Skip to main content

Approaches for Modeling and Optimization of the Secondary Metabolite Production by Plant Biotechnology Methods

  • Living reference work entry
  • First Online:
  • 220 Accesses

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

The production of secondary metabolites on a large scale by plant biotechnology methods is achievable by optimizing cells, tissues, and plant organs culture techniques in bioreactors. In order to make this production economically viable, the researchers have developed several biotechnological strategies that maximize the yields of these metabolites, namely, the selection of high-performance cell or HR lines, the elicitation, the improvement of culture medium composition, the precursor feeding, the cells permeabilization, and the optimization of the environmental conditions. These strategies are often used simultaneously and depend on a large number of factors which renders the physiological response of plant cells very complex. Mathematical modeling simplifies the study and the optimization of the secondary metabolite production. Indeed, the mathematical model fitted to the experimental data describes the relationships between the factors involved in an experiment and their influence on biomass and secondary metabolite yield; this makes it easy to predict optimal conditions for production. This chapter will review the theory of some modeling approaches used in plant biotechnology, namely, Response Surface Method (RSM), Artificial Neural Network (ANN), Kriging and the ANN-RSM combined approach, as well as the main studies for these modeling approaches.

This is a preview of subscription content, log in via an institution.

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

AAD:

Absolute Average Deviation

ANN:

Artificial Neural Network

ANOVA:

Analysis of variance

BAP:

N6-benzylaminopurine

BBD:

Box-Behnken Design

CCD:

Central Composite Design

DW:

Dry Weight

FFD:

Fractional Factorial Design

FW:

Fresh Weight

HRs:

Hairy Roots

IAA:

Indole-3-acetic acid

Kin:

Kinetin

MS:

Murashige & Skoog

NAA:

1-Naphthaleneacetic acid

PBD:

Plackett-Burman Design

R2:

Coefficient of determination

RMSE:

Root Mean Square Error

RSM:

Response Surface Methodology

References

  1. Balandrin MJ, Klocke JA (1988) Medicinal, aromatic and industrial materials from plants. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Medicinal and aromatic plant, vol 4. Springer-Verlag, Berlin

    Google Scholar 

  2. Sasson A (1991) Production of useful biochemicals by higher-plant cell cultures: biotechnological and economic aspects. In: Demarly Y (ed) Place et rôle des biotechnologies dans les systèmes de recherche agronomique des pays méditerranéens. CIHEAM, Zaragoza. Options Méditerranéennes Série A. Séminaires Méditerranéens n 14:59–74. https://doi.org/10.1017/cbo9780511760075.006

    Google Scholar 

  3. Mulabagal V, Tsay HS (2004) Plant cell cultures – an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48. https://doi.org/10.6703/IJASE.2004.2(1).29

    Article  Google Scholar 

  4. Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440. https://doi.org/10.1016/j.tplants.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  5. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851. https://doi.org/10.1016/s0168-9452(01)00490-3

    Article  CAS  Google Scholar 

  6. Kim Y, Wyslouzil B weathers P (2002) Secondary metabolism of hairy root cultures in bioreacteurs. Vitro Cell Dev Biol Plant 38:1–10. https://doi.org/10.1079/ivp2001243

    Article  CAS  Google Scholar 

  7. Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7:138–149. https://doi.org/10.1007/bf02932911

    Article  CAS  Google Scholar 

  8. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153. https://doi.org/10.1016/s0734-9750(02)00007-1

    Article  CAS  PubMed  Google Scholar 

  9. Zhang W, Curtin C, Franco C (2002) Towards manipulation of post-biosynthetic events in secondary metabolism of plant cell cultures. Enzym Microb Tech 30:688–696. https://doi.org/10.1016/s0141-0229(02)00041-8

    Article  CAS  Google Scholar 

  10. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185. https://doi.org/10.1007/s00253-007-0856-5

    Article  CAS  PubMed  Google Scholar 

  11. Guignard JL, Cosson L, Henry M (1985) Abrégé de phytochimie. Ed. Masson, Paris

    Google Scholar 

  12. Verpoorte R, van der Heijden R, Schripsema J, Hoge JHC, Ten Hoopen HJG (1993) Plant cell biotechnology for the production of alkaloids: present status and prospects. J Nat Prod 56:186–207. https://doi.org/10.1021/np50092a003

    Article  CAS  Google Scholar 

  13. Dicosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13:425–453. https://doi.org/10.1016/0734-9750(95)02005-n

    Article  CAS  PubMed  Google Scholar 

  14. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25. https://doi.org/10.1023/a:1015871916833

    Article  CAS  Google Scholar 

  15. Vanisree M, Lee CY, Lo SF, Nalawade SM, Lin CY, Tsay HS (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot Bull Acad Sin 45:1–22. https://doi.org/10.1002/9783527619771.ch12

    Article  CAS  Google Scholar 

  16. Shanks JV, Morgan J (1999) Plant hairy root culture. Curr Opin Biotechnol 10:151–155. https://doi.org/10.1016/s0958-1669(99)80026-3

    Article  CAS  PubMed  Google Scholar 

  17. Roberts SC, Shuler ML (1997) Large-scale plant cell culture. Curr Opin Biotechnol 8:154–159. https://doi.org/10.1016/s0958-1669(97)80094-8

    Article  CAS  PubMed  Google Scholar 

  18. Poulev A, O'Neal JM, Logendra S, Pouleva RB, Timeva V, Garvey AS, Gleba D, Jenkins IS, Halpern BT, Kneer R, Cragg GM, Raskin I (2003) Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. J Med Chem 46:2542–2547. https://doi.org/10.1021/jm020359t

    Article  CAS  PubMed  Google Scholar 

  19. Zhong JJ, Yu JT, Yoshida T (1995) Recent advances in plant cell cultures in bioreactors. World J Microbiol Biotechnol 11:461–467. https://doi.org/10.1007/bf00364621

    Article  CAS  PubMed  Google Scholar 

  20. Hughes EH, Shanks JV (2002) Metabolic engineering of plants for alkaloid production. Metab Eng 4:41–48. https://doi.org/10.1006/mben.2001.0205

    Article  CAS  PubMed  Google Scholar 

  21. Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13:181–187. https://doi.org/10.1016/s0958-1669(02)00308-7

    Article  CAS  PubMed  Google Scholar 

  22. Lanoue A, Shakourzadeh K, Marison I, Laberche JC, Christen P, Sangwan-Norrel B, Boitel-Conti M (2004) Occurrence of circadian rhythms in hairy root culture grown under controlled conditions. Biotechnol Bioeng 6:722–729. https://doi.org/10.1002/bit.20268

    Article  CAS  Google Scholar 

  23. Bruneton J (1987) Elément de phytochimie et pharmacognosie. Ed. Lavoisier – Tech. & doc, Paris

    Google Scholar 

  24. Harborne JB (1978) Biochemical aspects of plant and animal coevolution, vol 15. In: Proceedings of the phytochemical society of Europe. Academic Press, London

    Google Scholar 

  25. Wink M (1988) Plant breeding – importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233. https://doi.org/10.1007/bf00303957

    Article  CAS  Google Scholar 

  26. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847. https://doi.org/10.1038/35081178

    Article  CAS  PubMed  Google Scholar 

  27. Croteau R, Kutchan TM, Lews NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  28. Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  29. Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic Press, London

    Google Scholar 

  30. Buitelaar RM, Tramper J (1992) Strategies to improve the production of secondary metabolites with plant cell cultures – a literature review. J Biotechnol 23:111–141. https://doi.org/10.1016/0168-1656(92)90087-p

    Article  CAS  Google Scholar 

  31. Alfermann AW, Petersen M (1995) Natural product formation by plant cell biotechnology – results and perspectives. Plant Cell Tissue Organ Cult 43:199–205. https://doi.org/10.1007/bf00052176

    Article  CAS  Google Scholar 

  32. Bhandary SR, Collin HA, Thomas E, Street HE (1969) Root, callus, and cell suspension cultures, from Atropa belladonna L. and Atropa belladonna, cultivar lutea Döll. Ann Bot 33:647–656. https://doi.org/10.1093/oxfordjournals.aob.a084313

    Article  Google Scholar 

  33. Berlin J (1986) Secondary products from plant cell cultures. In: Rehm HJ, Reed G (eds) Biotechnology a comprehensive treatise, vol 4. Verlag Chemie/Verlagsgesellschaft, Weinheim

    Google Scholar 

  34. Lipsky AK (1992) Problems of optimization of plant cell culture processes. J Biotechnol 26:83–97. https://doi.org/10.1016/0168-1656(92)90070-P

    Article  PubMed  Google Scholar 

  35. Su WW (1995) Bioprocessing technology for plant cell suspension cultures. Appl Biochem Biotechnol 50:189–230. https://doi.org/10.1007/bf02783455

    Article  CAS  Google Scholar 

  36. Verpoorte R, van der Heijden R, Memelink J (1998) Plant biotechnology and the production of alkaloids. Prospects of metabolic engineering. In: Cordell GA (ed) The alkaloids, vol 50. Academic Press, San Diego. https://doi.org/10.1016/s1099-4831(08)60050-4

    Chapter  Google Scholar 

  37. Verpoorte R, van der Heijden R, Ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21:467–479. https://doi.org/10.1023/a:1005502632053

    Article  CAS  Google Scholar 

  38. Tabata M, Yamamoto H, Hiraoka N, Konoshima M (1972) Organization and alkaloid production in tissue cultures of Scopolia parviflora. Phytochemistry 11:949–955. https://doi.org/10.1016/s0031-9422(00)88438-1

    Article  CAS  Google Scholar 

  39. Yamada Y, Hashimoto T (1982) Production of tropane alkaloids in cultured cells of Hyoscyamus niger. Plant Cell Rep 1:101–103. https://doi.org/10.1007/bf00272363

    Article  CAS  PubMed  Google Scholar 

  40. Lindsey K, Yeoman MM (1983) The relationship between growth rate, differentiation and alkaloid accumulation in cell cultures. J Exp Bot 34:1055–1065. https://doi.org/10.1093/jxb/34.8.1055

    Article  CAS  Google Scholar 

  41. Kitamura Y, Miura H, Sugii M (1985) Alkaloid composition and atropine esterase activity in callus and differentiated tissues of Duboisia myoporoides R. BR. Chem Pharmaceut Bull 33:5445–5448. https://doi.org/10.1248/cpb.33.5445

    Article  CAS  Google Scholar 

  42. Houmani Z, Cosson L, Corbineau F, Come D (1994) Etude de la teneur en hyoscyamine et scopolamine d’une population sauvage de Datura stramonium L. en Algérie. Acta Bot Gallica 141:61–66. https://doi.org/10.1080/12538078.1994.10515135

    Article  CAS  Google Scholar 

  43. Biondi S, Scaramagli S, Oksman-Caldentey KM, Poli F (2002) Secondary metabolism in root and callus cultures of Hyoscyamus muticus L.: the relationship between morphological organisation and response to methyl jasmonate. Plant Sci 163:563–569. https://doi.org/10.1016/s0168-9452(02)00161-9

    Article  CAS  Google Scholar 

  44. Morsli A, Derridj A, Khelifi-Slaoui M, Bakiri N, Amdoun R, Khelifi L (2011) Morphological diversity and hyoscyamine/scopolamine contents in twelve Algerian samples of Datura stramonium L. of different origin. Revue d’ecologie 66:291–302

    Google Scholar 

  45. Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22. https://doi.org/10.1016/S0734-9750(99)00016-6

    Article  CAS  PubMed  Google Scholar 

  46. Souret FF, Kim Y, Wyslouzil BE, Wobbe KK, Weathers PJ (2003) Scale-up of Artemisia annua L. hairy root culture produces complex patterns of terpenoid gene expression. Biotechnol Bioeng 83:653–667. https://doi.org/10.1002/bit.10711

    Article  CAS  PubMed  Google Scholar 

  47. Lanoue A, Boitel-Conti M, Dechaux C, Laberche JC, Christen P, Sangwan-Norreel B (2004) Comparison of growth properties, alkaloid production and water uptake of tow selected Datura hairy root lines. Acta Biol Cracov Ser Bot 46:185–192. https://doi.org/10.1023/a:1006426314274

    Article  Google Scholar 

  48. Berlin J, Sasse F (1985) Selection and screening techniques for plant cell cultures. In: Plant cell culture. Advances in biochemical engineering/biotechnology, vol 31. Springer, Berlin/Heidelberg. https://doi.org/10.1007/BFb0002538

    Chapter  Google Scholar 

  49. Amdoun R, Khelifi L, Khelifi-Slaoui M, Amroune S, Benyoussef EH, Thi DV, Assaf-Ducrocq C, Gontier E (2009) Influence of minerals and elicitation on Datura stramonium L. tropane alkaloid production: modelization of the in vitro biochemical response. Plant Sci 177:81–87. https://doi.org/10.1016/j.plantsci.2009.03.016

    Article  CAS  Google Scholar 

  50. Benyammi R, Paris C, Khelifi-Slaoui M, Zaoui D, Belabbassi O, Bakiri N, Aci MM, Harfi B, Malik S, Makhzoum A, Desobry S, Khelifi L (2016) Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots. Pharm Biol 54:2033–2043. https://doi.org/10.3109/13880209.2016.1140213

    Article  CAS  PubMed  Google Scholar 

  51. Kovalenko PG, Maliuta SS (2003) An effect of transformation by Ri-plasmids and elicitors on licorice cells and secondary metabolites production. Ukr Bioorg Acata 1:50–60

    Google Scholar 

  52. Hutcheson SW (1998) Current concepts of active defense in plants. Annu Rev Phytopathol 36:59–90. https://doi.org/10.1146/annurev.phyto.36.1.59

    Article  CAS  PubMed  Google Scholar 

  53. He CY, Hsiang T, Wolyn DJ (2002) Induction of systemic disease resistance and pathogen defence responses in Asparagus officinalis inoculated with nonpathogenic strains of Fusarium oxysporum. Plant Pathol 51:225–230. https://doi.org/10.1046/j.1365-3059.2002.00682.x

    Article  Google Scholar 

  54. Harfi B, Khelifi L, Khelifi-Slaoui M, Assaf-Ducrocq C, Gontier E (2018) Tropane alkaloids GC/MS analysis and low dose elicitors’ effects on hyoscyamine biosynthetic pathway in hairy roots of Algerian Datura species. Sci Rep 8:17951. https://doi.org/10.1038/s41598-018-36625-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moussous A, Paris C, Khelifi-Slaoui M, Bekhouche M, Zaoui D, Rosloski SM, Makhzoum A, Desobry S, Khelifi L (2018) Pseudomonas spp. increases root biomass and tropane alkaloid yields in transgenic hairy roots of Datura spp. Vitro Cell Dev Biol Plant 54:117–126. https://doi.org/10.1007/s11627-017-9862-1

    Article  CAS  Google Scholar 

  56. Amdoun R, Benyoussef EH, Benamghar A, Khelifi L (2019) Prediction of hyoscyamine content in Datura stramonium L. hairy roots using different modeling approaches: Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Kriging. Biochem Eng J 144:8–17. https://doi.org/10.1016/j.bej.2019.01.002

    Article  CAS  Google Scholar 

  57. Knorr D, Teutonico RA (1986) Chitosan immobilization and permeabilization of Amaranthus tricolor cells. J Agr Food Chem 34:96–97. https://doi.org/10.1021/jf00067a026

    Article  CAS  Google Scholar 

  58. Beaumont MD, Knorr D (1987) Effects of immobilizing agents and procedures on viability of cultured celery (Apium graveolens) cells. Biotechnol Lett 9:377–382. https://doi.org/10.1007/bf01089000

    Article  CAS  Google Scholar 

  59. Brodelius PE, Funk C, Shillito RD (1988) Permeabilization of cultivated plant cells by electroporation for release of intracellularly stored secondary products. Plant Cell Rep 7:186–188. https://doi.org/10.1007/bf00269319

    Article  CAS  PubMed  Google Scholar 

  60. Dörnenburg H, Knorr D (1993) Cellular permeabilization of cultured plant tissues by high electric field pulses or ultra high pressure for the recovery of secondary metabolites. Food Biotechnol 7:35–48. https://doi.org/10.1080/08905439309549844

    Article  Google Scholar 

  61. Khelifi L, Zarouri B, Amdoun R, Harfi B, Morsli A, Khelifi-Slaoui M (2011) Effects of elicitation and permeabilization on hyoscyamine content in Datura stramonium hairy roots. Adv Environ Biol 5:329–334. https://doi.org/10.3390/ijms11114726

    Article  CAS  Google Scholar 

  62. Moreno PRH, van der Heijden R, Verpoorte R (1993) Effect of terpenoid precursor feeding and elicitation on formation of indole alkaloids in cell suspension cultures of Catharanthus roseus. Plant Cell Rep 12:702–705. https://doi.org/10.1007/bf00233423

    Article  CAS  PubMed  Google Scholar 

  63. Whitmer S, Canel C, Hallard D, Gonçalves C, Verpoorte R (1998) Influence of precursor availability on alkaloid accumulation by transgenic cell line of Catharanthus roseus. Plant Physiol 116:853–857. https://doi.org/10.1104/pp.116.2.853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Silvestrini A, Pasqua G, Botta B, Monacelli B, van der Heijden R, Verpoorte R (2002) Effects of alkaloid precursor feeding on a Camptotheca acuminata cell line. Plant Physiol Biochem 40:749–753. https://doi.org/10.1016/s0981-9428(02)01436-5

    Article  CAS  Google Scholar 

  65. Whitmer S, van der Heijden R, Verpoorte R (2002) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203. https://doi.org/10.1016/s0168-1656(02)00027-5

    Article  CAS  PubMed  Google Scholar 

  66. Gontier E, Sangwan BS, Barbotin JN (1994) Effects of calcium, alginate, and calciumalginate immobilization on growth and tropane alkaloid levels of stable suspension cell line of Datura innoxia Mill. Plant Cell Rep 9:533–536. https://doi.org/10.1007/bf00232951

    Article  Google Scholar 

  67. Saenz-Carbonell L, Loyola-Vargas VM (1996) Datura stramonium hairy roots tropane alkaloid content as a response to changes in Gamborg’s B5 medium. Appl Biochem Biotechnol 3:321–337. https://doi.org/10.1007/bf02787805

    Article  Google Scholar 

  68. Sikuli NN, Demeyer K (1997) Influence of the ion-composition of the medium on alkaloid production by hairy roots of Datura stramonium. Plant Cell Tissue Organ Cult 3:261–267. https://doi.org/10.1007/bf02318981

    Article  Google Scholar 

  69. Nussbaumer P, Kapétanidis I, Christen P (1998) Hairy root of Datura candida x aurea: effect of culture medium composition on growth and biosynthesis. Plant Cell Rep 17:405–409. https://doi.org/10.1007/s002990050415

    Article  CAS  PubMed  Google Scholar 

  70. Pinñol MT, Palazón J, Cusidó RM, Ribó M (1999) Influence of calcium ion-concentration in the medium on tropane alkaloid accumulation in Datura stramonium hairy roots. Plant Sci 141:41–49. https://doi.org/10.1016/s0168-9452(98)00222-2

    Article  Google Scholar 

  71. Boitel-Conti M, Laberche JC, Lanoue A, Ducrocq C, Sangwan-Norreel BS (2000) Influence of feeding precursors on tropane alkaloid production during an abiotic stress in Datura innoxia transformed roots. Plant Cell Tissue Organ Cult 60:131–137. https://doi.org/10.1023/a:1006426314274

    Article  CAS  Google Scholar 

  72. Amdoun R, Khelifi L, Khelifi-Slaoui M, Amroune S, Asch M, Assaf-Ducrocq C, Gontier E (2010) Optimization of the culture medium composition to improve the production of hyoscyamine in elicited Datura stramonium L. hairy roots using the response surface methodology (RSM). Int J Mol Sci 11:4726–4740. https://doi.org/10.3390/ijms11114726

    Article  CAS  Google Scholar 

  73. Dunlop DS, Curtis WR (1991) Synergistic response of plant hairy-root cultures to phosphate limitation and fungal elicitation. Biotechnol Prog 7:434–438. https://doi.org/10.1021/bp00011a008

    Article  CAS  Google Scholar 

  74. Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875. https://doi.org/10.1016/j.plantsci.2007.01.006

    Article  CAS  Google Scholar 

  75. Harborne JB (1997) Biochemical plant ecology in: plant biochemistry. Academic Press, Surrey, United Kingdom 

    Google Scholar 

  76. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J Roy Stat Soc B Stat Meth 13:1–45. https://doi.org/10.1111/j.2517-6161.1951.tb00067.x

    Article  Google Scholar 

  77. Mason RL, Gunst RF, Hess JL (2003) Statistical design and analysis of experiments with applications to engineering and science, Wiley series in probability and statistics, 2nd edn. Wiley, New Jersey

    Google Scholar 

  78. Teófilo RF, Ferreira MMC (2006) Chemometrics II: spreadsheets for experimental design calculations, a tutorial. Quim Nova 29:338–350. https://doi.org/10.1590/S0100-40422006000200026

    Article  Google Scholar 

  79. Baş D, Boyacı IH (2007a) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024

    Article  CAS  Google Scholar 

  80. Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström Å, Pettersen J, Bergman R (1998) Experimental design and optimization. Chemometr Intell Lab Syst 42:3–40. https://doi.org/10.1016/s0169-7439(98)00065-3

    Article  CAS  Google Scholar 

  81. Dugué D, Girault M (1969) Analyse de la variance et plans d’expérience. Ed. Dunod, Paris

    Google Scholar 

  82. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325. https://doi.org/10.1093/biomet/33.4.305

    Article  Google Scholar 

  83. Goupy J, Creighton L (2006) Introduction aux plans d’expériences. Ed. Dunod, Paris

    Google Scholar 

  84. Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. Wiley, New York

    Google Scholar 

  85. Deming SN (1991) Mutliple-criteria optimization. J Chromatogr A 550:15–25. https://doi.org/10.1016/S0021-9673(01)88527-7

    Article  CAS  Google Scholar 

  86. Hendriks MMWB, De Boer JH, Smilde AK Doornbos DA (1992) Multicriteria decision making. Chemometr Intell Lab Syst 16:175–191. https://doi.org/10.1016/0169-7439(92)80036-4

    Article  CAS  Google Scholar 

  87. Harrington EC Jr (1965) The desirability function. Ind Qual Control 21:494–498

    Google Scholar 

  88. Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Tech 12:214–219. https://doi.org/10.1080/00224065.1980.11980968

    Article  Google Scholar 

  89. Jeong IJ, Kim KJ (2009) An interactive desirability function method to multiresponse optimization. Eur J Oper Res 195:412–426. https://doi.org/10.1016/j.ejor.2008.02.018

    Article  Google Scholar 

  90. Bourguignon B, Massart DL (1991) Simultaneous optimization of several chromatographic performance goals using Derringer’s desirability function. J Chromatogr A 586:11–20. https://doi.org/10.1016/0021-9673(91)80019-d

    Article  CAS  Google Scholar 

  91. Guillaume Y, Guinchard C (1996) Method to study the separation of eight phydroxybenzoic esters by gas chromatography. J Chromatogr A 727:93–99. https://doi.org/10.1016/0021-9673(95)01107-2

    Article  CAS  Google Scholar 

  92. Vanbel PF (1999) Development of flexible and efficient strategies for optimizing chromatographic separations. J Pharm Biomed Anal 21:603–610. https://doi.org/10.1016/s0731-7085(99)00162-4

    Article  CAS  PubMed  Google Scholar 

  93. Marini RD, Chiap P, Boulanger B, Dewe W, Hubert P, Crommen J (2003) LC method for the simultaneous determination of R-timolol and other closely related impurities in S-timolol maleate: optimization by use of an experimental design. J Sep Sci 26:809–817. https://doi.org/10.1002/jssc.200301367

    Article  CAS  Google Scholar 

  94. Dewé W, Marini RD, Chiap P, Hubert P, Crommen J, Boulanger B (2004) Development of response models for optimising HPLC methods. Chemometr Intell Lab Syst 74:263–268. https://doi.org/10.1016/j.chemolab.2004.04.016

    Article  CAS  Google Scholar 

  95. Safa F, Hadjmohammadi MR (2005) Simultaneous optimization of the resolution and analysis time in micellar liquid chromatography of phenyl thiohydantoin amino acids using Derringer’s desirability function. J Chromatogr A 1078:42–50. https://doi.org/10.1016/j.chroma.2005.04.081

    Article  CAS  PubMed  Google Scholar 

  96. Pasandideh SHR, Niaki ST (2006) Multi-response simulation optimization using genetic algorithm within desirability function framework. Appl Math Comput 175:366–382. https://doi.org/10.1016/j.amc.2005.07.023

    Article  Google Scholar 

  97. Amdoun R, Khelifi L, Khelifi-Slaoui M, Amroune S, Asch M, Assaf-Ducrocq C, Gontier E (2018) The desirability optimization methodology; a tool to predict two antagonist responses in biotechnological systems: case of biomass growth and hyoscyamine content in elicited Datura starmonium hairy roots. Iranian J Biotech 16:11–19. https://doi.org/10.21859/ijb.1339

    Article  Google Scholar 

  98. Outinen K, Haario H, Vuorela P, Nyman M, Ukkonen E, Vuorela H (1998) Optimization of selectivity in high-performance liquid chromatography using desirability functions and mixture designs according to prisma. Eur J Pharmaceut Sci 6:197–205. https://doi.org/10.1016/s0928-0987(97)10016-1

    Article  CAS  Google Scholar 

  99. Hu Z, Cai M, Liang HH (2008) Desirability function approach for the optimization of microwave-assisted extraction of saikosaponins from Radix bupleuri. Separ Purif Tech 61:266–275. https://doi.org/10.1016/j.seppur.2007.10.016

    Article  CAS  Google Scholar 

  100. Goupy J (1999) Plans d’expériences pour surfaces de réponse. Ed. Dunod, Paris

    Google Scholar 

  101. Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475. https://doi.org/10.2307/1266454

    Article  Google Scholar 

  102. Doehlert DH (1970) Uniform shell designs. J Roy Stat Soc C Appl Stat 19:231–239. https://doi.org/10.2307/2346327

    Article  Google Scholar 

  103. Lane EL (2019) L-DOPA for Parkinson's disease – a bittersweet pill. Eur J Neurosci 49:384–398. https://doi.org/10.1111/ejn.14119

    Article  PubMed  Google Scholar 

  104. Obata-Sasamoto H, Nishi N, Komamine A (1981) Mechanism of suppression of DOPA accumulation in a callus culture of Stizolobium hassjoo. Plant Cell Physiol 22:827–835. https://doi.org/10.1093/oxfordjournals.pcp.a076228

    Article  CAS  Google Scholar 

  105. Gamborg OL, Miller R, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. https://doi.org/10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  106. Sung LS, Huang SY (2000) Medium optimization of transformed root cultures of Stizolobium hassjoo producing l− DOPA with response surface methodology. Biotechnol Prog 16:1135–1140. https://doi.org/10.1021/bp000062t

    Article  CAS  PubMed  Google Scholar 

  107. Issell BF (1982) The podophyllotoxin derivatives VP16-213 and VM26. Canc Chemother Pharmacol 7:73–80. https://doi.org/10.1007/bf00254525

    Article  CAS  Google Scholar 

  108. Chattopadhyay S, Srivastava AK, Bisaria VS (2002) Optimization of culture parameters for production of podophyllotoxin in suspension culture of Podophyllum hexandrum. Appl Biochem Biotechnol 102:381–393. https://doi.org/10.1385/abab:102-103:1-6:381

    Article  PubMed  Google Scholar 

  109. Mairet F, Sierra J, Glorian V, Villon P, Shakourzadeh K, Boitel-Conti M (2009) A new approach to define optimized range of medium composition for enhancement of hairy root production in fed-batch process. Bioprocess Biosyst Eng 32:257–265. https://doi.org/10.1007/s00449-008-0246-0

    Article  CAS  PubMed  Google Scholar 

  110. Grynkiewicz G, Gadzikowska M (2008) Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol Rep 60:439–463. https://doi.org/10.1002/chin.200940262

    Article  CAS  PubMed  Google Scholar 

  111. Srivastava S, Srivastava AK (2012) Statistical medium optimization for enhanced azadirachtin production in hairy root culture of Azadirachta indica. In Vitro Cell Dev Biol Plant 48:73–84. https://doi.org/10.1007/s11627-011-9395-y

    Article  CAS  Google Scholar 

  112. Patra N, Srivastava AK, Sharma S (2013) Study of various factors for enhancement of artemisinin in Artemisia annua hairy roots. Int J Chem Eng Appl 4:157–160. https://doi.org/10.7763/ijcea.2013.v4.284

    Article  CAS  Google Scholar 

  113. Huang X, Liu Y, Song F, Liu Z, Liu S (2009) Studies on principal components and antioxidant activity of different Radix Astragali samples using high-performance liquid chromatography/electrospray ionization multiple-stage tandem mass spectrometry. Talanta 78:1090–1101. https://doi.org/10.1016/j.talanta.2009.01.021

    Article  CAS  PubMed  Google Scholar 

  114. Chen L, Li Z, Tang Y, Cui X, Luo R, Guo S, Zheng Y, Huang C (2011) Isolation, identification and antiviral activities of metabolites of calycosin-7-O-β-D-glucopyranoside. J Pharm Biomed Anal 56:382–389. https://doi.org/10.1016/j.jpba.2011.05.033

    Article  CAS  PubMed  Google Scholar 

  115. Li W, Sun NY, Yan XT, Yang SY, Kim S, Lee YM, Koh YS, Kim YH (2014) Flavonoids from Astragalus membranaceus and their inhibitory effects on LPS-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Arch Pharm Res 37:186–192. https://doi.org/10.1007/s12272-013-0174-7

    Article  CAS  PubMed  Google Scholar 

  116. Akitha Devi MK, Giridhar P (2014) Isoflavone augmentation in soybean cell cultures is optimized using response surface methodology. J Agr Food Chem 62:3143–3149. https://doi.org/10.1021/jf500207x

    Article  CAS  Google Scholar 

  117. Jiao J, Gai QY, Fu YJ, Ma W, Peng X, Tan SN, Efferth T (2014) Efficient production of isoflavonoids by Astragalus membranaceus hairy root cultures and evaluation of antioxidant activities of extracts. J Agr Food Chem 62:12649–12658. https://doi.org/10.1021/jf503839m

    Article  CAS  Google Scholar 

  118. Chen J, Shi YP, Liu JY (2003) Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L. by high-performance liquid chromatography. J Chromatogr A 1003:127–132. https://doi.org/10.1016/s0021-9673(03)00786-6

    Article  CAS  PubMed  Google Scholar 

  119. Ghorbani M, Ghorbani A, Omidi M, Hashemi SM (2015) Response surface modelling of noradrenaline production in hairy root culture of purslane (Portulaca oleracea L.). Turk J Agr Food Sci 3:349–443. https://doi.org/10.24925/turjaf.v3i6.349-443.320

    Article  Google Scholar 

  120. Leonard J, Seth B, Sahu BB, Singh VR, Patra N (2018) Statistical optimization for enhanced bacoside A production in plant cell cultures of Bacopa monnieri. Plant Cell Tissue Organ Cult 133:203–214. https://doi.org/10.1007/s11240-017-1373-6

    Article  CAS  Google Scholar 

  121. Bansal M, Kumar A, Reddy MS (2015) Production of bacoside A, amemory enhancer from hairy root cultures of Bacopa monnieri (L.) Wettst. J Appl Res Med Aromat Plants 2:92–101. https://doi.org/10.1016/j.jarmap.2015.05.001

    Article  Google Scholar 

  122. Bansal M, Reddy MS, Kumar A (2017) Optimization of cell growth and bacoside-A production in suspension cultures of Bacopa monnieri (L.) Wettst. Using response surface methodology. In Vitro Cell Dev Biol Plant 53:527–537. https://doi.org/10.1007/s11627-017-9847-0

    Article  CAS  Google Scholar 

  123. Sharma K, Zafar R (2016) Optimization of methyl jasmonate and β-cyclodextrin for enhanced production of taraxerol and taraxasterol in (Taraxacum officinale Weber) cultures. Plant Physiol Biochem 103:24–30. https://doi.org/10.1016/j.plaphy.2016.02.029

    Article  CAS  PubMed  Google Scholar 

  124. Saraf DK, Dixit VK (2002) Spilanthes acmella Murr.: study on its extract spilanthol as larvicidal compound. Asian J Exp Sci 16:9–19

    CAS  Google Scholar 

  125. Ratnasooriya WD, Pieris KPP, Samratunga U, Jayakody JRAC (2004) Diuretic activity of Spilanthes acmella flowers in rats. J Ethnopharmacol 91:317–320. https://doi.org/10.1016/j.jep.2004.01.006

    Article  CAS  PubMed  Google Scholar 

  126. Wu LC, Fan NC, Lin MH, Chu IR, Huang SJ, Hu CY, Han SY (2008) Anti-inflammatory effect of spilanthol from Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators. J Agr Food Chem 56:2341–2349. https://doi.org/10.1021/jf073057e

    Article  CAS  Google Scholar 

  127. Rajendran R, Chaturvedi R (2017) Screening and optimizing media constituents for enhanced production of medicinal N-alkylamide Deca-2E, 6Z, 8E-trienoic acid isobutylamide from dedifferentiated in vitro cell lines of Spilanthes paniculata. Biocatal Agric Biotechnol 9:95–102. https://doi.org/10.1016/j.bcab.2016.12.002

    Article  Google Scholar 

  128. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133. https://doi.org/10.1007/bf02478259

    Article  Google Scholar 

  129. Baş D, Boyaci IH (2007b) Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J Food Eng 78:846–854. https://doi.org/10.1016/j.jfoodeng.2005.11.025

    Article  CAS  Google Scholar 

  130. Kröse B, Van Der Smagt P (1996) An introduction to neural networks. 8th edn. The University of Amsterdam, Kruislaan, Amsterdam 

    Google Scholar 

  131. Osama K, Somvanshi P, Pandey AK, Mishra BN (2013) Modelling of nutrient mist reactor for hairy root growth using artificial neural network. Eur J Sci Res 97:516–526

    Google Scholar 

  132. Mehrotra S, Prakash O, Khan F, Kukreja AK (2013) Efficiency of neural network-based combinatorial model predicting optimal culture conditions for maximum biomass yields in hairy root cultures. Plant Cell Rep 32:309–317. https://doi.org/10.1007/s00299-012-1364-3

    Article  CAS  PubMed  Google Scholar 

  133. Prakash O, Mehrotra S, Krishna A, Mishra BN (2010) A neural network approach for the prediction of in vitro culture parameters for maximum biomass yields in hairy root cultures. J Theor Biol 265:579–585. https://doi.org/10.1016/j.jtbi.2010.05.020

    Article  CAS  PubMed  Google Scholar 

  134. Hashim P (2013) Triterpenoid centellosides: bioactivities and uses in healthcare application. In: Ramawat K, Mérillon JM (eds) Natural products. Springer, Heidelberg Berlin. https://doi.org/10.1007/978-3-642-22144-6_167

    Chapter  Google Scholar 

  135. Prasad A, Prakash O, Mehrotra S, Khan F, Mathur AK, Mathur A (2017) Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica. Protoplasma 254:335–341. https://doi.org/10.1007/s00709-016-0953-3

    Article  CAS  PubMed  Google Scholar 

  136. Matheron G (1965) Les variables régionalisées et leur estimation. Ed. Masson, Paris

    Google Scholar 

  137. Matheron G (1971) The theory of regionalized variables and its applications. Ecole des Mines, Fontainbleau

    Google Scholar 

  138. Journel AG, Huijbregts CH (1978) Mining geostatistics. Academic press, London

    Google Scholar 

  139. Isaak EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, New York

    Google Scholar 

  140. Cressie N (1990) The origins of kriging. Math Geol 22:239–252. https://doi.org/10.1007/bf00889887

    Article  Google Scholar 

  141. Stein ML (2012) Interpolation of spatial data: some theory for kriging. Springer Science & Business Media, Chicago

    Google Scholar 

  142. Freier L, Wiechert W, Von Lieres E (2017) Kriging with trend functions nonlinear in their parameters: theory and application in enzyme kinetics. Eng Life Sci 17:916–922. https://doi.org/10.1002/elsc.201700022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hudson G, Wackernagel H (1994) Mapping temperature using kriging with external drift: theory and an example from Scotland. Int J Climatol 14:77–91. https://doi.org/10.1002/joc.3370140107

    Article  Google Scholar 

  144. Jia Z, Davis E, Muzzio FJ, Ierapetritou MG (2009) Predictive modeling for pharmaceutical processes using kriging and response surface. J Pharm Innov 4:174–186. https://doi.org/10.1007/s12247-009-9070-6

    Article  Google Scholar 

  145. Hernández-Stefanoni JL, Gallardo-Cruz JA, Meave JA, Dupuy JM (2011) Combining geostatistical models and remotely sensed data to improve tropical tree richness mapping. Ecol Indic 11:1046–1056. https://doi.org/10.1016/j.ecolind.2010.11.003

    Article  Google Scholar 

  146. Freier L, Hemmerich J, Schöler K, Wiechert W, Oldiges M, Von Lieres E (2016) Framework for Kriging-based iterative experimental analysis and design: optimization of secretory protein production in Corynebacterium glutamicum. Eng Life Sci 16:538–549. https://doi.org/10.1002/elsc.201500171

    Article  CAS  Google Scholar 

  147. Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem Eng J 41:266–273. https://doi.org/10.1016/j.bej.2008.05.009

    Article  CAS  Google Scholar 

  148. Maran JP, Priya B (2015) Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil. Ultrason Sonochem 23:192–200. https://doi.org/10.1016/j.ultsonch.2014.10.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor Toudert AHMED ZAÏD for the corrections made for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryad Amdoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Amdoun, R., Benyoussef, EH., Benamghar, A., Sahli, F., Bendifallah, N., Khelifi, L. (2020). Approaches for Modeling and Optimization of the Secondary Metabolite Production by Plant Biotechnology Methods. In: Ramawat, K.G., Ekiert, H.M., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics