Skip to main content

Plant Liquid Cultures as a Source of Bioactive Metabolites

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Abstract

Plant liquid cultures were first established for effective multiplication of ornamental species. Due to the many advantages of this approach, shoot liquid culture systems have been successfully broadened and developed to allow enhanced biomass production and efficient accumulation of valuable pharmaceutically important metabolites for other plant species, especially medicinally important plants. The chapter discusses the advantages and the disadvantages of shoot liquid cultures, including different support systems and other optimization conditions used to allow greater gains in biomass and valuable secondary metabolite production. Additionally, the chapter reviews examples of this type of culture conducted for important medicinal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

2iP:

6-(γ,γ-Dimethylallylamino)purine

B5:

Medium according to Gamborg et al. [1]

BAP:

6-Benzylaminopurine

DW:

Dry weight

FW:

Fresh weight

GI:

Growth index

IAA:

3-Indoleacetic acid

IBA:

3-Indolebutyric acid

JA:

Jasmonic acid

Kin:

Kinetin

LS:

Medium according to Linsmaier and Skoog [2]

MeJa:

Methyl jasmonate

MR:

Membrane raft-supporting system

MS:

Medium according to Murashige and Skoog [3]

NAA:

α-Naphthaleneacetic acid

SA:

Salicylic acid

SH:

Medium according to Schenk and Hildebrandt [4]

TDZ:

Thidiazuron, (N-phenyl- N′-1,2,3-thidiazol-5-ylurea)

TIS:

Temporary immersion system

ZEA:

Zeatin

References

  1. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  CAS  PubMed  Google Scholar 

  2. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plantarum 18(1):100–127

    Article  CAS  Google Scholar 

  3. Murashige T, Skoog FA (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15(3):473–497

    Article  CAS  Google Scholar 

  4. Schenk RW, Hildebrandt AC (1972) Medium and techniques for induction of growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  5. Collin HA (2001) Secondary product formation in plant tissue cultures. Plant Growth Regul 34(1):119–134

    Article  CAS  Google Scholar 

  6. Grzegorczyk I, Wysokińska H (2008) Liquid shoot culture of Salvia officinalis L. for micropropagation and production of antioxidant compounds; effect of triacontanol. Acta Soc Bot Pol 77(2):99–104

    Article  CAS  Google Scholar 

  7. Pati PK, Kaur J, Singh P (2011) A liquid culture system for shoot proliferation and analysis of pharmaceutically active constituents of Catharanthus roseus (L.) G. Don. Plant Cell Tissue Organ Cult 105(3):299–307

    Article  CAS  Google Scholar 

  8. Dandin VS, Murthy HN (2012) Enhanced in vitro multiplication of Nothapodytes nimmoniana Graham using semisolid and liquid cultures and estimation of camptothecin in the regenerated plants. Acta Physiol Plant 34(4):1381–1386

    Article  CAS  Google Scholar 

  9. Grzegorczyk-Karolak I, Rytczak P, Bielecki S, Wysokińska H (2017) The influence of liquid systems for shoot multiplication, secondary metabolite production and plant regeneration of Scutellaria alpina. Plant Cell Tissue Organ Cult 128(2):479–486

    Article  CAS  Google Scholar 

  10. Ibrahim AI (1994) Effect of gelling agent and activated charcoal on the growth and development of Cordyline terminalis cultured in vitro. Proceedings of the First Conference of Ornamental Horticulture 1:55–67

    Google Scholar 

  11. Debergh PC (1983) Effects of agar brand and concentration on the tissue culture medium. Physiol Plantarum 59(2):270–276

    Article  CAS  Google Scholar 

  12. Gupta SD, Prasad VSS (2006) Matrix-supported liquid culture systems for efficient micropropagation of floricultural plants. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol II. Global Science Books, Ltd., UK, pp 488–495

    Google Scholar 

  13. Pierik RLM (1989) In vitro culture of higher plants. Martinus Nijhoff Publishers, Dordrecht, pp 305–308

    Google Scholar 

  14. Chu I (1995) Economic analysis of automated micropropagation. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Springer, Dordrecht, pp 19–27

    Chapter  Google Scholar 

  15. Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69:215–231

    Article  Google Scholar 

  16. Tascan A, Adelberg J, Tascan M, Rimando A, Joshee N, Yadav AK (2010) Hyperhydricity and flavonoid content of Scutellaria species in vitro on polyester-supported liquid culture systems. HortScience 45(11):1723–1728

    Article  Google Scholar 

  17. Larkin D, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cells cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  18. Ziv M (1991) Quality of micropropagated plants-vitrification. Vitro Cell Dev Biol-Plant 27(2):64–69

    Article  Google Scholar 

  19. Saher S, Piqueras A, Hellin E, Olmos E (2004) Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress. Physiol Plantarum 120(1):152–161

    Article  CAS  Google Scholar 

  20. Kevers C, Gaspar T (1986) Vitrification of carnation in vitro: changes in water content, extracellular space, air volume, and ion levels. Physiol Vég 24(6):647–653

    CAS  Google Scholar 

  21. Piątczak E, Wielanek M, Wysokińska H (2005) Liquid culture system for shoot multiplication and secoiridoid production in micropropagated plants of Centaurium erythraea Rafn. Plant Sci 168(2):431–437

    Article  CAS  Google Scholar 

  22. Sales E, Nebauer SG, Arrilaga I, Segura J (2002) Plant hormones and Agrobacterium tumefaciens strain 82139 induce efficient plant regeneration in the cardenolide – producing plant Digitalis minor. J Plant Physiol 159:9–16

    Article  CAS  Google Scholar 

  23. Smith MAL, Spomer LA (1995) Vessels, gels, liquid media, and support systems. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Springer, Dordrecht, pp 371–404

    Chapter  Google Scholar 

  24. Ivanova M, van Staden J (2011) Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tissue Organ Cult 104(1):13–21

    Article  CAS  Google Scholar 

  25. Park SW, Jeon JH, Kim HS, Park YM, Aswath C, Joung H (2004) Effect of sealed and vented gaseous microenvironments on the hyperhydricity of potato shoots in vitro. Sci Hortic 99(2):199–205

    Article  Google Scholar 

  26. Kataeva NV, Alexandrova IG, Butenko RG, Dragavtceva EV (1991) Effect of applied and internal hormones on vitrification and apical necrosis of different plants cultured in vitro. Plant Cell Tissue Organ Cult 27(2):149–154

    Article  CAS  Google Scholar 

  27. Daguin F, Letouzé R (1987) Vitreous plants in vitro: relationship with ammonium content of the nutrient medium. Acta Hortic 212:259–262

    Article  Google Scholar 

  28. Whitehouse AB, Marks TR, Edwards GA (2002) Control of hyperhydricity in Eucalyptus axillary shoot cultures grown in liquid medium. Plant Cell Tissue Organ Cult 71(3):245–252

    Article  CAS  Google Scholar 

  29. Harris RE, Mason EB (1983) Two machines for in vitro propagation of plants in liquid media. Can J Plant Sci 63(1):311–316

    Article  Google Scholar 

  30. Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for use liquid medium in mass propagation. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 165–195

    Chapter  Google Scholar 

  31. Teisson C, Alvard D, Berthouly B, Cote F, Escalant JV, Etienne H, Lartaud M (1996) Simple apparatus to perform plant tissue culture by temporary immersion. Acta Hortic 440:521–526

    Article  Google Scholar 

  32. Welander M, Persson J, Asp H, Zhu LH (2014) Evaluation of a new vessel system based on temporary immersion system for micropropagation. Sci Hortic 179:227–232

    Article  CAS  Google Scholar 

  33. Escalona M, Lorenzo JC, González B, Daquinta M, González JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep 18(9):743–748

    Article  CAS  Google Scholar 

  34. Oishi T, Sasaki R (1989) Ceramic substrate for tissue culture. Ceramics 24:643–647

    CAS  Google Scholar 

  35. Ichimura K, Uchiumi T, Tsuji K, Oda M, Nagaoka M (1995) Shoot regeneration of tomato (Lycopersicon esculentum mill.) in tissue culture using several kinds of supporting materials. Plant Sci 108(1):93–100

    Article  CAS  Google Scholar 

  36. Afreen-Zobayed F, Zobayed SMA, Kubota C, Kozai T, Hasegawa O (2000) A combination of vermiculite and paper pulp supporting material for the photoautotrophic micropropagation of sweet potato. Plant Sci 157(2):225–231

    Article  CAS  PubMed  Google Scholar 

  37. Gangopadhyay G, Das S, Mitra SK, Poddar R, Modak BK, Mukherjee KK (2002) Enhanced rate of multiplication and rooting through the use of coir in aseptic liquid culture media. Plant Cell Tissue Organ Cult 68(3):301–310

    Article  CAS  Google Scholar 

  38. Prasad VSS, Gupta SD (2006) In vitro shoot regeneration of gladiolus in semi-solid agar versus liquid cultures with support systems. Plant Cell Tissue Organ Cult 87(3):263–271

    Article  Google Scholar 

  39. Teng WL, Liu YJ (1993) Restricting hyperhydricity of lettuce using screen raft and water absorbent resin. Plant Cell Tissue Organ Cult 34:311–314

    Article  Google Scholar 

  40. Sankar-Thomas YD, Lieberei R (2011) Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne grown in different culture systems. Plant Cell Tissue Organ Cult 106(3):445–454

    Article  CAS  Google Scholar 

  41. Frischknecht PM, Bättig M, Baumann TW (1987) Effect of drought and wounding stress on indole alkaloid formation in Catharanthus roseus. Phytochemistry 26(3):707–710

    Article  CAS  Google Scholar 

  42. Satdive RK, Fulzele DP, Eapen S (2003) Studies on production of ajmalicine in shake flasks by multiple shoot cultures of Catharanthus roseus. Biotechnol Prog 19(3):1071–1075

    Article  CAS  PubMed  Google Scholar 

  43. Svoboda GH, Blake DA (1975) The phytochemistry and pharmacology of Catharanthus roseus (L.) G. Don. In: Taylor WI, Farnsworth NR (eds) The Catharanthus alkaloids. Marcel Dekker Inc., New York, pp 45–83

    Google Scholar 

  44. Sellés M, Bergoñón S, Viladomat F, Bastida J, Codina C (1997) Effect of sucrose on growth and galanthamine production in shoot-clump cultures of Narcissus confusus in liquid-shake medium. Plant Cell Tissue Organ Cult 49(2):129–136

    Article  Google Scholar 

  45. Georgiev V, Ivanov I, Berkov S, Pavlov A (2011) Alkaloids biosynthesis by Pancratium maritimum L. shoots in liquid culture. Acta Physiol Plant 33(3):927–933

    Article  CAS  Google Scholar 

  46. Raj D, Kokotkiewicz A, Luczkiewicz M (2015) Production of therapeutically relevant indolizidine alkaloids in Securinega suffruticosa in vitro shoots maintained in liquid culture systems. Appl Biochem Biotech 175(3):1576–1587

    Article  CAS  Google Scholar 

  47. Raj D, Kokotkiewicz A, Łuczkiewicz M (2009) Densitometric HPTLC analysis of indolizidine alkaloids in the herb and in vitro cultures of Securinega suffruticosa. JPC-J Planar Chromat 22(5):371–376

    Article  CAS  Google Scholar 

  48. Kwiecień I, Szydłowska A, Kawka B, Beerhues L, Ekiert H (2015) Accumulation of biologically active phenolic acids in agitated shoot cultures of three Hypericum perforatum cultivars:‘Elixir’,‘Helos’ and ‘Topas’. Plant Cell Tissue Organ Cult 123(2):273–281

    Article  CAS  Google Scholar 

  49. Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11:562–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Savio LEB, Astarita LV, Santarém ER (2012) Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant Cell Tissue Organ Cult 108(3):465–472

    Article  CAS  Google Scholar 

  51. Grzegorczyk I, Bilichowski I, Mikiciuk-Olasik E, Wysokińska H (2006) The effect of triacontanol on shoot multiplication and production of antioxidant compounds in shoot cultures of Salvia officinalis L. Acta Soc Bot Pol 75(1):11–15

    Article  CAS  Google Scholar 

  52. Kokotkiewicz A, Bucinski A, Luczkiewicz M (2015) Xanthone, benzophenone and bioflavonoid accumulation in Cyclopia genistoides (L.) Vent. (honeybush) shoot cultures grown on membrane rafts and in a temporary immersion system. Plant Cell Tissue Organ Cult 120:373–378

    Article  CAS  Google Scholar 

  53. Kokotkiewicz A, Luczkiewicz M, Pawlowska J, Luczkiewicz P, Sowinski P, Witkowski J, Bryl E, Bucinski A (2013) Isolation of xanthone and benzophenone derivatives from Cyclopia genistoides (L.) Vent. (honeybush) and their pro-apoptotic activity on synoviocytes from patient with rheumatoid arthritis. Fitoterapia 90:199–208

    Article  CAS  PubMed  Google Scholar 

  54. Pranakhon R, Aromdee C, Pannangpetch P (2015) Effects of iriflophenone 3-C-β-glucoside on fasting blood glucose level and glucose uptake. Pharmacogn Mag 11(41):82–89

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Grzegorczyk-Karolak I, Wiktorek-Smagur A, Hnatuszko-Konka K (2018) An untapped resource in the spotlight of medicinal biotechnology: the genus Scutellaria. Curr Pharm Biotechnol 19(5):358–371

    Article  CAS  PubMed  Google Scholar 

  56. Grzegorczyk-Karolak I, Kuźma Ł, Wysokińska H (2015) The effect of cytokinins on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina. Plant Cell Tissue Organ Cult 122(3):699–708

    Article  CAS  Google Scholar 

  57. Szopa A, Kokotkiewicz A, Marzec-Wróblewska U, Bucinski A, Luczkiewicz M, Ekiert H (2016) Accumulation of dibenzocyclooctadiene lignans in agar cultures and in stationary and agitated liquid cultures of Schisandra chinensis (Turcz.) Baill. Appl Microbiol Biot 100(9):3965–3977

    Article  CAS  Google Scholar 

  58. Hancke JL, Burgos RA, Ahumada F (1999) Schisandra chinensis (Turcz.) Baill. Fitoterapia 70:451–471

    Article  CAS  Google Scholar 

  59. Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tissue Organ Cult 106(2):279–288

    Article  CAS  Google Scholar 

  60. Zobayed SMA, Afreen F, Goto E, Kozai T (2006) Plant-environment interactions: accumulation of hypericin in dark glands of Hypericum perforatum. Ann Bot 98(4):793–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Muszyńska B, Ekiert H, Kwiecień I, Maślanka A, Zodi R, Beerhues L (2014) Comparative analysis of therapeutically important indole compounds in in vitro cultures of Hypericum perforatum cultivars by HPLC and TLC analysis coupled with densitometric detection. Nat Prod Commun 9(10):1437–1440

    PubMed  Google Scholar 

  62. Sood H, Shitiz K, Sharma N (2015) Rapid method for in vitro multiplication of hypericin rich shoots of Hypericum perforatum. J Plant Sci 3(5):279–284

    Google Scholar 

  63. Charchoglyan A, Abrahamyan A, Fujii I, Boubakir Z, Gulder TAM, Kutchan TM, Vardapetyan H, Bringmann G, Ebizuka Y, Beerhues L (2007) Differential accumulation of hyperforin and secohyperforin in Hypericum perforatum tissue cultures. Phytochemistry 68:2670–2677

    Article  CAS  PubMed  Google Scholar 

  64. Erdelmeier CAJ, Klessing K, Renzi S, Hauer H (1999) New hyperforin analogues from Hypericum perforatum and a stable dicyclohexylammonium salt of hyperforin. In: Luijendijk T, de Graaf P, Remmelzwaal A, Verpoorte R (eds) 2000 years of natural products research-past, present and future (Book of abstracts). Division of Pharmacognosy, Leiden University, Leiden, p 432

    Google Scholar 

  65. Russowski D, Maurmann N, Rech SB, Fett-Neto AG (2006) Role of light and medium composition on growth and valepotriate contents in Valeriana glechomifolia whole plant liquid cultures. Plant Cell Tissue Organ Cult 86(2):211–218

    Article  CAS  Google Scholar 

  66. De Carvalho CMB, Maurmann N, Luz DI, Fett-Neto AG, Rech SB (2004) Control of development and valepotriate production by auxins in micropropagated Valeriana glechomifolia. Plant Cell Rep 23:251–255

    Article  CAS  Google Scholar 

  67. Silva AL, Rech SB, von Poser GL (2002) Quantitative determination of valepotriates from Valeriana native to South Brazil. Planta Med 68(06):570–572

    Article  CAS  PubMed  Google Scholar 

  68. Russowski D, Maurmann N, Rech SB, Fett-Neto AG (2013) Improved production of bioactive valepotriates in whole-plant liquid cultures of Valeriana glechomifolia. Ind Crop Prod 46:253–257

    Article  CAS  Google Scholar 

  69. Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 5:334–346

    CAS  PubMed  Google Scholar 

  70. Tripathi D, Rai KK, Rai SK, Rai SP (2018) An improved thin cell layer culture system for efficient clonal propagation and in vitro withanolide production in a medicinal plant Withania coagulans Dunal. Ind Crop Prod 119:172–182

    Article  CAS  Google Scholar 

  71. Teixeira da Silva JA, Dobránszki J (2015) Plant thin cell layers: update and perspectives. Folia Hort 27(2):183–190

    Article  Google Scholar 

  72. Sivanandhan G, Rajesh M, Arun M, Jeyaraj M, Dev GK, Arjunan A, Muthuselvam M, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Effect of culture conditions, cytokinins, methyl jasmonate and salicylic acid on the biomass accumulation and production of withanolides in multiple shoot culture of Withania somnifera (L.) Dunal using liquid culture. Acta Physiol Plant 35(3):715–728

    Article  CAS  Google Scholar 

  73. Ray S, Jha S (2001) Production of withaferin A in shoot cultures of Withania somnifera. Planta Med 67(05):432–436

    Article  CAS  PubMed  Google Scholar 

  74. Largia MJV, Pothiraj G, Shilpha J, Ramesh M (2015) Methyl jasmonate and salicylic acid synergism enhances bacoside A content in shoot cultures of Bacopa monnieri (L.). Plant Cell Tissue Organ Cult 122(1):9–20

    Article  CAS  Google Scholar 

  75. Singh HK, Dhawan BN (1997) Neuropsychopharmacological effects of the ayurvedic nootropic Bacopa monniera Linn. (Brahmi). Indian J Pharmcol 29:359–365

    Google Scholar 

  76. Mathur A, Verma SK, Purohit R, Singh SK, Mathur D, Prasad GBKS, Dua VK (2010) Pharmacological investigation of Bacopa monnieri on the basis of antioxidant, antimicrobial and anti-inflammatory properties. J Chem Pharm Res 6:191–198

    Google Scholar 

  77. Praveen N, Naik PM, Manohar SH, Nayeem A, Murthy HN (2009) In vitro regeneration of brahmi shoots using semisolid and liquid cultures and quantitative analysis of bacoside A. Acta Physiol Plant 31:723–728

    Article  CAS  Google Scholar 

  78. Prasad A, Mathur A, Singh M, Gupta MM, Uniyal GC, Lal RK, Mathur AK (2012) Growth and asiaticoside production in multiple shoot cultures of a medicinal herb, Centella asiatica (L.) urban, under the influence of nutrient manipulations. J Nat Med 66(2):383–387

    Article  CAS  PubMed  Google Scholar 

  79. Mathur A, Mathur AK, Yadav S, Verma P (2007) Centella asiatica (L.) Urban-status and scope for commercial cultivation. J Med Aromat Plant 129:151–162

    Google Scholar 

  80. Deore SL, Khadabadi SS (2008) Antiinflammatory and antioxidant activity of Chlorophytum borivilianum root extracts. Asian J Chem 20(2):983–986

    CAS  Google Scholar 

  81. Ashraf MF, Aziz MA, Stanslas J, Kadir MA (2013) Optimization of immersion frequency and medium substitution on microtuberization of Chlorophytum borivilianum in RITA system on production of saponins. Process Biochem 48(1):73–77

    Article  CAS  Google Scholar 

  82. Ekiert H, Czygan FC (2005) Accumulation of biologically active furanocoumarins in agitated cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams. Pharmazie 60(8):623–626

    CAS  PubMed  Google Scholar 

  83. Ekiert H, Chołoniewska M, Gomółka E (2001) Accumulation of furanocoumarins in Ruta graveolens L. shoot culture. Biotechnol Lett 23(7):543–545

    Article  CAS  Google Scholar 

  84. Ekiert H, Moroniewicz U (2003) Stationary liquid culture of Ruta graveolens L. shoots as a potential biotechnological source of coumarins. Polish-Austrian-German-Hungarian-Italian Joint Meeting on Medicinal Chemistry, Kraków, pp 222

    Google Scholar 

  85. Massot B, Milesi S, Gontier E, Bourgaud F, Guckert A (2000) Optimized culture conditions for the production of furanocoumarins by micropropagated shoots of Ruta graveolens. Plant Cell Tissue Organ Cult 62(1):11–19

    Article  CAS  Google Scholar 

  86. Pérez-Alonso N, Wilken D, Gerth A, Jähn A, Nitzsche HM, Kerns G, Capote-Perez A, Jiménez E (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tissue Organ Cult 99(2):151–156

    Article  CAS  Google Scholar 

  87. Stuart MC, Kouimtzi M, Hill S (2009) Cardiovascular medicines. In: Stuart MC, Kouimtzi M, Hill SR (eds) WHO model formulary 2008. World Health Organization, Geneva, p 270

    Google Scholar 

  88. Elbaz HA, Stueckle TA, Tse W, Rojanasakul Y, Dinu CZ (2012) Digitoxin and its analogs as novel cancer therapeutics. Exp Hematol Oncol 1:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schaller F, Kreis W (2006) Cardenolide genin pattern in Isoplexis plants and shoot cultures. Planta Med 72(12):1149–1156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Grzegorczyk-Karolak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grzegorczyk-Karolak, I., Grąbkowska, R., Piątczak, E. (2019). Plant Liquid Cultures as a Source of Bioactive Metabolites. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics