Skip to main content

Abstract

The present chapter reviews and discusses recent advances in the ecophysiology, phylogeny, and biotechnological applications of fungi with respect to their ability to degrade hydrocarbons. There is a very wide fungal biodiversity with diverse enzymatic mechanisms that transform different hydrocarbon chemical structures, from short chain aliphatics to heavy weight polycyclic aromatics. Alkanes and alkylbenzenes are generally metabolized as the sole source of carbon and energy via specialized metabolic pathways that start with the substrate oxidation through cytochrome P450 monoxygenases. Unsaturated alkenes and alkynes, as well as alicyclics, are more recalcitrant to fungal degradation and are often converted to partly oxidized metabolites. Aromatic hydrocarbons ranging from the single benzene ring to the high-molecular-weight polycyclics are generally degraded via one or more of three independent enzymatic systems. The intracellular P450 monooxygenases that detoxify harmful chemicals are universally present in the microsomes of eukaryotic cells, while lignin-degrading fungi specifically produce extracellular peroxidases and laccases that biodegrade aromatic hydrocarbons. Laccases are not exclusively active in lignin biodegradation: other functions have been reported for these enzymes in nonligninolytic fungi. The low functional specificity and high redox potential of peroxidases and laccases enables the oxidation of a broad range of aromatic hydrocarbons and other recalcitrant contaminants. Such co-incidental biodegradation processes often result in partially degraded compounds that do not support fungal growth and that might be more toxic than the parent substrates.

Relevant hydrocarbonoclastic fungal strains deposited in culture collections have been identified and their phylogenies revised and reassessed when necessary. The capacity to assimilate hydrocarbons in fungi may have evolved in the context of biotrophic interactions in environments that are rich in naturally biosynthesized alkanes and volatile alkylbenzenes. The ability to utilize hydrocarbons seems to correlate with virulence toward humans, as seen in phylogenetically unrelated genera of hydrocarbonoclastic fungi, e.g., Scedosporium (Microascales) and Exophiala-Cladophialophora (Chaetothyriales). Applied research on hydrocarbonoclastic fungi includes studies dedicated to preventing biodeterioration as well as on potential use of the same enzymatic capabilities for bioremediation purposes. Fungal contamination of fuels is a long-standing problem that has acquired new dimensions as new biofuel blends have emerged. Recent improvements in phylogenetic understanding of fungal biodeteriogens may provide enhanced biocontrol opportunities. In work related to restoration of ecosystems, the ability of hydrocarbonoclastic fungi to form extended mycelial networks, in combination with the broad capabilities of their catabolic enzymes, makes these fungi well suited for the bioremediation of hydrocarbon-polluted soils. However, some cases of unsatisfactory biodegradation efficiency in operations conducted at field scale and cases in which toxic intermediates were generated have turned research efforts towards synergistic biodegradation processes mediated by complex microbial populations (i.e., fungal-bacterial mixtures). The assimilatory biodegradation of volatile alkanes and alkylbenzenes by certain fungal species makes them ideal candidates for the biofiltration of air polluted with these compounds. However, the potential correlation between hydrocarbon utilization and capacity for human infection must be taken into account in the design of biofiltration systems in order to prevent unintended production of biohazardous conditions. Ongoing research is focusing on the precise delimitation of genetic mechanisms that underlie these two apparently converging ecological traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amin H, Atkins PT, Russo RS, Brown AW, Sive B, Hallar AG, Huff Hartz KE (2012) Effect of bark beetle infestation on secondary organic aerosol precursor emissions. Environ Sci Technol 46(11):5696–5703

    Article  CAS  PubMed  Google Scholar 

  • Andersson BE, Lundstedt S, Tornberg K, SchnĂŒrer Y, Öberg LG, Mattiasson B (2003) Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environm Toxicol Chem 22(6):1238–1243

    Article  CAS  Google Scholar 

  • April TM, Abbott SP, Foght JM, Currah RS (1998) Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Can J Microbiol 44(3):270–278

    Article  CAS  PubMed  Google Scholar 

  • Aranda E, Marco-Urrea E, Caminal G, Arias ME, GarcĂ­a-Romera I, GuillĂ©n F (2010) Advanced oxidation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by Trametes versicolor. J Hazard Mater 181(1):181–186

    Article  CAS  PubMed  Google Scholar 

  • Arriaga S, Revah S (2005) Improving hexane removal by enhancing fungal development in a microbial consortium biofilter. Biotechnol Bioeng 90(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Asha S, Vidyavathi M (2009) Cunninghamella – a microbial model for drug metabolism studies – a review. Biotechnol Adv 27(1):16–29

    Article  CAS  PubMed  Google Scholar 

  • Badali H, Gueidan C, Najafzadeh MJ, Bonifaz A, van den Ende AHGG, de Hoog GS (2008) Biodiversity of the genus Cladophialophora. Stud Mycol 61(1):175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badali H, Carvalho VO, Vicente VA, Attili-Angelis D, Kwiatkowski IB, Van den Ende AHG, de Hoog GS (2009) Cladophialophora saturnica sp. nov., a new opportunistic species of Chaetothyriales revealed using molecular data. Med Mycol 47(1):51–62

    Article  CAS  PubMed  Google Scholar 

  • Badali H, Prenafeta-BoldĂș FX, Guarro J, Klaassen C, Meis JF, de Hoog GS (2011) Cladophialophora psammophila, a novel species of Chaetothyriales with a potential use in the bioremediation of volatile aromatic hydrocarbons. Fungal Biol 115(10):1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  CAS  PubMed  Google Scholar 

  • Banitz T, Johst K, Wick LY, Schamfuß S, Harms H, Frank K (2013) Highways versus pipelines: contributions of two fungal transport mechanisms to efficient bioremediation. Environ Microbiol Rep 5(2):211–218

    Article  CAS  PubMed  Google Scholar 

  • Barth G, Gaillardin C (1996) Nonconventional yeasts in biotechnology: a handbook. Springer, Berlin/Heidelberg, pp 313–388

    Book  Google Scholar 

  • Beopoulos A, Desfougeres T, Sabirova J, Zinjarde S, NeuvĂ©glise C, Nicaud J-M (2010) In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2111–2121

    Chapter  Google Scholar 

  • Blasi B, Poyntner C, Rudavsky T, Prenafeta-BoldĂș FX, Hoog SD, Tafer H, Sterflinger K (2016) Pathogenic yet environmentally friendly? Black fungal candidates for bioremediation of pollutants. Geomicrobiol J 33(3–4):308–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasi B, Tafer H, Kustor C, Poyntner C, Lopandic K, Sterflinger K (2017) Genomic and transcriptomic analysis of the toluene degrading black yeast Cladophialophora immunda. Sci Rep 7(1):11436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boulton C, Ratledge C (1984) Physiology of hydrocarbon-utilizing microorganisms. Top Enzym Ferment Biotechnol 9:11–77

    CAS  Google Scholar 

  • Buddie AG, Bridge PD, Kelley J, Ryan MJ (2011) Candida keroseneae sp. nov., a novel contaminant of aviation kerosene. Lett Appl Microbiol 52(1):70–75

    Article  CAS  PubMed  Google Scholar 

  • Cañero DC, Roncero MIG (2008) Functional analyses of laccase genes from Fusarium oxysporum. Phytopathology 98(5):509–518

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2079–2110

    Chapter  Google Scholar 

  • Cerniglia CE, Sutherland JB, Crow SA (1992) In: Winkelmann G (ed) Microbial degradation of natural products. VCH Verlagsgesellschaft, Weinheim, pp 193–217

    Google Scholar 

  • Chen W, Lee M-K, Jefcoate C, Kim S-C, Chen F, Yu J-H (2014) Fungal cytochrome P450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol Evol 6(7):1620–1634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chrzanowski Ɓ, Bielicka-Daszkiewicz K, Owsianiak M, Aurich A, Kaczorek E, Olszanowski A (2008) Phenol and n-alkanes (C12 and C16) utilization: influence on yeast cell surface hydrophobicity. World J Microbiol Biotechnol 24(9):1943–1949

    Article  CAS  Google Scholar 

  • Cofone L, Walker JD, Cooney JJ (1973) Utilization of hydrocarbons by Cladosporium resinae. Microbiology 76(1):243–246

    CAS  Google Scholar 

  • Cox HHJ, Houtman JHM, Doddema HJ, Harder W (1993a) Enrichment of fungi and degradation of styrene in biofilters. Biotechnol Lett 15(7):737–742

    Article  CAS  Google Scholar 

  • Cox HHJ, Houtman JHM, Doddema HJ, Harder W (1993b) Growth of the black yeast Exophiala jeanselmei on styrene and styrene-related compounds. Appl Microbiol Biotechnol 39(3):372–376

    Article  CAS  Google Scholar 

  • Cox HHJ, Faber BW, Van Heiningen WNM, Radhoe H, Doddema HJ, Harder W (1996) Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase. Appl Environ Microbiol 62(4):1471–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curry S, Ciuffetti L, Hyman M (1996) Inhibition of growth of a Graphium sp. on gaseous n-alkanes by gaseous n-alkynes and n-alkenes. Appl Environ Microbiol 62(6):2198–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dallinger A, Duldhardt I, Kabisch J, SchlĂŒter R, Schauer F (2016) Biotransformation of cyclohexane and related alicyclic hydrocarbons by Candida maltosa and Trichosporon species. Int Biodeter Biodegr 107:132–139

    Article  CAS  Google Scholar 

  • David HM (1954) Studies of the creosote fungus, Hormodendrum resinae. Mycologia 46(2):161–183

    Article  Google Scholar 

  • Davies JS, Wellman AM, Zajic JE (1973) Hyphomycetes utilizing natural gas. Can J Microbiol 19(1):81–85

    Article  CAS  PubMed  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29(4):795–811

    Article  PubMed  CAS  Google Scholar 

  • de Hoog GS (1999) Ecology and evolution of black yeasts and their relatives. Stud Mycol 43:1–208

    Google Scholar 

  • de Hoog GS, Vicente VA, Caligiorne RB, Kantarcioglu S, Tintelnot K, Gerrits van den Ende AHG, Haase G (2003) Species diversity and polymorphism in the Exophiala spinifera clade containing opportunistic black yeast-like fungi. J Clin Microbiol 41(10):4767–4778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duarte APM, Attili-Angelis D, Baron NC, Forti LC, Pagnocca FC (2014) Leaf-cutting ants: an unexpected microenvironment holding human opportunistic black fungi. Antonie Van Leeuwenhoek 106(3):465–473

    Article  CAS  PubMed  Google Scholar 

  • Estevez E, Veiga MC, Kennes C (2005) Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. J Ind Microbiol Biotechnol 32(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Fedorak PM, Westlake DWS (1986) Fungal metabolism of n-alkylbenzenes. Appl Environ Microbiol 51(2):435–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fickers P, Benetti PH, WachĂ© Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–543

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2001) Fungi in bioremediation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • GarcĂ­a-Peña I, Ortiz I, HernĂĄndez S, Revah S (2008) Biofiltration of BTEX by the fungus Paecilomyces variotii. Int Biodeter Biodegr 62(4):442

    Article  CAS  Google Scholar 

  • Gassen J, Bento F, Frazzon A, FerrĂŁo M, Marroni I, Simonetti A (2015) Growth of Paecilomyces variotii in B0 (diesel), B100 (biodiesel) and B7 (blend), degradation and molecular detection. Braz J Biol 75:541–547

    Article  CAS  PubMed  Google Scholar 

  • Gaylarde CC, Bento FM, Kelley J (1999) Microbial contamination of stored hydrocarbon fuels and its control. Rev Microbiol 30(1):1–10

    Article  CAS  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    PubMed  PubMed Central  Google Scholar 

  • Gibson DT, Subramanian V (1984) In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 181–252

    Google Scholar 

  • Gold MH, Alic M (1993) Molecular-biology of the lignin-degrading basidiomycete phanerochaete-chrysosporium. Microbiol Rev 57(3):605–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gries G, Smirle MJ, Leufven A, Miller DR, Borden JH, Whitney HS (1990) Conversion of phenylalanine to toluene and 2-phenylethanol by the pine engraver Ips-pini (Say) (Coleoptera, Scolytidae). Experientia 46(3):329–331

    Article  CAS  Google Scholar 

  • GĂŒmral R, TĂŒmgör A, Saraçlı MA, Yıldıran ƞT, Ilkit M, de Hoog GS (2014) Black yeast diversity on creosoted railway sleepers changes with ambient climatic conditions. Microb Ecol 68(4):699–707

    Article  PubMed  Google Scholar 

  • GĂŒmral R, Özhak-Baysan B, TĂŒmgör A, Saraçlı MA, Yıldıran ƞT, Ilkit M, Zupančič J, Novak-Babič M, Gunde-Cimerman N, Zalar P, de Hoog GS (2016) Dishwashers provide a selective extreme environment for human-opportunistic yeast-like fungi. Fungal Divers 76(1):1–9

    Article  Google Scholar 

  • Gutierrez JR, Erickson LE (1977) Hydrocarbon uptake in hydrocarbon fermentations. Biotechnol Bioeng 19(9):1331–1349

    Article  CAS  PubMed  Google Scholar 

  • Halecky M, Rousova J, Paca J, Kozliak E, Seames W, Jones K (2015) Biofiltration of gasoline and diesel aliphatic hydrocarbons. J Air Waste Manage Assoc 65(2):133–144

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa Y, Yoshioka N, Obata H, Kawate S, Yoshizako F, Kaneda T, Tokuyama T (1990) Degradation of cyclohexanone by Exophiala jeanselmei. Nippon Nogeikagaku Kaishi 64(2):157–162

    Article  CAS  Google Scholar 

  • Heider J, SchĂŒhle K (2013) In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Berlin/Heidelberg, pp 605–634

    Chapter  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30(4):454–466

    Article  CAS  Google Scholar 

  • Hölker U, Bend J, Pracht R, Tetsch L, Muller T, Hofer M, de Hoog GS (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Antonie Van Leeuwenhoek 86(4):287–294

    Article  PubMed  CAS  Google Scholar 

  • Hug H, Fiechter A (1972) Assimilation of aliphatic hydrocarbons by Candida tropicalis. Arch Mikrobiol 88(2):77–86

    Article  Google Scholar 

  • Ishijima SA, Yamada T, Maruyama N, Abe S (2017) Candida albicans adheres to chitin by recognizing N-acetylglucosamine (GlcNAc). Med Mycol J 58(1):E15–E21

    Article  PubMed  Google Scholar 

  • Isola D, Selbmann L, Hoog GS, Fenice M, Onofri S, Prenafeta-BoldĂș F, Zucconi L (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175(5–6):369–379

    Article  PubMed  Google Scholar 

  • Isola D, Zucconi L, Onofri S, Caneva G, de Hoog GS, Selbmann L (2016) Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Divers 76(1):75–96

    Article  Google Scholar 

  • Janda-Ulfig K, Ulfig K, Cano J, Guarro J (2008) A study of the growth of Pseudallescheria boydii isolates from sewage sludge and clinical sources on tributyrin, rapeseed oil, biodiesel oil and diesel. Ann Agric Environ Med 15(1):45–49

    PubMed  Google Scholar 

  • Jin Y, Veiga MC, Kennes C (2006) Performance optimization of the fungal biodegradation of α-pinene in gas-phase biofilter. Process Biochem 41(8):1722

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeter Biodegr 45(1):57–88

    Article  CAS  Google Scholar 

  • Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74

    Article  Google Scholar 

  • Kaltseis J, Rainer J, De Hoog GS, Kaltseis J, Rainer J, De Hoog GS (2009) Ecology of Pseudallescheria and Scedosporium species in human-dominated and natural environments and their distribution in clinical samples. Med Mycol 47(4):398–405

    Article  CAS  PubMed  Google Scholar 

  • Kennes C, Veiga MC (2004) Fungal biocatalysts in the biofiltration of VOC-polluted air. J Biotechnol 113(1–3):305–319

    Article  CAS  PubMed  Google Scholar 

  • Kennes C, Veiga MC (2012) In: Singh SN (ed) Microbial degradation of xenobiotics. Springer, Berlin/Heidelberg, pp 177–188

    Chapter  Google Scholar 

  • Klepzig KD, Six DL (2004) Bark beetle-fungal symbiosis: context dependency in complex associations. Symbiosis 37(1–3):189–205

    Google Scholar 

  • Kobayashi T, Murai Y, Tatsumi K, Iimura Y (2009) Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost. Sci Total Environ 407(22):5805–5810

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39(12):4640–4646

    Article  CAS  PubMed  Google Scholar 

  • Kremer S, Anke H (1997) In: Anke T (ed) Fungal biotechnology. Chapman & Hall, Weinheim, pp 275–295

    Google Scholar 

  • Lamb DC, Lei L, Warrilow AGS, Lepesheva GI, Mullins JGL, Waterman MR, Kelly SL (2009) The first virally encoded cytochrome P450. J Virol 83(16):8266–8269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebrero R, LĂłpez JC, Lehtinen I, PĂ©rez R, Quijano G, Muñoz R (2016) Exploring the potential of fungi for methane abatement: performance evaluation of a fungal-bacterial biofilter. Chemosphere 144:97–106

    Article  CAS  PubMed  Google Scholar 

  • Leelaruji W, Buathong P, Kanngan P, Piamtongkam R, Chulalaksananukul S, Wattayakorn G, Chulalaksananukul W (2014) Potential of laccase produced from microfungus, Aureobasidium pullulans var. melanogenum, to degrade poly-aromatic hydrocarbons. Eur Chem Bull 3(3):269–272

    Google Scholar 

  • Lindley ND (1992) In: Arora DK, Elander RP, Mukerji KG (eds) Handbook of applied mycology. Marcel Dekker, New York, pp 905–929

    Google Scholar 

  • Lindley ND, Heydeman MT (1983) Uptake of vapour phase [14C]dodecane by whole mycelia of Cladosporium resinae. Microbiology 129(7):2301–2305

    Article  CAS  Google Scholar 

  • Little B, Ray R (2001) A review of fungal influenced corrosion. Corros Rev 19(5–6):401

    CAS  Google Scholar 

  • Luykx DMA, Prenafeta-BoldĂș FX, de Bont JAM (2003) Toluene monooxygenase from the fungus Cladosporium sphaerospermum. Biochem Biophys Res Commun 312:373–379

    Article  CAS  PubMed  Google Scholar 

  • Majcherczyk A, Johannes C, HĂŒttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzym Microb Technol 22(5):335–341

    Article  CAS  Google Scholar 

  • Marco-Urrea E, GarcĂ­a-Romera I, Aranda E (2015) Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32(6):620–628

    Article  CAS  Google Scholar 

  • Martin-Sanchez PM, NovĂĄkovĂĄÂĄ A, Bastian F, Alabouvette C, Saiz-Jimenez C (2012) Use of biocides for the control of fungal outbreaks in subterranean environments: the case of the Lascaux Cave in France. Environ Sci Technol 46(7):3762–3770

    Article  CAS  PubMed  Google Scholar 

  • Martin-Sanchez PM, Gorbushina AA, Kunte H-J, Toepel J (2016a) A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae. Biofouling 32(6):635–644

    Article  CAS  PubMed  Google Scholar 

  • Martin-Sanchez PM, Gorbushina AA, Toepel J (2016b) Quantification of microbial load in diesel storage tanks using culture- and qPCR-based approaches. Int Biodeter Biodegr 126:216–223

    Article  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60(6):551–565

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ (2006) Polysaccharides and phenolic compounds as substrate for yeasts isolated from rotten wood and description of Cryptococcus fagi sp.nov. Antonie Van Leeuwenhoek 90(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ, Kurtzman CP (2007) Four novel yeasts from decaying organic matter: Blastobotrys robertii sp. nov., Candida cretensis sp. nov., Candida scorzettiae sp. nov. and Candida vadensis sp. nov. Antonie Van Leeuwenhoek 92(2):233–244

    Article  PubMed  Google Scholar 

  • Middelhoven WJ, Scorzetti G, Fell JW (1999) Trichosporon guehoae sp.nov., an anamorphic basidiomycetous yeast. Can J Microbiol 45(8):686–690

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ, Scorzetti G, Fell JW (2000) Trichosporon veenhuisii sp. nov., an alkane-assimilating anamorphic basidiomycetous yeast. Int J Syst Evol Microbiol 50(1):381–387

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ, Fonseca A, Carreiro SC, Carlos Pagnocca F, Bueno OC (2003) Cryptococcus haglerorum, sp. nov., an anamorphic basidiomycetous yeast isolated from nests of the leaf-cutting ant Atta sexdens. Antonie Van Leeuwenhoek 83(2):167–174

    Article  CAS  PubMed  Google Scholar 

  • Moreno LF, Feng P, Weiss VA, Vicente VA, Stielow JB, de Hoog S (2017) Phylogenomic analyses reveal the diversity of laccase-coding genes in Fonsecaea genomes. PLoS One 12(2):e0171291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreno LF, Ahmed AAO, Brankovics B, Cuomo CA, Menken SBJ, Taj-Aldeen SJ, Faidah H, Stielow JB, de M Teixeira M, Prenafeta-BoldĂș FX, Vicente VA, de Hoog S (2018) Genomic understanding of an infectious brain disease from the desert. G3 (in press), 8, 300421

    Google Scholar 

  • Mulheirn L, Van Eyk J (1981) Microbiological oxidation of steroid hydrocarbons. Microbiology 126(2):267–275

    Article  CAS  Google Scholar 

  • Muncnerova D, Augustin J (1994) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons: a review. Bioresour Technol 48(2):97–106

    Article  Google Scholar 

  • Napolitano R, JuĂĄrez MP (1997) Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans. Arch Biochem Biophys 344(1):208–214

    Article  CAS  PubMed  Google Scholar 

  • Naranjo L, PernĂ­a B, Inojosa Y, Rojas D, D’Anna LS, GonzĂĄlez M, Sisto ÁD (2015) First evidence of fungal strains isolated and identified from naphtha storage tanks and transporting pipelines in Venezuelan oil facilities. Adv Microbiol 05(02):12

    Article  CAS  Google Scholar 

  • Nascimento MMF, Vicente VA, Bittencourt JVM, Gelinski JML, Prenafeta-BoldĂș FX, Romero-GĂŒiza M, Fornari G, Gomes RR, Santos GD, Gerrits Van Den Ende AHG, de Azevedo CDMPS, De Hoog GS (2017) Diversity of opportunistic black fungi on babassu coconut shells, a rich source of esters and hydrocarbons. Fungal Biol 121(5):488–500

    Article  CAS  PubMed  Google Scholar 

  • Onodera M, Sakai H, Endo Y, Ogasawara N (1990) Oxidation of short-chain isoalkanes by gaseous hydrocarbon assimilating mold, Scedosporium sp. A-4. Agric Biol Chem 53(7):1947–1989

    Google Scholar 

  • Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22(6):955–974

    Article  Google Scholar 

  • Parbery D (1971) Biological problems in jet aviation fuel and the biology of Amorphotheca resinae. Mater Org 6:161–208

    Google Scholar 

  • Passman FJ (2013) Microbial contamination and its control in fuels and fuel systems since 1980 – a review. Int Biodeter Biodegr 81:88–104

    Article  CAS  Google Scholar 

  • Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiol Ecol 51(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Pozdnyakova NN (2012) Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biotechnol Res Int 2012:20

    Article  CAS  Google Scholar 

  • Prenafeta-BoldĂș FX, Kuhn A, Luykx D, Anke H, van Groenestijn JW, de Bont JAM (2001a) Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 105(4):477–484

    Article  Google Scholar 

  • Prenafeta-BoldĂș FX, Luykx DMA, Vervoort J, de Bont JAM (2001b) Fungal metabolism of toluene: monitoring of fluorinated analogs by 19F nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 67(3):1030–1034

    Article  PubMed  PubMed Central  Google Scholar 

  • Prenafeta-BoldĂș FX, Vervoort J, Grotenhuis JTC, van Groenestijn JW (2002) Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Appl Environ Microbiol 68(6):2660–2665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prenafeta-BoldĂș FX, Summerbell R, de Hoog GS (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130

    Article  PubMed  CAS  Google Scholar 

  • Prenafeta-BoldĂș FX, Guivernau M, Gallastegui G, Viñas M, de Hoog GS, ElĂ­as A (2012) Fungal/bacterial interactions during the biodegradation of TEX hydrocarbons (toluene, ethylbenzene and p-xylene) in gas biofilters operated under xerophilic conditions. FEMS Microbiol Ecol 80(3):722–734

    Article  PubMed  CAS  Google Scholar 

  • Prince RC (2010) In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 2065–2078

    Chapter  Google Scholar 

  • Purchase D (2016) Fungal applications in sustainable environmental biotechnology. Springer, Cham

    Google Scholar 

  • Qi B, Moe W, Kinney K (2002) Biodegradation of volatile organic compounds by five fungal species. Appl Microbiol Biotechnol 58(5):684–689

    Article  CAS  PubMed  Google Scholar 

  • Qi B, Moe WM, Kinney KA (2005) Treatment of paint spray booth off-gases in a fungal biofilter. J Environ Eng ASCE 131(2):180–189

    Article  CAS  Google Scholar 

  • Rafin C, Potin O, Veignie E, Sancholle M (2000) Degradation of benzo[a]pyrene as sole carbon source by a non white rot fungus, Fusarium solani. Polycycl Aromat Compd 21(1):311–329

    CAS  Google Scholar 

  • Rafin C, Veignie E, Woisel P, Cazier F, Surpateanu G (2008) Modern multidisciplinary applied microbiology. Wiley-VCH, Weinheim, pp 546–550

    Google Scholar 

  • Raj HG, Saxena M, Allameh A (1992) In: Arora DK, Elander RP, Mukerji KG (eds) Handbook of applied mycology. Marcel Dekker, New York, pp 881–904

    Google Scholar 

  • Ralebitso-Senior TK, Senior E, Di Felice R, Jarvis K (2012) Waste gas biofiltration: advances and limitations of current approaches in microbiology. Environ Sci Technol 46(16):8542–8573

    Article  CAS  PubMed  Google Scholar 

  • Reddy CA, D’Souza TM (1994) Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev 13:137–152

    Article  CAS  PubMed  Google Scholar 

  • Rehm HJ, Reiff J (1981) In: Fiechter A (ed) Advances in biochemical engineering. Springer, Berlin, pp 175–215

    Google Scholar 

  • Rene ER, Veiga MC, Kennes C (2010) Biodegradation of gas-phase styrene using the fungus Sporothrix variecibatus: impact of pollutant load and transient operation. Chemosphere 79(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Restrepo-FlĂłrez J-M, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene – a review. Int Biodeter Biodegr 88:83–90

    Article  CAS  Google Scholar 

  • Restrepo-FlĂłrez J-M, Wood JA, Rehmann L, Thompson M, Bassi A (2015) Effect of biodiesel on biofilm biodeterioration of linear low density polyethylene in a simulated fuel storage tank. J Energy Resour Technol 137(3):032211-032211-032216

    Article  CAS  Google Scholar 

  • Reyes-CĂ©sar A, AbsalĂłn ÁE, FernĂĄndez FJ, GonzĂĄlez JM, CortĂ©s-Espinosa DV (2014) Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil. World J Microbiol Biotechnol 30(3):999–1009

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Perestelo F, Carnicero A, Regalado V, Perez R, De la Fuente G, Falcon MA (1996) Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiol Ecol 21(3):213–219

    Article  CAS  Google Scholar 

  • RodrĂ­guez-RodrĂ­guez CE, RodrĂ­guez E, Blanco R, Cordero I, Segura D (2010) Fungal contamination of stored automobile-fuels in a tropical environment. J Environ Sci 22(10):1595–1601

    Article  Google Scholar 

  • Rosenberg E (2013) In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Berlin/Heidelberg, pp 201–214

    Chapter  Google Scholar 

  • Ruiz-Dueñas FJ, Morales M, GarcĂ­a E, Miki Y, MartĂ­nez MJ, MartĂ­nez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60(2):441–452

    Article  PubMed  CAS  Google Scholar 

  • Saparrat MCN, MartĂ­nez MJ, Tournier HA, Cabello MN, Arambarri AM (2000) Production of ligninolytic enzymes by Fusarium solani strains isolated from different substrata. World J Microbiol Biotechnol 16(8):799–803

    Article  CAS  Google Scholar 

  • Sariaslani FS (1991) Microbial cytochromes P-450 and xenobiotic metabolism. Adv Appl Microbiol 36:133–178

    Article  CAS  PubMed  Google Scholar 

  • Satow MM, Attili-Angelis D, de Hoog GS, Angelis DF, Vicente VA (2008) Selective factors involved in oil flotation isolation of black yeasts from the environment. Stud Mycol 61(1):157–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikkema J, de Bont J, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton I (2001) In: Gadd G (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 79–96

    Chapter  Google Scholar 

  • Soriano AU, Martins LF, Santos de Assumpção Ventura E, Teixeira Gerken de Landa FH, de AraĂșjo Valoni É, Dutra Faria FR, Ferreira RF, Kremer Faller MC, ValĂ©rio RR, Catharine de Assis Leite D, Lima do Carmo F, Peixoto RS (2015) Microbiological aspects of biodiesel and biodiesel/diesel blends biodeterioration. Int Biodeter Biodegr 99:102–114

    Article  CAS  Google Scholar 

  • Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Growth of Candida albicans on hydrocarbons: influence on lipids and sterols. Microbios 64:260–261

    Google Scholar 

  • Spigno G, Pagella C, Fumi MD, Molteni R, de Faveri DM (2003) VOCs removal from waste gases: gas-phase bioreactor for the abatement of hexane by Aspergillus niger. Chem Eng Sci 58(3–6):739–746

    Article  CAS  Google Scholar 

  • Sprenger B, Rehm HJ (1983) Biomass production by Candida species from n-alkanes in a film-submerged reactor in comparison with known culture methods. Eur J Appl Microbiol Biotechnol 17(1):64–68

    Article  CAS  Google Scholar 

  • Steffen KT, Schubert S, Tuomela M, Hatakka A, Hofrichter M (2007) Enhancement of bioconversion of high-molecular mass polycyclic aromatic hydrocarbons in contaminated non-sterile soil by litter-decomposing fungi. Biodegradation 18(3):359–369

    Article  CAS  PubMed  Google Scholar 

  • Sutherland J (2003) Fungal biotechnology in agricultural, food, and environmental applications. CRC Press, New York, pp 443–456

    Google Scholar 

  • Syed K, Porollo A, Lam YW, Grimmett PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79(8):2692–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira MM, Moreno LF, Stielow BJ, Muszewska A, Hainaut M, Gonzaga L, Abouelleil A, PatanĂ© JSL, Priest M, Souza R, Young S, Ferreira KS, Zeng Q, da Cunha MML, Gladki A, Barker B, Vicente VA, de Souza EM, Almeida S, Henrissat B, Vasconcelos ATR, Deng S, Voglmayr H, Moussa TAA, Gorbushina A, Felipe MSS, Cuomo CA, de Hoog GS (2017) Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota). Stud Mycol 86:1–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetsch L, Bend J, Hölker U (2006) Molecular and enzymatic characterisation of extra- and intracellular laccases from the acidophilic ascomycete Hortaea acidophila. Antonie Van Leeuwenhoek 90(2):183–194

    Article  CAS  PubMed  Google Scholar 

  • Toledo AV, Virla E, Humber RA, Paradell SL, Lastra CCL (2006) First record of Clonostachys rosea (Ascomycota: Hypocreales) as an entomopathogenic fungus of Oncometopia tucumana and Sonesimia grossa (Hemiptera: Cicadellidae) in Argentina. J Invertebr Pathol 92(1):7–10

    Article  CAS  PubMed  Google Scholar 

  • Tomaselli Scotti C, Durand A (2000) Soil bioremediation by a fungal inoculum of Cunninghamella elegans produced by solid state cultivation. Agro Food Ind Hi Tech 11(4):37–40

    Google Scholar 

  • Trippe KM, Wolpert TJ, Hyman MR, Ciuffetti LM (2014) RNAi silencing of a cytochrome P450 monoxygenase disrupts the ability of a filamentous fungus, Graphium sp., to grow on short-chain gaseous alkanes and ethers. Biodegradation 25(1):137–151

    Article  CAS  PubMed  Google Scholar 

  • van den Brink HJM, van Gorcom RFM, van den Hondel CAMJJ, Punt PJ (1998) Cytochrome P450 enzyme systems in fungi. Fungal Genet Biol 23(1):1–17

    Article  PubMed  Google Scholar 

  • van Groenestijn JW, Liu JX (2002) Removal of alpha-pinene from gases using biofilters containing fungi. Atmos Environ 36(35):5501–5508

    Article  Google Scholar 

  • van Groenestijn JW, van Heiningen WNM, Kraakman NJR (2001) Biofilters based on the action of fungi. Water Sci Technol 44(9):227–232

    Article  PubMed  Google Scholar 

  • Vigueras G, Shirai K, HernĂĄndez-Guerrero M, Morales M, Revah S (2014) Growth of the fungus Paecilomyces lilacinus with n-hexadecane in submerged and solid-state cultures and recovery of hydrophobin proteins. Process Biochem 49(10):1606–1611

    Article  CAS  Google Scholar 

  • Voglmayr H, Mayer V, Maschwitz U, Moog J, Djieto-Lordon C, Blatrix R (2011) The diversity of ant-associated black yeasts: insights into a newly discovered world of symbiotic interactions. Fungal Biol 115(10):1077–1091

    Article  PubMed  Google Scholar 

  • Wainwright M (1993) In: Jennings DH (ed) Stress tolerance of fungi. Marcel Dekker, New York, pp 127–144

    Google Scholar 

  • Wang W-J, Wang X-L, Li Y, Xiao S-R, Kepler RM, Yao Y-J (2012) Molecular and morphological studies of Paecilomyces sinensis reveal a new clade in clavicipitaceous fungi and its new systematic position. Syst Biodivers 10(2):221–232

    Article  Google Scholar 

  • Weber FJ, Hage KC, de Bont JAM (1995) Growth of the fungus Cladosporium sphaerospermum with toluene as the sole carbon and energy source. Appl Environ Microbiol 61(10):3562–3566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winquist E, Björklöf K, Schultz E, RĂ€sĂ€nen M, Salonen K, Anasonye F, Cajthaml T, Steffen KT, JĂžrgensen KS, Tuomela M (2014) Bioremediation of PAH-contaminated soil with fungi – from laboratory to field scale. Int Biodeter Biodegr 86(Part C):238–247

    Article  CAS  Google Scholar 

  • Woertz JR, Kinney KA, McIntosh NDP (2001) Removal of toluene in a vapor-phase bioreactor containing a strain of the dimorphic black yeast Exophiala lecanii-corni. Biotechnol Bioeng 75:550–558

    Article  CAS  PubMed  Google Scholar 

  • Wolf HJ, Hanson RS (1980) Identification of methane-utilizing yeasts. FEMS Microbiol Lett 7(2):177–179

    Article  CAS  Google Scholar 

  • Wu Y-R, Luo Z-H, Kwok-Kei Chow R, Vrijmoed LLP (2010) Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresour Technol 101(24):9772–9777

    Article  CAS  PubMed  Google Scholar 

  • Yadav JS, Reddy CA (1993) Degradation of benzene, toluene, ethylbenzene and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59(3):756–762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yemashova NA, Murygina VP, Zhukov DV, Zakharyantz AA, Gladchenko MA, Appanna V, Kalyuzhnyi SV (2007) Biodeterioration of crude oil and oil derived products: a review. Rev Environ Sci Biotechnol 6(4):315–337

    Article  CAS  Google Scholar 

  • Zhang D, Yang Y, Leakey JEA, Cerniglia CE (1996) Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett 138(2–3):221–226

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zeng J, de Hoog G, Attili-Angelis D, Prenafeta-BoldĂș F (2010) Isolation and identification of black yeasts by enrichment on atmospheres of monoaromatic hydrocarbons. Microb Ecol 60(1):149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ZoBell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10:1–49

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the CERCA Programme/Generalitat de Catalunya and by the IRTA Seed Research Fund Program. Francesc Prenafeta-BoldĂș is the coordinator of the Consolidated Research Group TERRA, funded by the Generalitat de Catalunya (2017 SGR 1290). We are thankful to Leandro Moreno for the critical reading of the manuscript. The collaboration of Daniela Isola, Derlene Attili de Angelis, and Fernando Carlos Pagnocca in providing graphical material is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc X. Prenafeta-BoldĂș .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prenafeta-BoldĂș, F.X., de Hoog, G.S., Summerbell, R.C. (2019). Fungal Communities in Hydrocarbon Degradation. In: McGenity, T. (eds) Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology . Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-030-14785-3_8

Download citation

Publish with us

Policies and ethics