stem cells, scaffolds, and growth factors/signaling molecules/cytokines – and recent findings in each. We next review the use of dental stem cells for applications in tooth regeneration, including highlights on the use of innovative and promising scaffold materials and growth factors. We discuss the significant breakthrough and discovery in 2006 of induced pluripotent stem cells (iPSCs), and how this stem cell technology demonstrated the possibility of using a patient’s own reprogrammed cells to regenerate new tissues and organs. We next describe promising partial tooth regeneration strategies, including regeneration of the dentin-pulp complex, the periodontium, and tooth root regeneration. Finally, we describe exciting progress in whole tooth regeneration strategies, focusing on three-dimensional (3D) tissue engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, Tuan RS, Huang GT (2010) Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5(4):617–631

    Article  Google Scholar 

  • Amrollahi P, Shah B, Seifi A, Tayebi L (2016) Recent advancements in regenerative dentistry: a review. Mater Sci Eng C Mater Biol Appl 69:1383–1390

    Article  Google Scholar 

  • Andreasen JO, Farik B, Munksgaard EC (2002) Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol 18(3):134–137

    Article  Google Scholar 

  • Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26(7):1787–1795

    Article  Google Scholar 

  • Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts. Proc Natl Acad Sci U S A 95(7):3908–3913

    Article  Google Scholar 

  • Balic A (2018) Biology explaining tooth repair and regeneration: a mini-review. Gerontology 64(4):382–388

    Article  Google Scholar 

  • Balic A, Thesleff I (2015) Tissue interactions regulating tooth development and renewal. Curr Top Dev Biol 115:157–186

    Article  Google Scholar 

  • Becker W, Becker BE, Berg L, Samsam C (1986) Clinical and volumetric analysis of three-wall intrabony defects following open flap debridement. J Periodontol 57(5):277–285

    Article  Google Scholar 

  • Bhanja A, D’Souza DS (2016) Mapping the milestones in tooth regeneration: current trends and future research. Med J Armed Forces India 72(Suppl 1):S24–S30

    Article  Google Scholar 

  • Biggs LC, Mikkola ML (2014) Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol 25-26:11–21

    Article  Google Scholar 

  • Bitgood MJ, McMahon AP (1995) Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 172(1):126–138

    Article  Google Scholar 

  • Bottino MC, Pankajakshan D, Nor JE (2017) Advanced scaffolds for dental pulp and periodontal regeneration. Dent Clin N Am 61(4):689–711

    Article  Google Scholar 

  • Brayer WK, Mellonig JT, Dunlap RM, Marinak KW, Carson RE (1989) Scaling and root planing effectiveness: the effect of root surface access and operator experience. J Periodontol 60(1):67–72

    Article  Google Scholar 

  • Cai J, Zhang Y, Liu P, Chen S, Wu X, Sun Y, Li A, Huang K, Luo R, Wang L, Liu Y, Zhou T, Wei S, Pan G, Pei D (2013) Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regen (Lond) 2(1):6

    Google Scholar 

  • Caplan DJ, Cai J, Yin G, White BA (2005) Root canal filled versus non-root canal filled teeth: a retrospective comparison of survival times. J Public Health Dent 65(2):90–96

    Article  Google Scholar 

  • Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671–1679

    Google Scholar 

  • Chen X, Bai S, Li B, Liu H, Wu G, Liu S, Zhao Y (2016a) Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration. Int J Nanomedicine 11:4707–4718

    Article  Google Scholar 

  • Chen FM, Gao LN, Tian BM, Zhang XY, Zhang YJ, Dong GY, Lu H, Chu Q, Xu J, Yu Y, Wu RX, Yin Y, Shi S, Jin Y (2016b) Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther 7:33

    Article  Google Scholar 

  • Cho MI, Garant PR (2000) Development and general structure of the periodontium. Periodontol 24:9–27

    Article  Google Scholar 

  • Cobourne MT, Hardcastle Z, Sharpe PT (2001) Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. J Dent Res 80(11):1974–1979

    Article  Google Scholar 

  • Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nor JE (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34(8):962–969

    Article  Google Scholar 

  • Dammaschke T, Steven D, Kaup M, Ott KH (2003) Long-term survival of root-canal-treated teeth: a retrospective study over 10 years. J Endod 29(10):638–643

    Article  Google Scholar 

  • Dassule HR, Lewis P, Bei M, Maas R, McMahon AP (2000) Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127(22):4775–4785

    Google Scholar 

  • Davit-Beal T, Tucker AS, Sire JY (2009) Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J Anat 214(4):477–501

    Article  Google Scholar 

  • Delmage JM, Powars DR, Jaynes PK, Allerton SE (1986) The selective suppression of immunogenicity by hyaluronic acid. Ann Clin Lab Sci 16(4):303–310

    Google Scholar 

  • Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926

    Article  Google Scholar 

  • Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C (2014) Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J Dent Res 93(12):1296–1303

    Article  Google Scholar 

  • European Society of Endodontology (2006) Quality guidelines for endodontic treatment: consensus report of the European Society of Endodontology. Int Endod J 39(12):921–930

    Article  Google Scholar 

  • Ferreira CF, Magini RS, Sharpe PT (2007) Biological tooth replacement and repair. J Oral Rehabil 34(12):933–939

    Article  Google Scholar 

  • Foster BL, Nagatomo KJ, Nociti FH Jr, Fong H, Dunn D, Tran AB, Wang W, Narisawa S, Millan JL, Somerman MJ (2012) Central role of pyrophosphate in acellular cementum formation. PLoS One 7(6):e38393

    Article  Google Scholar 

  • Fuks AB (2008) Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. Pediatr Dent 30(3):211–219

    Google Scholar 

  • Gao J, Jordan TW, Cutress TW (1996) Immunolocalization of basic fibroblast growth factor (bFGF) in human periodontal ligament (PDL) tissue. J Periodontal Res 31(4):260–264

    Article  Google Scholar 

  • Gao S, Zhao YM, Ge LH (2014) Nuclear factor I-C expression pattern in developing teeth and its important role in odontogenic differentiation of human molar stem cells from the apical papilla. Eur J Oral Sci 122(6):382–390

    Article  Google Scholar 

  • Gao Z, Wang L, Wang F, Zhang C, Wang J, He J, Wang S (2018) Expression of BMP2/4/7 during the odontogenesis of deciduous molars in miniature pig embryos. J Mol Histol 49(5):545–553

    Article  Google Scholar 

  • Goncalves PF, Gurgel BC, Pimentel SP, Sallum EA, Sallum AW, Casati MZ, Nociti FH Jr (2006) Effect of two different approaches for root decontamination on new cementum formation following guided tissue regeneration: a histomorphometric study in dogs. J Periodontal Res 41(6):535–540

    Article  Google Scholar 

  • Graf D, Malik Z, Hayano S, Mishina Y (2016) Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine Growth Factor Rev 27:129–139

    Article  Google Scholar 

  • Gritli-Linde A, Bei M, Maas R, Zhang XM, Linde A, McMahon AP (2002) Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development 129(23):5323–5337

    Article  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630

    Article  Google Scholar 

  • Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8):531–535

    Article  Google Scholar 

  • Guo W, Chen L, Gong K, Ding B, Duan Y, Jin Y (2012) Heterogeneous dental follicle cells and the regeneration of complex periodontal tissues. Tissue Eng Part A 18(5–6):459–470

    Article  Google Scholar 

  • Haara O, Harjunmaa E, Lindfors PH, Huh SH, Fliniaux I, Aberg T, Jernvall J, Ornitz DM, Mikkola ML, Thesleff I (2012) Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development 139(17):3189–3199

    Article  Google Scholar 

  • Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T, Sampath Narayanan A (2002) Cementum matrix formation in vivo by cultured dental follicle cells. Bone 31(5):606–611

    Article  Google Scholar 

  • Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I (1999) Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol 147(1):105–120

    Article  Google Scholar 

  • Harada H, Toyono T, Toyoshima K, Ohuchi H (2002) FGF10 maintains stem cell population during mouse incisor development. Connect Tissue Res 43(2–3):201–204

    Article  Google Scholar 

  • Hardcastle Z, Mo R, Hui CC, Sharpe PT (1998) The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development 125(15):2803–2811

    Google Scholar 

  • Hilton TJ (2009) Keys to clinical success with pulp capping: a review of the literature. Oper Dent 34(5):615–625

    Article  Google Scholar 

  • Hirayama M, Oshima M, Tsuji T (2013) Development and prospects of organ replacement regenerative therapy. Cornea 32(Suppl 1):S13–S21

    Article  Google Scholar 

  • Hoffmann T, Richter S, Meyle J, Gonzales JR, Heinz B, Arjomand M, Sculean A, Reich E, Jepsen K, Jepsen S, Boedeker RH (2006) A randomized clinical multicentre trial comparing enamel matrix derivative and membrane treatment of buccal class II furcation involvement in mandibular molars. Part III: patient factors and treatment outcome. J Clin Periodontol 33(8):575–583

    Article  Google Scholar 

  • Holmlund A, Holm G, Lind L (2006) Severity of periodontal disease and number of remaining teeth are related to the prevalence of myocardial infarction and hypertension in a study based on 4,254 subjects. J Periodontol 77(7):1173–1178

    Article  Google Scholar 

  • Honda T, Tokura Y, Miyachi Y, Kabashima K (2010) Prostanoid receptors as possible targets for anti-allergic drugs: recent advances in prostanoids on allergy and immunology. Curr Drug Targets 11(12):1605–1613

    Article  Google Scholar 

  • Hosoya A, Kim JY, Cho SW, Jung HS (2008) BMP4 signaling regulates formation of Hertwig’s epithelial root sheath during tooth root development. Cell Tissue Res 333(3):503–509

    Article  Google Scholar 

  • Hu L, Liu Y, Wang S (2018) Stem cell-based tooth and periodontal regeneration. Oral Dis 24(5):696–705

    Article  Google Scholar 

  • Huang GT, Sonoyama W, Chen J, Park SH (2006) In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 324(2):225–236

    Article  Google Scholar 

  • Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S (2008) The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 34(6):645–651

    Article  Google Scholar 

  • Huang X, Bringas P Jr, Slavkin HC, Chai Y (2009a) Fate of HERS during tooth root development. Dev Biol 334(1):22–30

    Article  Google Scholar 

  • Huang GT, Gronthos S, Shi S (2009b) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    Article  Google Scholar 

  • Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S (2010) Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 16(2):605–615

    Article  Google Scholar 

  • Huang X, Wang F, Zhao C, Yang S, Cheng Q, Tang Y, Zhang F, Zhang Y, Luo W, Wang C, Zhou P, Kim S, Zuo G, Hu N, Li R, He TC, Zhang H (2019) Dentinogenesis and tooth-alveolar bone complex defects in BMP9/GDF2 knockout mice. Stem Cells Dev 28(10):683–694

    Article  Google Scholar 

  • Huang D, Ren J, Li R, Guan C, Feng Z, Bao B, Wang W, Zhou C (2020) Tooth regeneration: insights from tooth development and spatial-temporal control of bioactive drug release. Stem Cell Rev Rep 16(1):41–55

    Article  Google Scholar 

  • Hurmerinta K, Thesleff I (1981) Ultrastructure of the epithelial-mesenchymal interface in the mouse tooth germ. J Craniofac Genet Dev Biol 1(2):191–202

    Google Scholar 

  • Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A 106(32):13475–13480

    Article  Google Scholar 

  • Ingle JI, Bakland LK (2002) Endodontics. Decker, Hamilton

    Google Scholar 

  • Iohara K, Murakami M, Nakata K, Nakashima M (2014) Age-dependent decline in dental pulp regeneration after pulpectomy in dogs. Exp Gerontol 52:39–45

    Article  Google Scholar 

  • Ivanovski S (2009) Periodontal regeneration. Aust Dent J 54(Suppl 1):S118–S128

    Article  Google Scholar 

  • Jernvall J, Thesleff I (2012) Tooth shape formation and tooth renewal: evolving with the same signals. Development 139(19):3487–3497

    Article  Google Scholar 

  • Jin Q, Anusaksathien O, Webb SA, Printz MA, Giannobile WV (2004) Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors. Mol Ther 9(4):519–526

    Article  Google Scholar 

  • Jussila M, Thesleff I (2012) Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol 4(4):a008425

    Article  Google Scholar 

  • Kantarci A, Hasturk H, Van Dyke TE (2015) Animal models for periodontal regeneration and peri-implant responses. Periodontol 68(1):66–82

    Article  Google Scholar 

  • Kaur M, Singh H, Dhillon JS, Batra M, Saini M (2017) MTA versus biodentine: review of literature with a comparative analysis. J Clin Diagn Res 11(8):ZG01–ZG05

    Google Scholar 

  • Khayat A, Monteiro N, Smith EE, Pagni S, Zhang W, Khademhosseini A, Yelick PC (2017) GelMA-encapsulated hDPSCs and HUVECs for dental pulp regeneration. J Dent Res 96(2):192–199

    Article  Google Scholar 

  • Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M, Fu SY, Koch PD, Mao JJ (2010) Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A 16(10):3023–3031

    Article  Google Scholar 

  • Kim TH, Bae CH, Lee JC, Ko SO, Yang X, Jiang R, Cho ES (2013) Beta-catenin is required in odontoblasts for tooth root formation. J Dent Res 92(3):215–221

    Article  Google Scholar 

  • Kinane DF, Marshall GJ (2001) Periodontal manifestations of systemic disease. Aust Dent J 46(1):2–12

    Article  Google Scholar 

  • Kuang R, Zhang Z, Jin X, Hu J, Gupte MJ, Ni L, Ma PX (2015) Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells. Adv Healthc Mater 4(13):1993–2000

    Article  Google Scholar 

  • Kuang R, Zhang Z, Jin X, Hu J, Shi S, Ni L, Ma PX (2016) Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater 33:225–234

    Article  Google Scholar 

  • Laslami K, Dhoum S, Karami M, Jabri M (2017) Direct pulp capping with bioactive material: biodentine. EC Dent Sci 13:75–83

    Google Scholar 

  • Lee F, Kurisawa M (2013) Formation and stability of interpenetrating polymer network hydrogels consisting of fibrin and hyaluronic acid for tissue engineering. Acta Biomater 9(2):5143–5152

    Article  Google Scholar 

  • Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ (2014) Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 20(7–8):1342–1351

    Article  Google Scholar 

  • Li J, Huang X, Xu X, Mayo J, Bringas P Jr, Jiang R, Wang S, Chai Y (2011) SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development 138(10):1977–1989

    Article  Google Scholar 

  • Li J, Feng J, Liu Y, Ho TV, Grimes W, Ho HA, Park S, Wang S, Chai Y (2015) BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth. Dev Cell 33(2):125–135

    Article  Google Scholar 

  • Li J, Parada C, Chai Y (2017) Cellular and molecular mechanisms of tooth root development. Development 144(3):374–384

    Article  Google Scholar 

  • Lin LM, Ricucci D, Saoud TM, Sigurdsson A, Kahler B (2020) Vital pulp therapy of mature permanent teeth with irreversible pulpitis from the perspective of pulp biology. Aust Endod J 46(1):154–166

    Article  Google Scholar 

  • Linnes MP, Ratner BD, Giachelli CM (2007) A fibrinogen-based precision microporous scaffold for tissue engineering. Biomaterials 28(35):5298–5306

    Article  Google Scholar 

  • Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM, Gronthos S, Shi S, Wang S (2008) Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 26(4):1065–1073

    Article  Google Scholar 

  • Liu J, Ruan J, Weir MD, Ren K, Schneider A, Wang P, Oates TW, Chang X, Xu HHK (2019) Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells. Cells 8(6):537

    Article  Google Scholar 

  • Liu H, Du Y, St-Pierre JP, Bergholt MS, Autefage H, Wang J, Cai M, Yang G, Stevens MM, Zhang S (2020a) Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state. Sci Adv 6(13):eaay7608

    Article  Google Scholar 

  • Liu W, Zhang G, Wu J, Zhang Y, Liu J, Luo H, Shao L (2020b) Insights into the angiogenic effects of nanomaterials: mechanisms involved and potential applications. J Nanobiotechnol 18(1):9

    Article  Google Scholar 

  • Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502

    Article  Google Scholar 

  • Lumsden AG (1979) Pattern formation in the molar dentition of the mouse. J Biol Buccale 7(1):77–103

    Google Scholar 

  • Lumsden AG (1988) Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 103(Suppl):155–169

    Google Scholar 

  • Malik Z, Alexiou M, Hallgrimsson B, Economides AN, Luder HU, Graf D (2018) Bone morphogenetic protein 2 coordinates early tooth mineralization. J Dent Res 97(7):835–843

    Article  Google Scholar 

  • Mantesso A, Sharpe P (2009) Dental stem cells for tooth regeneration and repair. Expert Opin Biol Ther 9(9):1143–1154

    Article  Google Scholar 

  • Mao JJ, Prockop DJ (2012) Stem cells in the face: tooth regeneration and beyond. Cell Stem Cell 11(3):291–301

    Article  Google Scholar 

  • Mao JJ, Stosich MS, Moioli EK, Lee CH, Fu SY, Bastian B, Eisig SB, Zemnick C, Ascherman J, Wu J, Rohde C, Ahn J (2010) Facial reconstruction by biosurgery: cell transplantation versus cell homing. Tissue Eng Part B Rev 16(2):257–262

    Article  Google Scholar 

  • Melcher AH (1976) On the repair potential of periodontal tissues. J Periodontol 47(5):256–260

    Article  Google Scholar 

  • Meng H, Hu L, Zhou Y, Ge Z, Wang H, Wu CT, Jin J (2020) A sandwich structure of human dental pulp stem cell sheet, treated dentin matrix, and Matrigel for tooth root regeneration. Stem Cells Dev 29(8):521–532

    Article  Google Scholar 

  • Mikkola ML (2008) TNF superfamily in skin appendage development. Cytokine Growth Factor Rev 19(3–4):219–230

    Article  Google Scholar 

  • Mina M, Kollar EJ (1987) The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 32(2):123–127

    Article  Google Scholar 

  • Mitsiadis TA, Smith MM (2006) How do genes make teeth to order through development? J Exp Zool B Mol Dev Evol 306(3):177–182

    Article  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812

    Article  Google Scholar 

  • Monteiro N, Yelick PC (2017) Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 11(9):2443–2461

    Article  Google Scholar 

  • Monteiro N, Smith EE, Angstadt S, Zhang W, Khademhosseini A, Yelick PC (2016) Dental cell sheet biomimetic tooth bud model. Biomaterials 106:167–179

    Article  Google Scholar 

  • Moradian-Oldak J (2012) Protein-mediated enamel mineralization. Front Biosci (Landmark Ed) 17:1996–2023

    Article  Google Scholar 

  • Morrison RJ, Nasser HB, Kashlan KN, Zopf DA, Milner DJ, Flanangan CL, Wheeler MB, Green GE, Hollister SJ (2018) Co-culture of adipose-derived stem cells and chondrocytes on three-dimensionally printed bioscaffolds for craniofacial cartilage engineering. Laryngoscope 128(7):E251–E257

    Article  Google Scholar 

  • Morsczeck C (2012) Transgene-free induced pluripotent dental stem cells for neurogenic differentiation. Stem Cell Res Ther 3(6):46

    Article  Google Scholar 

  • Morsczeck C, Gotz W, Schierholz J, Zeilhofer F, Kuhn U, Mohl C, Sippel C, Hoffmann KH (2005a) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165

    Article  Google Scholar 

  • Morsczeck C, Moehl C, Gotz W, Heredia A, Schaffer TE, Eckstein N, Sippel C, Hoffmann KH (2005b) In vitro differentiation of human dental follicle cells with dexamethasone and insulin. Cell Biol Int 29(7):567–575

    Article  Google Scholar 

  • Moussa DG, Aparicio C (2019) Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration. J Tissue Eng Regen Med 13(1):58–75

    Google Scholar 

  • Murakami M, Hayashi Y, Iohara K, Osako Y, Hirose Y, Nakashima M (2015) Trophic effects and regenerative potential of mobilized mesenchymal stem cells from bone marrow and adipose tissue as alternative cell sources for pulp/dentin regeneration. Cell Transplant 24(9):1753–1765

    Article  Google Scholar 

  • Murphy KG (1995) Postoperative healing complications associated with Gore-Tex periodontal material. Part I. incidence and characterization. Int J Periodontics Restorative Dent 15(4):363–375

    Google Scholar 

  • Mustonen T, Ilmonen M, Pummila M, Kangas AT, Laurikkala J, Jaatinen R, Pispa J, Gaide O, Schneider P, Thesleff I, Mikkola ML (2004) Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 131(20):4907–4919

    Article  Google Scholar 

  • Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T (2007) The development of a bioengineered organ germ method. Nat Methods 4(3):227–230

    Article  Google Scholar 

  • Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, Matsushita K (2017) Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther 8(1):61

    Article  Google Scholar 

  • Needleman IG, Worthington HV, Giedrys-Leeper E, Tucker RJ (2006) Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev 2:CD001724

    Google Scholar 

  • Nemoto E, Sakisaka Y, Tsuchiya M, Tamura M, Nakamura T, Kanaya S, Shimonishi M, Shimauchi H (2016) Wnt3a signaling induces murine dental follicle cells to differentiate into cementoblastic/osteoblastic cells via an osterix-dependent pathway. J Periodontal Res 51(2):164–174

    Article  Google Scholar 

  • Neubuser A, Peters H, Balling R, Martin GR (1997) Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell 90(2):247–255

    Article  Google Scholar 

  • Niu X, Liu Z, Hu J, Rambhia KJ, Fan Y, Ma PX (2016) Microspheres assembled from chitosan-graft-poly(lactic acid) micelle-like core-shell nanospheres for distinctly controlled release of hydrophobic and hydrophilic biomolecules. Macromol Biosci 16(7):1039–1047

    Article  Google Scholar 

  • Nyman S, Gottlow J, Karring T, Lindhe J (1982a) The regenerative potential of the periodontal ligament. An experimental study in the monkey. J Clin Periodontol 9(3):257–265

    Article  Google Scholar 

  • Nyman S, Lindhe J, Karring T, Rylander H (1982b) New attachment following surgical treatment of human periodontal disease. J Clin Periodontol 9(4):290–296

    Article  Google Scholar 

  • Oosterwegel M, van de Wetering M, Timmerman J, Kruisbeek A, Destree O, Meijlink F, Clevers H (1993) Differential expression of the HMG box factors TCF-1 and LEF-1 during murine embryogenesis. Development 118(2):439–448

    Google Scholar 

  • Orban BJ, Bhaskar SN (1980) Orban’s oral histology and embryology. Mosby, St. Louis

    Google Scholar 

  • Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, Morita R, Ikeda E, Nakao K, Takano-Yamamoto T, Kasugai S, Saito M, Tsuji T (2011) Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One 6(7):e21531

    Article  Google Scholar 

  • Oshima M, Ogawa M, Yasukawa M, Tsuji T (2012) Generation of a bioengineered tooth by using a three-dimensional cell manipulation method (organ germ method). Methods Mol Biol 887:149–165

    Article  Google Scholar 

  • Parirokh M, Torabinejad M, Dummer PMH (2018) Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview – part I: vital pulp therapy. Int Endod J 51(2):177–205

    Article  Google Scholar 

  • Park J, Lee SJ, Chung S, Lee JH, Kim WD, Lee JY, Park SA (2017) Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: characterization and evaluation. Mater Sci Eng C Mater Biol Appl 71:678–684

    Article  Google Scholar 

  • Peterkova R, Lesot H, Vonesch JL, Peterka M, Ruch JV (1996) Mouse molar morphogenesis revisited by three dimensional reconstruction. I. Analysis of initial stages of the first upper molar development revealed two transient buds. Int J Dev Biol 40(5):1009–1016

    Google Scholar 

  • Pispa J, Jung HS, Jernvall J, Kettunen P, Mustonen T, Tabata MJ, Kere J, Thesleff I (1999) Cusp patterning defect in Tabby mouse teeth and its partial rescue by FGF. Dev Biol 216(2):521–534

    Article  Google Scholar 

  • Porntaveetus T, Otsuka-Tanaka Y, Basson MA, Moon AM, Sharpe PT, Ohazama A (2011) Expression of fibroblast growth factors (Fgfs) in murine tooth development. J Anat 218(5):534–543

    Article  Google Scholar 

  • Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC (2003) The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol 8(1):227–265

    Article  Google Scholar 

  • Rios HF, Lin Z, Oh B, Park CH, Giannobile WV (2011) Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J Periodontol 82(9):1223–1237

    Article  Google Scholar 

  • Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65(8):3035–3039

    Article  Google Scholar 

  • Sarkar L, Sharpe PT (1999) Expression of Wnt signalling pathway genes during tooth development. Mech Dev 85(1–2):197–200

    Article  Google Scholar 

  • Sarkar L, Cobourne M, Naylor S, Smalley M, Dale T, Sharpe PT (2000) Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc Natl Acad Sci U S A 97(9):4520–4524

    Article  Google Scholar 

  • Sculean A, Schwarz F, Chiantella GC, Donos N, Arweiler NB, Brecx M, Becker J (2007) Five-year results of a prospective, randomized, controlled study evaluating treatment of intra-bony defects with a natural bone mineral and GTR. J Clin Periodontol 34(1):72–77

    Article  Google Scholar 

  • Sculean A, Chapple IL, Giannobile WV (2015) Wound models for periodontal and bone regeneration: the role of biologic research. Periodontol 68(1):7–20

    Article  Google Scholar 

  • Sharma S, Srivastava D, Grover S, Sharma V (2014) Biomaterials in tooth tissue engineering: a review. J Clin Diagn Res 8(1):309–315

    Google Scholar 

  • Sharpe PT (2016) Dental mesenchymal stem cells. Development 143(13):2273–2280

    Article  Google Scholar 

  • Smeets R, Henningsen A, Jung O, Heiland M, Hammacher C, Stein JM (2014) Definition, etiology, prevention and treatment of peri-implantitis--a review. Head Face Med 10:34

    Article  Google Scholar 

  • Smith EE, Zhang W, Schiele NR, Khademhosseini A, Kuo CK, Yelick PC (2017) Developing a biomimetic tooth bud model. J Tissue Eng Regen Med 11(12):3326–3336

    Article  Google Scholar 

  • Song M, Yu B, Kim S, Hayashi M, Smith C, Sohn S, Kim E, Lim J, Stevenson RG, Kim RH (2017) Clinical and molecular perspectives of reparative dentin formation: lessons learned from pulp-capping materials and the emerging roles of calcium. Dent Clin North Am 61(1):93–110

    Article  Google Scholar 

  • Sowmya S, Mony U, Jayachandran P, Reshma S, Kumar RA, Arzate H, Nair SV, Jayakumar R (2017) Tri-layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv Healthc Mater 6(7)

    Google Scholar 

  • Steele-Perkins G, Butz KG, Lyons GE, Zeichner-David M, Kim HJ, Cho MI, Gronostajski RM (2003) Essential role for NFI-C/CTF transcription-replication factor in tooth root development. Mol Cell Biol 23(3):1075–1084

    Article  Google Scholar 

  • Stojanov S, Berlec A (2020) Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications. Front Bioeng Biotechnol 8:130

    Article  Google Scholar 

  • Suomalainen M, Thesleff I (2010) Patterns of Wnt pathway activity in the mouse incisor indicate absence of Wnt/beta-catenin signaling in the epithelial stem cells. Dev Dyn 239(1):364–372

    Google Scholar 

  • Swee LK, Ingold-Salamin K, Tardivel A, Willen L, Gaide O, Favre M, Demotz S, Mikkola M, Schneider P (2009) Biological activity of ectodysplasin A is conditioned by its collagen and heparan sulfate proteoglycan-binding domains. J Biol Chem 284(40):27567–27576

    Article  Google Scholar 

  • Tai YY, Chen RS, Lin Y, Ling TY, Chen MH (2012) FGF-9 accelerates epithelial invagination for ectodermal organogenesis in real time bioengineered organ manipulation. Cell Commun Signal 10(1):34

    Article  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  Google Scholar 

  • Tao O, Kort-Mascort J, Lin Y, Pham HM, Charbonneau AM, ElKashty OA, Kinsella JM, Tran SD (2019) The applications of 3D printing for craniofacial tissue engineering. Micromachines (Basel) 10(7)

    Google Scholar 

  • Ten Cate AR (1998) Oral histology: development, structure, and function. 5th ed. Mosby, St. Louis: Mosby. xi, 497 p

    Google Scholar 

  • Thesleff I (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116(Pt 9):1647–1648

    Article  Google Scholar 

  • Thesleff I, Sharpe P (1997) Signalling networks regulating dental development. Mech Dev 67(2):111–123

    Article  Google Scholar 

  • Thesleff I, Tummers M (2008) Tooth organogenesis and regeneration. StemBook, Cambridge, MA

    Book  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  Google Scholar 

  • Torabinejad M, Parirokh M, Dummer PMH (2018) Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview – part II: other clinical applications and complications. Int Endod J 51(3):284–317

    Article  Google Scholar 

  • Trumpp A, Depew MJ, Rubenstein JL, Bishop JM, Martin GR (1999) Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev 13(23):3136–3148

    Article  Google Scholar 

  • Tummers M, Thesleff I (2003) Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development 130(6):1049–1057

    Article  Google Scholar 

  • Vaahtokari A, Aberg T, Jernvall J, Keranen S, Thesleff I (1996) The enamel knot as a signaling center in the developing mouse tooth. Mech Dev 54(1):39–43

    Article  Google Scholar 

  • Valera E, Isaacs MJ, Kawakami Y, Izpisua Belmonte JC, Choe S (2010) BMP-2/6 heterodimer is more effective than BMP-2 or BMP-6 homodimers as inductor of differentiation of human embryonic stem cells. PLoS One 5(6):e11167

    Article  Google Scholar 

  • Vaquette C, Fan W, Xiao Y, Hamlet S, Hutmacher DW, Ivanovski S (2012) A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials 33(22):5560–5573

    Article  Google Scholar 

  • Vasanthan P, Jayaraman P, Kunasekaran W, Lawrence A, Gnanasegaran N, Govindasamy V, Musa S, Kasim NH (2016) Generation of functional hepatocyte-like cells from human deciduous periodontal ligament stem cells. Naturwissenschaften 103(7–8):62

    Article  Google Scholar 

  • Vastardis H (2000) The genetics of human tooth agenesis: new discoveries for understanding dental anomalies. Am J Orthod Dentofac Orthop 117(6):650–656

    Article  Google Scholar 

  • Vhora I, Lalani R, Bhatt P, Patil S, Patel H, Patel V, Misra A (2018) Colloidally stable small unilamellar stearyl amine lipoplexes for effective BMP-9 gene delivery to stem cells for osteogenic differentiation. AAPS Pharmscitech 19(8):3550–3560

    Article  Google Scholar 

  • Viriot L, Peterkova R, Vonesch JL, Peterka M, Ruch JV, Lesot H (1997) Mouse molar morphogenesis revisited by three-dimensional reconstruction. III. Spatial distribution of mitoses and apoptoses up to bell-staged first lower molar teeth. Int J Dev Biol 41(5):679–690

    Google Scholar 

  • Vollner F, Ernst W, Driemel O, Morsczeck C (2009) A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation 77(5):433–441

    Article  Google Scholar 

  • Wada N, Wang B, Lin NH, Laslett AL, Gronthos S, Bartold PM (2011) Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. J Periodontal Res 46(4):438–447

    Article  Google Scholar 

  • Wang J, Feng JQ (2017) Signaling pathways critical for tooth root formation. J Dent Res 96(11):1221–1228

    Article  Google Scholar 

  • Wang XP, Suomalainen M, Felszeghy S, Zelarayan LC, Alonso MT, Plikus MV, Maas RL, Chuong CM, Schimmang T, Thesleff I (2007) An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol 5(6):e159

    Article  Google Scholar 

  • Wang L, Shen H, Zheng W, Tang L, Yang Z, Gao Y, Yang Q, Wang C, Duan Y, Jin Y (2011) Characterization of stem cells from alveolar periodontal ligament. Tissue Eng Part A 17(7–8):1015–1026

    Article  Google Scholar 

  • Wang B, Li H, Liu Y, Lin X, Lin Y, Wang Y, Hu X, Zhang Y (2014) Expression patterns of WNT/beta-CATENIN signaling molecules during human tooth development. J Mol Histol 45(5):487–496

    Article  Google Scholar 

  • Xiong J, Gronthos S, Bartold PM (2013) Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues. Periodontol 63(1):217–233

    Article  Google Scholar 

  • Xu HH, Wang P, Wang L, Bao C, Chen Q, Weir MD, Chow LC, Zhao L, Zhou X, Reynolds MA (2017) Calcium phosphate cements for bone engineering and their biological properties. Bone Res 5:17056

    Article  Google Scholar 

  • Xuan K, Li B, Guo H, Sun W, Kou X, He X, Zhang Y, Sun J, Liu A, Liao L, Liu S, Liu W, Hu C, Shi S, Jin Y (2018) Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med 10(455):eaaf3227

    Article  Google Scholar 

  • Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT (2010) iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19(4):469–480

    Article  Google Scholar 

  • Yang Z, Hai B, Qin L, Ti X, Shangguan L, Zhao Y, Wiggins L, Liu Y, Feng JQ, Chang JY, Wang F, Liu F (2013) Cessation of epithelial Bmp signaling switches the differentiation of crown epithelia to the root lineage in a beta-catenin-dependent manner. Mol Cell Biol 33(23):4732–4744

    Article  Google Scholar 

  • Yildirim S, Fu SY, Kim K, Zhou H, Lee CH, Li A, Kim SG, Wang S, Mao JJ (2011) Tooth regeneration: a revolution in stomatology and evolution in regenerative medicine. Int J Oral Sci 3(3):107–116

    Article  Google Scholar 

  • Yin Y, Li X, He XT, Wu RX, Sun HH, Chen FM (2017) Leveraging stem cell homing for therapeutic regeneration. J Dent Res 96(6):601–609

    Article  Google Scholar 

  • Yokohama-Tamaki T, Ohshima H, Fujiwara N, Takada Y, Ichimori Y, Wakisaka S, Ohuchi H, Harada H (2006) Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation. Development 133(7):1359–1366

    Article  Google Scholar 

  • Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC (2002) Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 81(10):695–700

    Article  Google Scholar 

  • Yu T, Volponi AA, Babb R, An Z, Sharpe PT (2015) Stem cells in tooth development, growth, repair, and regeneration. Curr Top Dev Biol 115:187–212

    Article  Google Scholar 

  • Yuan G, Yang G, Zheng Y, Zhu X, Chen Z, Zhang Z, Chen Y (2015) The non-canonical BMP and Wnt/beta-catenin signaling pathways orchestrate early tooth development. Development 142(1):128–139

    Article  Google Scholar 

  • Zafar K, Jamal S, Ghafoor R (2020) Bio-active cements-Mineral Trioxide Aggregate based calcium silicate materials: a narrative review. J Pak Med Assoc 70(3):497–504

    Google Scholar 

  • Zeichner-David M (2006) Regeneration of periodontal tissues: cementogenesis revisited. Periodontol 41:196–217

    Article  Google Scholar 

  • Zhai Q, Dong Z, Wang W, Li B, Jin Y (2019) Dental stem cell and dental tissue regeneration. Front Med 13(2):152–159

    Article  Google Scholar 

  • Zhang Y, Chen Y (2014) Bioengineering of a human whole tooth: progress and challenge. Cell Regen (Lond) 3(1):8

    Google Scholar 

  • Zhang Y, Tomann P, Andl T, Gallant NM, Huelsken J, Jerchow B, Birchmeier W, Paus R, Piccolo S, Mikkola ML, Morrisey EE, Overbeek PA, Scheidereit C, Millar SE, Schmidt-Ullrich R (2009) Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell 17(1):49–61

    Article  Google Scholar 

  • Zhang C, Hu K, Liu X, Reynolds MA, Bao C, Wang P, Zhao L, Xu HHK (2017) Novel hiPSC-based tri-culture for pre-vascularization of calcium phosphate scaffold to enhance bone and vessel formation. Mater Sci Eng C Mater Biol Appl 79:296–304

    Article  Google Scholar 

  • Zou XY, Yang HY, Yu Z, Tan XB, Yan X, Huang GT (2012) Establishment of transgene-free induced pluripotent stem cells reprogrammed from human stem cells of apical papilla for neural differentiation. Stem Cell Res Ther 3(5):43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela C. Yelick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, Z., Zhang, W., Yelick, P.C. (2020). Tissue-Engineered Teeth. In: Eberli, D., Lee, S.J., Traweger, A. (eds) Organ Tissue Engineering. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-18512-1_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18512-1_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18512-1

  • Online ISBN: 978-3-030-18512-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics