Skip to main content

A Model for Resin Flow

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Resins are plant exudates of economic importance composed of volatile and nonvolatile compounds, sometimes including gum, that are used by plants mostly as defense against invading pathogens. They are synthesized by epithelial cells surrounding intercellular spaces, called ducts, where they are stored under pressure. Despite the differences in the structure and distribution of resin ducts between gymnosperms and angiosperms, as well as in the mechanisms of resin loading, there are similarities in the importance of resin in both groups of plants. This chapter presents a model that applies the unsteady Stokes equation and describes resin flow in plants, considering resin viscosity, the structure of resin ducts, and a pressure-driven granulocrinous loading of resin through the duct wall. Resin flow is shown to increase towards the duct open end. Both flow and pressure within the duct depend on the loading of resin and on the duct specific resistance, which depends on the duct geometry, viscosity, and duct wall permeability to resin. The dynamics of flow within resin ducts seems physiologically advantageous for the defense role commonly attributed to resin and agrees with previous measurements and observations. Understanding how resin flow is affected by these physiological and morphological parameters might be useful not only to better understand the physiological role of resin but also improve and develop more efficient and sustainable tapping methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Doyle JA (2002) Phylogeny of vascular plants. Annu Rev Ecol Syst 29(1):567–599

    Article  Google Scholar 

  2. Armbruster W (1984) The role of resin in angiosperm pollination. Am J Bot 71(8):1149–1160

    Article  Google Scholar 

  3. Fahn A, Werker E (2013) Anatomical mechanisms of seed dispersal. In: Seed biology. Academic Press, Inc., New York, pp 151–221

    Google Scholar 

  4. Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Missouri Bot Gard 68(2):301–322

    Article  Google Scholar 

  5. Langenheim JH (2003) Plant resins: chemistry, evolution, ecology, and ethnobotany. Timber Press, Portland

    Google Scholar 

  6. Mantell CL (1950) The natural hard resins-their botany, sources and utilization. Econ Bot 4(3):203–242

    Article  Google Scholar 

  7. Nair MNB (1995) Some notes on gum and resin ducts and cavities in angiosperms. In: Encyclopedia of plant anatomy, vol 9. Gebrüder Borntraeger, Berlin, pp 317–340

    Google Scholar 

  8. Bäck J, Aalto J, Henriksson M, Hakola H, He Q, Boy M (2012) Chemodiversity of a scots pine stand and implications for terpene air concentrations. Biogeosciences 9(2):689–702

    Article  CAS  Google Scholar 

  9. Bannan MW (1936) Vertical resin ducts in the cecondary wood of the Abietineae. New Phytol 35(1):11–46

    Article  Google Scholar 

  10. Wiedenhoeft AC, Miller RB (2002) Brief comments on the nomenclature of softwood axial resin canals and their associated cells. IAWA J 23(3):299–303

    Article  Google Scholar 

  11. Kibblewhite RP, Thompson NS (1973) The ultrastructure of the middle lamella region in resin canal tissue isolated from slash pine holocellulose. Wood Sci Technol 7(2):112–126

    Article  Google Scholar 

  12. McAinsh MR, Taylor JE (2017) Cell signalling mechanisms in plants. In: eLS. John Wiley & Sons Ltd, Chichester. pp 1–9. http://www.els.net [https://doi.org/10.1002/9780470015902.a0026507]

  13. Thompson GA, Wang HL (2016) Phloem. Encycl Appl Plant Sci 1:110–118

    Google Scholar 

  14. Franceschi VR, Krekling T, Christiansen E (2002) Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am J Bot 89(4):578–586

    Article  CAS  PubMed  Google Scholar 

  15. Krokene P, Solheim H, Krekling T, Christiansen E (2003) Inducible anatomical defense responses in Norway spruce stems and their possible role in induced resistance. Tree Physiol 23(3):191–197

    Article  PubMed  Google Scholar 

  16. Nagy NE, Franceschi VR, Solheim H, Krekling T, Christiansen E (2000) Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): anatomy and cytochemical traits. Am J Bot 87(3):302–313

    Article  CAS  PubMed  Google Scholar 

  17. Sawidis T, Dafnis S, Weryzko-Chmielewska E (2000) Distribution, development and structure of resin ducts in Pistacia lentiscus var. chia Duhamel. Flora 195(1):83–94

    Article  Google Scholar 

  18. Krokene P, Nagy NE (2012) Anatomical aspects of resin-based defences in pine. In: Fett-Neto AG, Rodrigues-Corrêa KCS (eds) Pine resin: biology, chemistry and applications. Research Signpost, Trivandrum, pp 67–86

    Google Scholar 

  19. Krokene P, Nagy NE, Krekling T (2008) Traumatic Resin Ducts and Polyphenolic Parenchyma Cells in Conifers. In: Schaller A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht

    Google Scholar 

  20. Stark RW (1965) Recent trends in forest entomology. Annu Rev Entomol 10:303–324

    Article  Google Scholar 

  21. Hanes CS (1927) Resin canals in seedling conifers. Bot J Linn Soc Lond Bot 47(318):613–636

    Article  Google Scholar 

  22. Werker E, Fahn A (1969) Resin ducts of Pinus halepensis Mill. – their structure, development and pattern of arrangement. Bot J Linn Soc 62:379–411

    Article  Google Scholar 

  23. Wu H, Hu ZH (1997) Comparative anatomy of resin ducts of the Pinaceae. Trees Struct Funct 11(3):135–143

    Article  Google Scholar 

  24. Chan L (1986) The anatomy of the bark of Agathis in New Zealand. IAWA Bull 7(3):229–241

    Article  Google Scholar 

  25. Hudgins JW, Christiansen E, Franceschi VR (2004) Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: a phylogenetic perspective. Tree Physiol 24(3):251–264

    Article  CAS  PubMed  Google Scholar 

  26. Mastroberti AA, Mariath JEA (2003) Leaf anatomy of Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae). Rev Bras Botânica 26(3):343–353

    Google Scholar 

  27. Suzuki M (1979) The course of resin canals in the shoots of conifers – II. Araucariaceae, Cupressaceae and Taxodiaceae. Bot Mag Tokyo 92(3):253–274

    Article  Google Scholar 

  28. Burrows GE, Bullock S (1999) Leaf anatomy of Wollemi pine (Wollemia nobilis, Araucariaceae). Aust J Bot 47(5):795–806

    Article  Google Scholar 

  29. Heady RD, Banks JG, Evans PD (2002) Wood anatomy of Wollemi pine (Wollemia nobilis, Araucariaceae). IAWA J 23(4):339–357

    Article  Google Scholar 

  30. Ghimire B, Lee C, Heo K (2015) Comparative wood anatomy of Taxaceae. Aust Syst Bot 28(3):160–172

    Article  Google Scholar 

  31. Watson L, Dallwitz MJ (2008) The families of gymnosperms. [Online]. Available: https://www.delta-intkey.com/gymno/index.htm. Accessed 4 Jun 2019

  32. Yamanaka K (1989) Formation of traumatic phloem resin canals in Chamaecyparis obtusa. IAWA Bull 10:384–394

    Article  Google Scholar 

  33. Hu YS, Wang FH (2006) Anatomical studies of Cathaya (Pinaceae). Am J Bot 71(5):727

    Article  Google Scholar 

  34. Hutchinson AH (1917) Morphology of Keteleeria fortunei. Bot Gaz 63(2):124–134

    Article  Google Scholar 

  35. Fahn A, Werker E, Ben-Tzur P (1979) Seasonal effects of wounding and growth substances on development of traumatic resin ducts in Cedrus Libani. New Phytol 82(2):537–544

    Article  CAS  Google Scholar 

  36. Esteban LG, Gasson P, Climent JM, Palacios P, Guindelo A (2005) The wood of Pinus canariensis and its resinous heartwood. IAWA J 26(1):69–77

    Article  Google Scholar 

  37. Wooding FBP, Northcote DH (1965) The fine structure of the mature resin canal cells of Pinus pinea. J Ultrasruct Res 13(3–4):233–244

    Article  CAS  Google Scholar 

  38. Li A, Wang Y, Wu H (2009) Initiation and development of resin ducts in the major organs of Pinus massoniana. Front For China 4(4):501–507

    Article  Google Scholar 

  39. Benayoun J, Fahn A (1979) Intracellular transport and elimination of resin from epithelial duct-cells of Pinus halepensis. Ann Bot 43(2):179–181

    Article  Google Scholar 

  40. Ferreira ATB, Tomazello-Filho M (2012) Anatomical aspects of resin canals and oleoresin production in pine trees. In: Fett-Neto AG, Rodrigues-Corrêa KCS (eds) Pine resin: biology, chemistry and applications. Research Signpost, Trivandrum, pp 9–24

    Google Scholar 

  41. Sudo S (1968) Anatomical studies on the wood of species of Picea, with some considerations on their geographical distribution and taxonomy. Tokyo Bull Gov For Exp Stn 215:39–130

    Google Scholar 

  42. Koch P (1972) Utilization of the southern pines, vol 1. U.S. Department of Agriculture Forest Service, Washington, DC

    Google Scholar 

  43. Koch P (1972) Utilization of the Southern Pines, vol 2. U.S. Department of Agriculture Forest Service, Washington, DC

    Google Scholar 

  44. Bannan MW (1965) Ray contacts and rate of anticlinal division in fusiform cambial cells of some Pinaceae. Can J Bot 43(5):488–507

    Article  Google Scholar 

  45. Münch E (1923) Zur Anatomie der Harzgänge von Pinus silvestris. Bot Arch 4:195–200

    Google Scholar 

  46. Bailey IW, Faull FA (1934) The cambium and its derivative tissues. IX. Structural variability in the redwood, Sequoia sempervirens, and its significance in the identification of fossil woods. J Arnol Arbor 15(4):233–254

    CAS  Google Scholar 

  47. Baas P et al (2004) IAWA list of microscopic features for softwood identification. IAWA J 25(1):1–70

    Article  Google Scholar 

  48. Wimmer R, Grabner M, Strumia G, Sheppard PR (1999) Significance of vertical resin ducts in the tree rings of spruce. In: Tree ring analysis: biological, methodologial and environmental aspects, no 1972, pp 107–118

    Google Scholar 

  49. Zhang C, Fujii T, Abe H, Fujiwara T, Fujita M, Takabe K (2008) Anatomical features of radial resin canals in Pinus Densiflora. IAWA J 29(2):179–187

    Article  Google Scholar 

  50. LaPasha CA, Wheeler EA (1990) Resin canals in Pinus Taeda: longitudinal Canal lengths and interconnections between longitudinal and radial canals. IAWA J 11(3):227–238

    Article  Google Scholar 

  51. Roberts DR (1970) Within-tree variation of monoterpene hydrocarbon composition of slash pine oleoresin. Phytochemistry 9(4):809–815

    Article  CAS  Google Scholar 

  52. Zavarin E, Snajberk K (1965) Chemotaxonomy of the genus Abies – I.: survey of the terpenes present in the Abies balsams. Phytochemistry 4(1):141–148

    Article  CAS  Google Scholar 

  53. Zavarin E (1968) Chemotaxonomy of the genus Abies – II: within tree variation of the terpenes in cortical oleoresin. Phytochemistry 7(1):99–107

    Article  CAS  Google Scholar 

  54. Blanchette RA (1992) Anatomical responses of xylem to injury. In: Defense mechanisms of woody plants against fungi. Springer, Berlin, pp 76–95

    Chapter  Google Scholar 

  55. Shigo AL (1984) Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves. Annu Rev Phytopathol 22(1):189–214

    Article  Google Scholar 

  56. Moore KE (1978) Barrier-zone formation in wounded stems of sweetgum. Can J For Res 8:389–397

    Article  Google Scholar 

  57. Wong BL, Berryman AA (2007) Host resistance to the fir engraver beetle. 3. Lesion development and containment of infection by resistant Abies grandis inoculated with Trichosporium symbioticum. Can J Bot 55(17):2358–2365

    Article  Google Scholar 

  58. Barabé D, Gibernau M, Forest F (2002) Zonal termogenic dynamics of two different subgenera (Araceae). Bot J Linn Soc 138:1–9

    Article  Google Scholar 

  59. Venning FD (1948) The ontogeny of the laticiferous canals in the anacardiaceae. Am J Bot 35:637–644

    Article  Google Scholar 

  60. Chouteau M, Barabé D, Gibernau M (2009) Flowering and thermogenetic cycles in two species of Monstera (Araceae). Bull Soc Hist Nat Toulouse 145(1):1–17

    Google Scholar 

  61. Joel D, Fahn A (1980) Ultrastructure of the resin ducts of Mangifera indica L.(Anacardiaceae). 3. Secretion of the protein-polysaccharide mucilage in the fruit. Ann Bot 46(January):785–790

    Article  Google Scholar 

  62. Setia RC, Parthasarathy MV, Shah JJ (1977) Development, histochemistry and ultrastructure of gum- resin ducts in commiphora mukul engl. Ann Bot 41:999–1004

    Article  Google Scholar 

  63. Nair GM, Venkaiah K, Shah JJ (1983) Ultrastructure of gum-resin ducts in cashew (Anacardium occidentale). Ann Bot 51(3):297–305

    Article  Google Scholar 

  64. Venkaiah K, Shah JJ (1984) Distribution, deve. and structure of gum ducts in Lannea coromandelica (Houtt) Merril. Ann Bot 54:175–186

    Article  Google Scholar 

  65. den Outer RW, van Veenendaal WLH (1986) Distribution and development of secretory ducts in Trichoscypha (Anacardiaceae). Acta Bot Neerl 35(4):425–435

    Article  Google Scholar 

  66. Joel DMD, FAHN A (1980) Ultrastructure of the resin ducts of Mangifera indica L.(Anacardiaceae). 2. Resin secretion in the primary stem ducts. Ann Bot 46(6):779–783

    Article  Google Scholar 

  67. Sulborska A (2007) Distribution and structure of internal secretory reservoirs on the vegetative organs of Inula helenium L. (Asteraceae). Acta Agrobot 60(1):1–12

    Article  Google Scholar 

  68. Appanah S, Turnbull JM (1998) A review of dipterocarps: taxonomy, ecology and silviculture. Center for International Forestry Research, Bogor

    Google Scholar 

  69. Parameswaran N, Conrad H (1982) Wood and bark anatomy of Balanites aegyptiaca in relation to ecology and taxonomy. IAWA Bull 3(2):75–88

    Article  Google Scholar 

  70. Webber IE (1936) Systematic anatomy of the woods of the Simarubaceae. Am J Bot 23(9):577–587

    Article  Google Scholar 

  71. Solereder H (1908) Systematic anatomy of the dicotyledons, vol I. Clarendon Press, Oxford

    Google Scholar 

  72. Solereder H (1908) Systematic anatomy of the dicotyledons, vol II. Clarendon Press, Oxford

    Google Scholar 

  73. Venkaiah K (1990) Ultrastructure of gum-resin ducts in Ailanthus excelsa Roxb. Feddes Repert 101(1–2):63–68

    Google Scholar 

  74. Venkaiah K (1982) Investigation on gum/gum-resin producing tissue systems in some tropical trees. Sardar Patel University, Vallabh Vidyanagar, India

    Google Scholar 

  75. Bhatt JR, Mohan Ram HY (1992) Development and ultrastructure of primary secretory ducts in the stem of Semecarpus anacardium (Anacardiaceae). IAWA Bull 13(2):173–185

    Article  Google Scholar 

  76. Kolalite MR, Oskolski AA, Richter HG, Schmitt U (2003) Bark anatomy and intercellular canals in the stem of Delarbrea paradoxa (Araliaceae). IAWA J 24(2):139–154

    Article  Google Scholar 

  77. Bhatt JR (1987) Development and structure of primary secretory ducts in the stem of Commiphora wightii (Burseraceae). Ann Bot 10:405–416

    Article  Google Scholar 

  78. Palermo FH, Rodrigues MIA, de Nicolai J, Machado SR, Rodrigues TM (2018) Resin secretory canals in Protium heptaphyllum (Aubl.) Marchand. (Burseraceae): a tridimensional branched and anastomosed system. Protoplasma 255(3):899–910

    Article  CAS  PubMed  Google Scholar 

  79. Nair GM, Patel KR, Shah JJ (1981) Histological changes in the gum-resin producing cell system in Commiphora mukul Engl. induced by mechanical injury. Proc Indian Acad Sci Plant Sci 90(2):129–136

    Article  Google Scholar 

  80. Nair MNB, Subrahmanyam SV (1998) Ultrastructure of the epithelial cells and oleo-gumresin secretion in Boswellia serrata (Burseraceae). IAWA Bull 19(4):415–427

    Article  Google Scholar 

  81. Fahn A, Evert RFAYF (1974) Ultrastructure of the secretory ducts of Rhus glabra L. Am J Bot 61(1):1–14

    Article  Google Scholar 

  82. Rodrigues TM, Teixeira S d P, Machado SR (2011) The oleoresin secretory system in seedlings and adult plants of copaíba (Copaifera langsdorffii Desf., Leguminosae-Caesalpinioideae). Flora Morphol Distrib Funct Ecol Plants 206(6):585–594

    Article  Google Scholar 

  83. Harada M (1937) On the distribution and construction of the resin canals in Rhus succedanea. Bot Mag Tokyo LI(611):846–856

    Article  Google Scholar 

  84. Peterson RL, Scott MG, Ellis BE (1978) Structure of a stem-derived callus of Ruta graveolens: meristems, leaves, and secretory structures. Can J Bot 56(21):2717–2729

    Article  Google Scholar 

  85. Fahn A, Joel DM (1976) Development of primary secretary ducts in the stem of Mangifera indica L. (Anacardiaceae). Gard Bull 29:161–1645

    Google Scholar 

  86. Rodrigues TM, Dos Santos DC, MacHado SR (2011) The role of the parenchyma sheath and PCD during the development of oil cavities in Pterodon pubescens (Leguminosae-Papilionoideae). Comptes RendusBiol 334(7):535–543

    Article  Google Scholar 

  87. Babu AM, Nair GM, Shah JJ (1987) Traumatic gum-resin cavities in the stem of Ailanthus excelsa Roxb. IAWA Bull 8(2):167–174

    Article  Google Scholar 

  88. Babu AM (1985) Studies on normal and induced gum/gum-resin producing tissue systems in some dicots. Sardar Patel University, Vallabh Vidyanagar, India

    Google Scholar 

  89. Angyalossy V et al (2016) IAWA list of microscopic bark features. IAWA J 37(4):517–615

    Article  Google Scholar 

  90. Subrahmanyam SV (1981) Studies on gum/gum resin producing tissue systems in some tropical trees. Sardar Patel University, Vallabh Vidyanagar, India

    Google Scholar 

  91. Tolera M, Menger D, Sass-Klaassen U, Sterck FJ, Copini P, Bongers F (2013) Resin secretory structures of Boswellia papyrifera and implications for frankincense yield. Ann Bot 111(1):61–68

    Article  PubMed  Google Scholar 

  92. Tolera M, Sass-Klaassen U, Eshete A, Bongers F, Sterck F (2015) Frankincense yield is related to tree size and resin-canal characteristics. For Ecol Manag 353:41–48

    Article  Google Scholar 

  93. Birchem R, Brown CL (1979) Ultrastructure of Paraquat-treated slash pine (Pinus elliottii Engelm.). Am J Bot 66(10):1208

    Article  CAS  Google Scholar 

  94. Dell B, Mccomb AJ (1977) Glandular hair formation and resin secretion in Eremophila fraseri F. Meull (Myoporaceae). Protoplasma 92:71–86

    Article  Google Scholar 

  95. Fahn A, Benayoun J (1976) Ultrastructure of resin ducts in Pinus helapensis development, possible sites of resin synthesis, and mode of its elimination from the protoplast. Ann Bot 40(2):857–863

    Article  Google Scholar 

  96. Singh B, Sharma RA (2015) Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 5(2):129–151

    Article  PubMed  Google Scholar 

  97. Turner GW, Parrish AN, Zager JJ, Fischedick JT, Lange BM (2019) Assessment of flux through oleoresin biosynthesis in epithelial cells of loblolly pine resin ducts. J Exp Bot 70(1):217–230

    Article  PubMed  Google Scholar 

  98. Brenda W-S (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant 107(1):142–149

    Article  Google Scholar 

  99. Belingheri L, Pauly G, Gleizes M, Marpeau A (1988) Isolation by an aqueous two-polymer phase system and identification of Endomembranes from Citrofortunella mitis fruits for Sesquiterpene hydrocarbon synthesis. J Plant Physiol 132(1):80–85

    Article  CAS  Google Scholar 

  100. Gleizes M, Carde J-P, Pauly G, Bernard-Dagan C (1980) In vivo formation of sesquiterpene hydrocarbons in the endoplasmic reticulum of pine. Plant Sci Lett 20(2):79–90

    Article  CAS  Google Scholar 

  101. Nair GM, Patel KR, Subrahmanyam SV (1981) Secretion of resin across the wall of the epithelial cell in the gum-resin canal of Commiphora mukul Engl. Ann Bot 47:419–421

    Article  Google Scholar 

  102. Venkaiah K (1992) Development, ultrastructure and secretion of gum ducts in Lannea coromandelica (Houtt.) Merrill (Anacardiaceae). Ann Bot 69(5):449–457

    Article  Google Scholar 

  103. Gilliland MG, Appleton MR, Van Staden J (2017) Gland cells in Resin Canal epithelia in guayule (Parthenium argentatum) in relation to resin and rubber production. Ann Bot 61(1):55–64

    Article  Google Scholar 

  104. Gunning BES, Pate JS (1969) ‘Transfer cells’ plant cells with wall ingrowths, specialized in relation to short distance transport of solutes-their occurrence, structure, and development. Protoplasma 68(1–2):107–133

    Article  Google Scholar 

  105. Gayathri R, Ganapathy RS (2018) Extraction and characterization of thegum isolated from Araucaria Heterophylla. Int J Pharm Sci Res 9(3):1062–1067

    CAS  Google Scholar 

  106. Tappert R, Wolfe AP, McKellar RC, Tappert MC, Muehlenbachs K (2011) Characterizing modern and fossil gymnosperm exudates using micro-Fourier transform infrared spectroscopy. Int J Plant Sci 172(1):120–138

    Article  CAS  Google Scholar 

  107. Mollenhauer HH, Morré DJ (1966) Golgi apparatus and plant secretion. Annu Rev Plant Physiol Plant Mol Biol 17:27–46

    Article  Google Scholar 

  108. Greenwood C, Morey P (1982) Gummosis in honey Mesquite. Bot Gaz 140(1):32–38

    Article  Google Scholar 

  109. Northcote D, Pickett-Heaps J (1966) A function of the Golgi apparatus in polysaccharide synthesis and transport in the root-cap cells of wheat. Biochem J 98(1):159–167

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Morrison JC, Polito VS (1985) Gum duct development in almond fruit, Prunus dulcis (Mill.) D. A. Webb. Bot Gaz 146(1):15–25

    Article  Google Scholar 

  111. Gedalovich E, Fahn A (1985) Ethylene and gum duct formation in citrus. Ann Bot 56(5): 571–577

    Article  CAS  Google Scholar 

  112. Schopmeyer CS, Mergen F, Evans TC (1954) Applicability of Poiseuille’s law to exudation of oleoresin from wounds on slash pine. Plant Physiol 29(2):82–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cabrita P (2018) Resin flow in conifers. J Theor Biol 453:48

    Article  PubMed  Google Scholar 

  114. Büsgen M, Münch E (1929) The structure and life of Forest trees. Chapman & Hall, Ltd., London

    Google Scholar 

  115. Hodges JD, Elam WW, Watson WF (1977) Physical properties of the oleoresin system of the four major southern pines. Can J For Res 7:520–525

    Article  Google Scholar 

  116. Hodges JD, Elam WW, Bluhm DR (1981) Influence of resin duct size and number on dleoresin 915 flow in the Southern Pines. Res. Note SO-266. New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 3 p

    Google Scholar 

  117. Rissanen K et al (2015) Diurnal patterns in scots pine stem oleoresin pressure in a boreal forest. Plant Cell Environ 39(3):527–538

    Article  PubMed  CAS  Google Scholar 

  118. Rissanen K (2014) Oleoresin pressure in Scots pine (Pinus sylvestris L.) and its connections to environmental variables, tree’s water balance and monoterpene emissions from the trunk. University of Helsinki, Helsinki, Finland

    Google Scholar 

  119. Neher HV (1993) Effects of pressures inside Monterey pine trees. Trees 8(1):9–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Cabrita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cabrita, P. (2019). A Model for Resin Flow. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics