Skip to main content

Smart Mobility Ontology: Current Trends and Future Directions

  • Living reference work entry
  • First Online:
Handbook of Smart Cities

Abstract

Ontology is the explicit and formal representation of the concepts in a domain and relations among them. Transportation science is a wide domain dealing with mobility over various complex and interconnected transportation systems, such as land, aviation, and maritime transport, and can take considerable advantage from ontology development. While several studies can be found in the recent literature, there exists a large potential to improve and develop a comprehensive smart mobility ontology. The current chapter aims to present different aspects of ontology development in general, such as ontology development methods, languages, tools, and software. Subsequently, it presents the currently available mobility-related ontologies developed across different domains, such as transportation, smart cities, goods mobility, and sensors. Current gaps in the available ontologies are identified, and future directions regarding ontology development are proposed that can incorporate the forthcoming autonomous and connected vehicles, mobility as a service (MaaS), and other disruptive transportation technologies and services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Sayed, M. M., Hassan, H. A., & Omara, F. A. (2019). Towards evaluation of cloud ontologies. Journal of Parallel and Distributed Computing, 126, 82–106.

    Article  Google Scholar 

  • Anand, N., van Duin, R., & Tavasszy, L. (2014). Ontology-based multi-agent system for urban freight transportation. International Journal of Urban Sciences, 18(2), 133–153.

    Article  Google Scholar 

  • Anwer, M. S., & Guy, C. (2014). A survey of vanet technologies. Journal of Emerging Trends in Computing and Information Sciences, 5(9), 661–671.

    Google Scholar 

  • Arp, R., Smith, B., & Spear, A. D. (2015). Building ontologies with basic formal ontology. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Badu-Marfo, G., Farooq, B., & Patterson, Z. (2019). A perspective on the challenges and opportunities for privacy-aware big transportation data. Journal of Big Data Analytics in Transportation, 1(1), 1–23.

    Article  Google Scholar 

  • Bellini, P., Benigni, M., Billero, R., Nesi, P., & Rauch, N. (2014). Km4city ontology building vs data harvesting and cleaning for smart-city services. Journal of Visual Languages and Computing, 25, 827–839.

    Article  Google Scholar 

  • Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., & Taylor, K. (2016). Iot-lite: A lightweight semantic model for the internet of things. In 2016 International IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld) (pp. 90–97). IEEE.

    Google Scholar 

  • Berners-Lee, T. (2007). ConverterToRdf – W3C wiki. https://www.w3.org/wiki/ConverterToRdf. Accessed 1 Dec 2021.

  • Chen, W., & Kloul, L. (2018). An ontology-based approach to generate the advanced driver assistance use cases of highway traffic. In 10th International joint conference on knowledge discovery, knowledge engineering and knowledge management, KEOD (pp. 73–81). Seville: ACM.

    Google Scholar 

  • Chhabra, S., Bali, R. S., & Kumar, N. (2015). Dynamic vehicle ontology based routing for vanets. Procedia Computer Science, 57, 789–797.

    Google Scholar 

  • Choi, C., Cho, M., Kang, E., & Kim, P. (2006). Travel ontology for recommendation system based on semantic web. In 2006 8th international conference advanced communication technology (Vol. 1, pp. 624–627). IEEE.

    Google Scholar 

  • Codescu, M., Horsinka, G., Kutz, O., Mossakowski, T., & Rau, R. (2011). Osmonto-an ontology of OpenStreetMap tags. In State of the map Europe (SOTM-EU) 2011, Vienna. http://www.informatik.uni-bremen.de/~till/papers/osmonto.pdf

  • Corsar, D., Markovic, M., Gault, P. E., Mehdi, M., Edwards, P., Nelson, J. D., Cottrill, C. D., & Sripada, S. (2015). Travelbot: journey disruption alerts utilising social media and linked data. In Proceedings of the Posters and Demonstrations Track of the 14th International Semantic Web Conference (ISWC 2015). CEUR-WS.

    Google Scholar 

  • Desmond Mogotlane, K., & Fonou-Dombeu, J. V. (2016). Automatic conversion of relational databases into ontologies: A comparative analysis of protege plugins performances. International journal of Web & Semantic Technology, 7(3/4), 2140. https://doi.org/10.5121/ijwest.2016.7403.

    Article  Google Scholar 

  • Falquet, G., Metral, C., Teller, J., & Tweed, C. (2011). Ontologies in urban development projects. London: Springer Science & Business Media.

    Google Scholar 

  • Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D. L., & Patel-Schneider, P. F. (2001). Oil: An ontology infrastructure for the semantic web. IEEE Intelligent Systems, 16(2), 38–45.

    Article  Google Scholar 

  • Gasmi, R., & Aliouat, M. (2019). Vehicular ad hoc networks versus internet of vehicles-a comparative view. In 2019 international conference on networking and advanced systems (ICNAS) (pp. 1–6). IEEE.

    Google Scholar 

  • Genesereth, M., & Fikes, R. (1992). Knowledge interchange format-version 3.0: Reference manual. San Francisco: Stanford University.

    Google Scholar 

  • Gruber, T. R., et al. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199–220.

    Article  Google Scholar 

  • GTFS Realtime Overview. (2017). https://developers.google.com/transit/gtfs-realtime/

  • Gutierrez, C., Hurtado, C. A., & Vaisman, A. (2006). Introducing time into rdf. IEEE Transactions on Knowledge and Data Engineering, 19(2), 207–218.

    Article  Google Scholar 

  • Hobbs, J. R., & Pan, F. (2006). Time ontology in owl. W3C working draft 27:133

    Google Scholar 

  • Hogan, A. (2020a). Resource description framework (pp. 59–109). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-51580-5_3.

    Book  Google Scholar 

  • Hogan, A. (2020b). Web ontology language. In The web of data (pp. 185–322). Cham: Springer.

    Google Scholar 

  • INSPIRE Data Specification on Transport Networks Technical Guidelines. (2014). https://inspire.ec.europa.eu/file/1723/download?token=0GOYYbMF

  • Janowicz, K., Haller, A., Cox, S. J., Le Phuoc, D., & Lefrancois, M. (2019a). Sosa: A lightweight ontology for sensors, observations, samples, and actuators. Journal of Web Semantics, 56, 1–10.

    Article  Google Scholar 

  • Janowicz, K., Haller, A., Cox, S. J., Le Phuoc, D., & Lefranois, M. (2019b). Sosa: A lightweight ontology for sensors, observations, samples, and actuators. Journal of Web Semantics, 56, 1–10. https://doi.org/10.1016/j.websem.2018.06.003.

    Article  Google Scholar 

  • Jawhar, I., Mohamed, N., & Al-Jaroodi, J. (2018). Networking architectures and protocols for smart city systems. Journal of Internet Services and Applications, 9(1), 26.

    Article  Google Scholar 

  • Jiang, R., & Zhu, Y. (2019). Wireless access in vehicular environment (pp. 1–5). Cham: Springer International Publishing.

    Google Scholar 

  • Kalibatiene, D., & Vasilecas, O. (2011). Survey on ontology languages. In International Conference on Business Informatics Research (pp. 124–141). Springer.

    Google Scholar 

  • Katsumi, M., & Fox, M. (2017a). icity ontology initial release.

    Google Scholar 

  • Katsumi, M., & Fox, M. (2017b). icity ontology version 1.0 report. University of Toronto Transportation Research Institute.

    Google Scholar 

  • Khan, A. A., Abolhasan, M., & Ni, W. (2018). 5g next generation vanets using sdn and fog computing framework. In 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC) (pp. 1–6). IEEE.

    Google Scholar 

  • Klein, L. A. (2017). ITS sensors and architectures for traffic management and connected vehicles. Boca Raton: CRC Press.

    Google Scholar 

  • Klotz, B., Troncy, R., Wilms, D., & Bonnet, C. (2018). Vsso: The vehicle signal and attribute ontology. In: SSN@ ISWC, pp 56–63.

    Google Scholar 

  • Krieger, H. U. (2008). Where temporal description logics fail: Representing temporally-changing relationships. In Annual conference on artificial intelligence (pp. 249–257). Berlin: Künstliche Intelligenz.

    Google Scholar 

  • Krieger, H. U. (2010). A general methodology for equipping ontologies with time. In: LREC.

    Google Scholar 

  • Kumar, V. R. S., Khamis, A., Fiorini, S., Carbonera, J. L., Alarcos, A. O., Habib, M., Goncalves, P., Li, H., & Olszewska, J. I. (2019). Ontologies for industry 4.0. The Knowledge Engineering Review, 34, 1–14.

    Google Scholar 

  • Lorenz, B., Ohlbach, H. J., & Yang, L. (2005). Ontology of transportation networks. Citeseer.

    Google Scholar 

  • Mcguinness, D. L., Fikes, R., Hendler, J., & Stein, L. A. (2002). Daml+oil: An ontology language for the semantic web. IEEE Intelligent Systems, 17(5), 72–80. https://doi.org/10.1109/MIS.2002.1039835.

    Article  Google Scholar 

  • Mejhed Mkhinini, M., Labbani-Narsis, O., & Nicolle, C. (2020). Combining uml and ontology: An exploratory survey. Computer Science Review, 35, 100223. https://doi.org/10.1016/j.cosrev.2019.100223.

    Article  MathSciNet  MATH  Google Scholar 

  • Métral, C., & Cutting-Decelle, A. F. (2011). Ontologies fundamentals. In Ontologies in Urban Development Projects (pp. 105–122). London: Springer.

    Google Scholar 

  • Noura, M., Gyrard, A., Heil, S., & Gaedke, M. (2019). Automatic knowledge extraction to build semantic web of things applications. IEEE Internet of Things Journal, 6(5), 8447–8454.

    Article  Google Scholar 

  • Noy, N. F., Fergerson, R. W., & Musen, M. A. (2000). The knowledge model of protege-2000: Combining interoperability and flexibility. In International conference on knowledge engineering and knowledge management (pp. 17–32). Bolzano: ACM.

    Google Scholar 

  • Noy, N. F., & McGuinness, D. L. et al. (2001). Ontology development 101: A guide to creating your first ontology, KSL-01-05 (pp. 1–28). Stanford Knowledge Systems Laboratory.

    Google Scholar 

  • Obrst, L., Grüninger, M., Baclawski, K., Bennett, M., Brickley, D., Berg-Cross, G., Hitzler, P., Janowicz, K., Kapp, C., Kutz, O., et al. (2014). Semantic web and big data meets applied ontology. Applied Ontology.

    Google Scholar 

  • Olszewska, J. I., Barreto, M., Bermejo-Alonso, J., Carbonera, J., Chibani, A., Fiorini, S., Goncalves, P., Habib, M., Khamis, A., Olivares, A., et al. (2017). Ontology for autonomous robotics. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 189–194). IEEE.

    Google Scholar 

  • Roussey, C., Pinet, F., Kang, M. A., & Corcho, O. (2011). An introduction to ontologies and ontology engineering. In Ontologies in Urban development projects (pp. 9–38). London: Springer.

    Google Scholar 

  • Smith, B. (1998). An introduction to ontology. National Center for Geographic Information and Analysis.

    Google Scholar 

  • Verstichel, S., Ongenae, F., Loeve, L., Vermeulen, F., Dings, P., Dhoedt, B., Dhaene, T., & De Turck, F. (2011). Efficient data integration in the railway domain through an ontology-based methodology. Transportation Research Part C: Emerging Technologies, 19(4), 617–643.

    Article  Google Scholar 

  • Viktorović, M., Yang, D., & Vries, B. (2020). Connected traffic data ontology (ctdo) for intelligent urban traffic systems focused on connected (semi) autonomous vehicles. Sensors, 20(10), 2961.

    Article  Google Scholar 

  • Welty, C., & Guarino, N. (2001). Supporting ontological analysis of taxonomic relationships. Data & Knowledge Engineering, 39(1), 51–74. https://doi.org/10.1016/S0169-023X(01)00030-1.

    Article  MATH  Google Scholar 

  • Welty, C., Fikes, R., & Makarios, S. (2006). A reusable ontology for fluents in owl. In FOIS 150 (pp. 226–236).

    Google Scholar 

  • Zekri, A., & Jia, W. (2018). Heterogeneous vehicular communications: A comprehensive study. Ad Hoc Networks, 75, 52–79.

    Article  Google Scholar 

  • Zhao, L., Ichise, R., Mita, S., & Sasaki, Y. (2015). Core ontologies for safe autonomous driving. In International Semantic Web Conference (Posters & Demos).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Farooq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yazdizadeh, A., Farooq, B. (2021). Smart Mobility Ontology: Current Trends and Future Directions. In: Augusto, J.C. (eds) Handbook of Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-030-15145-4_66-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15145-4_66-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15145-4

  • Online ISBN: 978-3-030-15145-4

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics