Skip to main content

Phytoalexins in Orchids

  • Living reference work entry
  • First Online:
Orchids Phytochemistry, Biology and Horticulture

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 38 Accesses

Abstract

The plant kingdom harbors a number of chemicals called phytoalexins, as natural products, which are secreted temporarily whenever plants are attacked by any kind of microbe or pathogen. The family Orchidaceae synthesizes phytoalexins in their system as defensive compounds. These bioactive compounds act as antimicrobials upon attack by any kind of microbe or fungi in orchids. There are few reports in literature regarding the phytoalexins. This chapter reviews phytoalexins in the monocot family Orchidaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Braga MR et al (1991) Phytoalexins induction in Rubiacea. J Chem Ecol 17:1079–1090

    Article  CAS  Google Scholar 

  2. Grayer RJ, Kokubun T (2015) Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56:253–263

    Article  Google Scholar 

  3. Arruda RL, Santana Paz AT, Freitas Bara MT, Côrtes MVCB, Filippi MCC, Conceição EC (2016) An approach on phytoalexins: function, characterization and biosynthesis in plants of the family Poaceae. Ciência Rural 46(7):1206–1216. https://doi.org/10.1590/0103-8478cr20151164

    Article  CAS  Google Scholar 

  4. Cavalcanti LS et al (2005) Aspectos bioquímicos e moleculares da resistência induzida. In: Cavalcanti LS et al (eds) Indução de resistência em plantas a patógenos e insetos, vol 81. FEALQ, Piracicaba, p 124

    Google Scholar 

  5. Boller AH, Corrodi F, Gaumann E et al (1957) Uber induzierte Abwehrstoffe bei Orchideen Pt. 1. Helv Chim Acta 40:1062–1066

    Article  CAS  Google Scholar 

  6. Hardegger E, Schellenbaum M, Corrodi H (1963) Uber induzierte Abwehrstoffe bei Orchideen II. Helv Chim Acta 46:1171–1180

    Article  CAS  Google Scholar 

  7. Ward EWB, Urwin CH, Stoessl A (1975) Loroglossal: an orchid phytoalexin. Phytopathology 65(5):632–633. Jeandet P, Delaunois B, Conreux A, Donnez D, Nuzzo V, Cordelier S, Clément C, Courot E (2010) Biosynthesis, metabolism, molecular engineering and biological functions of stilbene phytoalexins in plants. Biofactors 36:331–341

    Article  CAS  Google Scholar 

  8. Jeandet P, Clément C, Courot E, Cordelier S (2013) Modulation of phytoalexin biosynthesis in engineered plants for disease resistance. Int J Mol Sci 14:14136–14170

    Article  Google Scholar 

  9. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defence against pathogens. Trends Plant Sci 17(2):73–90

    Article  CAS  Google Scholar 

  10. Jeandet P, Delaunois B, Conreux A, Donnez D (2010) Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. Biofactors 36(5):331–341

    Article  CAS  Google Scholar 

  11. Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol 138:2245–2259

    Article  CAS  Google Scholar 

  12. Kaimoyo E, VanEtten HD (2008) Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin. Phytochemistry 69:76–87

    Article  CAS  Google Scholar 

  13. Schmelz EA, Huffaker A, Sims JW, Christensen SA, Lu X, Okada K, Peters RJ (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79:659–678

    Article  CAS  Google Scholar 

  14. Müller K, Borger H (1940) Experimentelle Untersuchungen uber die Phytophthora-Resistenz der Kartoffel. Arb. BioI. Reichsanstalt, Berlin. Land-u Forstwirtsch. 23:189–231

    Google Scholar 

  15. Pedras MSC, Yaya EE, Glawischnig E (2011) The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep 28:1381–1405

    Article  CAS  Google Scholar 

  16. Bednarek P (2012) Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity. Chembiochem 13:1846–1859

    Article  CAS  Google Scholar 

  17. Favaron F, Lucchetta M, Odorizzi S, Cunha AT, Sella L (2009) The role of grape polyphenols on trans-resveratrol activity against Botrytis cinerea and of fungal laccase on the solubility of putative grape PR proteins. J Plant Pathol 91(3):579–588

    CAS  Google Scholar 

  18. Timperio AM, Alesndro AD, Fagioni M, Magro P (2012) Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions. Plant Physiol Biochem 50(1):65–71

    Article  CAS  Google Scholar 

  19. Mercier J, Arul J, Ponnampalam R, Boulet M (1993) Induction of 6-methoxymellein and resistance to storage pathogens in carrot slices by UV-C. J Phytopathol 137:44–54

    Article  CAS  Google Scholar 

  20. Hoffman R, Heale JB (1987) Cell death, 6-methoxymellein accumulation, and induced resistance to Botrytis cinerea in carrot root slices. Physiol Mol Plant Pathol 30:67–75

    Article  CAS  Google Scholar 

  21. Kurosaki F, Nishi A (1983) Isolation and antimicrobial activity of the phytoalexin 6-methoxymellein from cultured carrot cells. Phytochemistry 22(3):669

    Article  CAS  Google Scholar 

  22. Jeandet P (2015) Phytoalexins: current progress and future prospects. Molecules 20(2):2770–2774

    Article  CAS  Google Scholar 

  23. Lopez MA, Bannenberg G, Castresana C (2008) Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr Opin Plant Biol 11:420–427

    Article  CAS  Google Scholar 

  24. Mialoundama AS, Heintz D, Debayle D, Rahier A, Camara B, Bouvier F (2009) Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. Plant Physiol 150(3):1556–1566

    Article  CAS  Google Scholar 

  25. Lee SK, Lee HJ, Min HY, Park EJ, Lee KM, Ahn YN, Cho YJ, Pyee JH (2005) Antibacterial and antifungal activity of pinosylvin, a constituent of pine. Fitoterapia 76(2):258–260

    Article  CAS  Google Scholar 

  26. Reinecke T, Kindl H (1993) Characterization of bibenzyl synthase catalysing the biosynthesis of phytoalexins of orchids. Phytochemistry 35(1):63–66

    Article  Google Scholar 

  27. Stoessl A, Arditti J (1984) Orchid phytoalexins. In: Arditti J (ed) Orchid biology, reviews and perspectives, III. Cornell University Press, Ithaca/London

    Google Scholar 

  28. Reinecke T, Kindl H (1994) Characterization of bibenzyl synthase catalysing the biosynthesis of phytoalexins of orchids. Phytochemistry 35:63–66

    Article  CAS  Google Scholar 

  29. Burges A (1939) The defensive mechanism in orchid mycorrhiza. New Phytol 38(3):273–283

    Article  Google Scholar 

Download references

Acknowledgments

English language assistance from Dr. H.S. Sekhon is acknowledged with deep gratitude.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaur, S. (2021). Phytoalexins in Orchids. In: Merillon, JM., Kodja, H. (eds) Orchids Phytochemistry, Biology and Horticulture. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11257-8_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11257-8_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11257-8

  • Online ISBN: 978-3-030-11257-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics