Skip to main content

In Vitro Systems of Selected Eryngium Species (E. planum, E. campestre, E. maritimum, and E. alpinum) for Studying Production of Desired Secondary Metabolites (Phenolic Acids, Flavonoids, Triterpenoid Saponins, and Essential Oil)

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 157 Accesses

Abstract

There are four Eryngium species native to Poland, namely, E. planum and E. campestre – rare taxa, E. maritimum and E. alpinum – endangered and protected taxa belonging to the subfamily Saniculoideae of Apiaceae family. The phytochemical investigations revealed the presence of various groups of bioactive compounds, that is, triterpenoid saponins, phenolic acids, flavonoids, coumarin derivatives, the essential oil, polyacetylenes, phytosterols, and ecdysteroids. Plant in vitro cultures of those rare and endangered species as well as biotechnological methods of application may provide biomass with the enhanced accumulation of desired secondary metabolites without collecting plants from natural sites. Protocols of micropropagation with genome size stability confirmation and different types of cultures – organ, callus, and cell suspension cultures – were developed with the intent to achieve constant, uniform, and renewable biomass with the higher accumulation of polyphenols and triterpenoid saponins. Both soil-grown plants and in vitro systems were analyzed for the presence and content of main secondary metabolites. It was shown that in vitro-derived plantlets also showed biological activities. The phytochemical and biological studies of Eryngium species show their potential as valuable medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ABTS:

2,2′-Azinobis-3-ethylbenzotiazo-line-6-sulfonic acid

AChE:

Acetylcholinesterase

BAP:

Benzylaminpurine

BuChE:

Butyrylcholinesterase

CA:

Caffeic acid

CGA:

Chlorogenic acid

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

DW:

Dry weight

EC50:

Half maximal effective concentration

ES1:

3-O-β-d-Glucopyranosyl-(1→2)-β-d-glucuronopyranosyl-21-O-acetyl,22-O-angeloyl-R1-barrigenol

ES2:

3-O-β-d-Glucopyranosyl-(1→2)-β-d-glucuronopyranosyl-22-O-angeloyl-R1-barrigenol

ES3:

3-O-β-d-Glucopyranosyl-(1→2)-β-d-glucuronopyranosyl-22-O-angeloyl-A1-barrigenol

GA3:

Gibberellic acid

GC:

Gas chromatography

GC-FID-MS:

Gas chromatography-flame ionization-mass spectrometer

GC-MS:

Gas chromatography-mass spectrometer

HPLC:

High performance liquid chromatography

HPLC-DAD:

High performance liquid chromatography – diode-array detector

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

IC50:

Half maximal inhibitory concentration

KIN:

Kinetin

LC-MS:

Liquid chromatography-mass spectrometer

MeJa:

Methyl jasmonate

MIC:

Minimal inhibitory concentration

MS:

Murashige and Skoog medium

NAA:

Naphthaleneacetic acid

NMR:

Nuclear magnetic resonance

RA:

Rosmarinic acid

TAC:

Total antioxidant capacity

TBA:

Thiobarbituric acid

UHPLC:

Ultra-high performance liquid chromatography

References

  1. Wang P, Su Z, Yuan W, Deng G, Li S (2012) Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharm Crops 3:99–120. https://doi.org/10.2174/2210290601203010099

    Article  CAS  Google Scholar 

  2. Erdem SA, Nabavi SF, Orhan IE, Daglia M, Izadi M, Nabavi SM (2015) Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. DARU J Pharm Sci 23(1):23–53. https://doi.org/10.1186/s40199-015-0136-3

    Article  CAS  Google Scholar 

  3. Wolff H (1913) Umbelliferae-Saniculoideae. In: Engler A (ed) Das Pflanzenreich, vol 4 (228). Engelmann, Leipzig

    Google Scholar 

  4. Wörz A (2005) A new subgeneric classification of the genus Eryngium L. (Apiaceae, Saniculoideae). Bot Jahrb Syst 126(2):253–259. https://doi.org/10.1127/0006-8152/2005/0126-0253

    Article  Google Scholar 

  5. Wörz A, Diekmann H (2010) Classification and evolution of the genus Eryngium L. (Apiaceae-Saniculoideae): results of fruit anatomical and petal morphological studies. Plant Divers Evol 128(3–4):387–408. https://doi.org/10.1127/1869-6zzzzj5/2010/0128-0018

    Article  Google Scholar 

  6. Calviňo CI, Martinez SG, Downie SR (2008) The evolutionary history of Eryngium (Apiaceae, Saniculoideae): rapid radiations, long distance dispersals, and hybridizations. Mol Phylogenet Evol 46:1129–1150. https://doi.org/10.1016/j.ymper.2007.10.021

    Article  PubMed  Google Scholar 

  7. Necajeva J, Ievinsh G (2013) Seed dormancy and germination of an endangered coastal plant Eryngium maritimum (Apiaceae). Est J Ecol 62(2):150–161. https://doi.org/10.3176/eco.2013.2

    Article  Google Scholar 

  8. Gaudeul M, Taberlet P, Till-Bottraud I (2000) Genetic diversity in an endangered alpine plant Eryngium alpinum L. (Apiaceae) inferred from amplified fragment length polymorphism markers. Mol Ecol 9:1625–1637. https://doi.org/10.1046/j.1365-294x.2000.01063.x

    Article  CAS  PubMed  Google Scholar 

  9. Gaudeul M, Till-Bottraud I (2004) Reproductive ecology of the endangered alpine species Eryngium alpinum L. (Apiaceae): phenology, gene dispersal and reproductive success. Ann Bot 93(6):711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gygax A, Bernhardt KG, Jogan N, Montagnani C, Gigot G (2013) Eryngium alpinum. In: The IUCN Red List of Threatened species. Version 2014.3

    Google Scholar 

  11. Rybczyński JJ, Mikuła A (2006) Engagement of biotechnology in the protection of threatened plant species in Poland. Biodivers Res Conserv 3–4:361–368

    Google Scholar 

  12. Ibrahim MA, Na MK, Oh J, Schinazi RF, McBrayer TR, Whitaker T, Doerksen RJ, Newman DJ, Zachos LG, Hamann MT (2013) Significance of endangered and threatened plant natural products in the control of human disease. Proc Natl Acad Sci USA 110(42): 16832–16837. https://doi.org/10.1073/pnas.1311528110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garal S (2014) Triterpenoid saponins. Nat Prod Chem Res 2(6):1–13. https://doi.org/10.4172/2329-6838.1000148

    Article  Google Scholar 

  14. Hiller K, Keipert M, Pfeifer S, Kraft R (1974) The leaf sapogenin spectrum in Eryngium planum L. 20. Contribution on the content of several Saniculoideae. Pharmazie 29(1):54–57

    CAS  PubMed  Google Scholar 

  15. Voigt G, Thiel P, Hiller K, Franke P, Habisch D (1985) Zur struktur des hauptsaponins der Wurzeln von Eryngium planum L. XL: Zur Kenntnis der inhaltsstoffe einger Saniculoideae. Pharmazie 40(9):656–659

    CAS  Google Scholar 

  16. Hiller K, von Mach B, Franke P (1976) Saponins of Eryngium maritimum L. 25. Contents of various Saniculoideae. Pharmazie 31(1):53

    CAS  PubMed  Google Scholar 

  17. Kikowska M (2014) In vitro cultures of Polish Eryngium L. species – micropropagation, organ cultures, phytochemical investigation and biological activity. Doctoral thesis, Faculty of Pharmacy, Poznan University of Medical Sciences

    Google Scholar 

  18. Kowalczyk M, Masullo M, Thiem B, Piacente S, Stochmal A, Oleszek W (2014) Three new triterpene saponins from roots of Eryngium planum. Nat Prod Res 28(9):653–660. https://doi.org/10.1080/14786419.2014.895722

    Article  CAS  PubMed  Google Scholar 

  19. Kikowska M, Kowalczyk M, Stochmal A, Thiem B (2019) Enhanced accumulation of triterpenoid saponins in in vitro plantlets and dedifferentiated cultures of Eryngium planum L.: a medicinal plant. Hortic Environ Biotechnol 60(1):147–154. https://doi.org/10.1007/s13580-018-0103-2

    Article  CAS  Google Scholar 

  20. Kartal M, Mitaine-Offer AC, Abu-Asaker M, Miyamoto T, Calis I, Wagner H, Lacaille-Dubois MA (2005) Two new triterpene saponins from Eryngium campestre. Chem Pharm Bull 53(10):1318–1320. https://doi.org/10.1248/cpb.53.1318

    Article  CAS  Google Scholar 

  21. Kartal M, Mitaine-Offer AC, Paululat T, Abu-Asaker M, Wagner H, Mirjolet JF, Guilbaud N, Lacaille-Dubois MA (2006) Triterpene saponins from Eryngium campestre. J Nat Prod 69(7):1105–1108. https://doi.org/10.1021/npD60101w

    Article  CAS  PubMed  Google Scholar 

  22. Ghasemzadeh A, Ghasemzadeh N (2011) Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plant Res 5(31):6697–6703. https://doi.org/10.5897/JMPR11.1404

    Article  CAS  Google Scholar 

  23. Le Claire E, Schwaiger S, Banaigs B, Stuppner H, Gafner F (2005) Distribution of a new rosmarinic acid derivative in Eryngium alpinum L. and other Apiaceae. J Agric Food Chem 53:4367–4372. https://doi.org/10.1021/jf050024v

    Article  CAS  PubMed  Google Scholar 

  24. Thiem B, Kikowska M, Krawczyk A, Więckowska B, Sliwińska E (2013) Phenolic acid and DNA contents of micropropagated Eryngium planum L. Plant Cell Tissue Organ Cult 114(2):197–206. https://doi.org/10.1007/s11240-013-0315-1

    Article  CAS  Google Scholar 

  25. Kikowska M, Thiem B, Sliwinska E, Rewers M, Kowalczyk M, Stochmal A, Oleszek W (2014) The effect of nutritional factors and plant growth regulators on micropropagation and production of phenolic acids and saponins from plantlets and adventitious root cultures of Eryngium maritimum L. J Plant Growth Regul 33(4):809–819. https://doi.org/10.1007/s00344-014-9428-y

    Article  CAS  Google Scholar 

  26. Kikowska M, Thiem B, Sliwinska E, Rewers M, Kowalczyk M, Stochmal A, Długaszewska J (2016) Micropropagation of Eryngium campestre L. via shoot culture provides valuable uniform plant material with enhanced content of phenolic acids and antimicrobial activity. Acta Biol Cracov Ser Bot 58(1):43–56. https://doi.org/10.1515/abcsb-2016-0009

    Article  CAS  Google Scholar 

  27. Kikowska M, Thiem B, Szopa A, Klimek-Szczykułowicz M, Rewers M, Sliwinska E, Ekiert H (2019) Comparative analysis of phenolic acids and flavonoids in shoot cultures of Eryngium alpinum L.– an endangered and protected species with medicinal value. Plant Cell Tissue Organ Cult 139(1):167–175. https://doi.org/10.1007/s11240-019-01674-8

    Article  CAS  Google Scholar 

  28. Conea S, Vlase L, Chirila I (2016) Comparative study on the polyphenols and pectin of three Eryngium species and their antimicrobial activity. Cellulose Chem Technol 50(3–4):473–481

    CAS  Google Scholar 

  29. Brodowska KM (2017) Natural flavonoids: classification, potential role, and application of flavonoid analogues. Eur J Biol Res 7(2):108–123

    CAS  Google Scholar 

  30. Hiller K, Otto A, Grundemann E (1980) Isolation of kaempferol-3-O-(6-O-β-d-glucopyranosyl)-β-d-galactopyranoside, a new flavonol glycoside from Eryngium planum L. 34. On the knowledge of the constituents of some Saniculoideae. Pharmazie 35(2):113–114

    CAS  Google Scholar 

  31. Leokadia SP (1983) Kaempferol 3,7-dirhamnoside from Eryngium planum L. Z Chemie 23(8):294–295

    Google Scholar 

  32. Kartnig T, Wolf J (1993) Flavonoids from the aboveground parts of Eryngium campestre. Planta Med 59(3):285. https://doi.org/10.1055/s-2006-959676

    Article  CAS  PubMed  Google Scholar 

  33. Hohmann J, Pall Z, Günter G, Máthé I (1997) Flavonolacyl glycosides of the aerial parts of Eryngium campestre. Planta Med 63(1):96. https://doi.org/10.1055/s-2006-957620

    Article  CAS  PubMed  Google Scholar 

  34. Hawas UW, Abou El-Kassem LT, Awad HM, Taie HAA (2013) Anti-Alzheimer, antioxidant activities and flavonol glycosides of Eryngium campestre L. Curr Chem Biol 7(2):188–195. https://doi.org/10.2174/2212796811307020010

    Article  CAS  Google Scholar 

  35. Hiller K, Pohl B, Franke P (1981) Flavonoid spectrum of Eryngium maritimum L. Part 35. Components of Saniculoideae. Pharmazie 36(6):451–452

    CAS  Google Scholar 

  36. Bakkali F, Averback S, Averback D, Idaomar M (2008) Biological effects of essential oils – a review. Food Chem Toxicol 46:446–475. https://doi.org/10.1016/j.fct.2007.09.106

    Article  CAS  PubMed  Google Scholar 

  37. Thiem B, Kikowska M, Kurowska A, Kalemba D (2011) Essential oil composition of the different parts and in vitro shoot cultures of Eryngium planum L. Molecules 16(8):7115–7124. https://doi.org/10.3390/molecules16087115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ayoub N, Kubeczka KH (2001) Composition of essential oils from Eryngium amethystinum, E. alpinum and E. planum (Apiaceae). In: 32nd international symposium on essential oils, September 9–12, Wrocław (ISEO) 2001, p 95

    Google Scholar 

  39. Korbel E, Bighelli A, Kurowska A, Kalemba D, Casanova J (2008) New cis-chryzanthenyl esters from Eryngium planum L. Nat Prod Commun 3(2):113–116. https://doi.org/10.1177/1934578X08000300201

    Article  CAS  Google Scholar 

  40. Kubeczka KH, Ayoub N, Nawwar M, Saleh M (1999) The essential oil and polyacetylenes from Eryngium campestre L. (Apiaceae). In: 30th international symposium on essential oils (30th ISEO) 05–08.IX. 1999, Leipzig–Miltitz, p 105

    Google Scholar 

  41. Palá-Paúl J, Usano-Alemany J, Soria AC, Pérez-Alonso MJ, Brophy JJ (2008) Essential oil composition of Eryngium campestre L. growing in different soil types. A preliminary study. Nat Prod Commun 3(7):1121–1126. https://doi.org/10.1177/1934578X0800300716

    Article  Google Scholar 

  42. Brophy JJ, Goldsack RJ, Copeland LM, Pala-Paul J (2003) Essential oil of Eryngium L. species from New South Wales (Australia). J Essent Oil Res 15:392–397

    Article  CAS  Google Scholar 

  43. Darriet F, Bendahou M, Desjobert J-M, Costa J, Muselli A (2012) Bicyclo[4.4.0]decane oxygenated sesquiterpenes from Eryngium maritimum essential oil. Planta Med 78(4): 386–389. https://doi.org/10.1055/4-0031-1298157

    Article  CAS  PubMed  Google Scholar 

  44. Lajnef HB, Ferioli F, Pasini F, Politowicz J, Khaldi A, D’Antuono F, Caboni MF, Nasri N (2017) Chemical composition and antioxidant activity of the volatile fraction extracted from air-dried fruits of Tunisian Eryngium maritimum L. ecotypes. J Sci Food Agric 98(2):635–643. https://doi.org/10.1002/jsfa.8508

    Article  CAS  PubMed  Google Scholar 

  45. Dunkic V, Vuko E, Bezic N, Kremer D, Ruscic M (2013) Composition and antiviral activity of the essential oils of Eryngium alpinum and E. amethystinum. Chem Biodivers 10:1894–1902. https://doi.org/10.1002/cbdv.201300061

    Article  CAS  PubMed  Google Scholar 

  46. Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int 2013:ID 963248

    Article  CAS  Google Scholar 

  47. Suleimenov EM, Machmudah S, Sasaki M, Goto M (2010) Composition of the CO2 extract of Eryngium planum. Chem Nat Compd 46:826. https://doi.org/10.1007/s10600-010-9759-2

    Article  CAS  Google Scholar 

  48. Kamiński B, Głowniak K, Majewska A, Petkowicz J, Szaniawska-Dekundy D (1978) Poszukiwanie związków kumarynowych w nasionach i owocach. I. Owoce rodziny baldaszkowatych (Umbelliferae-Apiaceae). Farm Pol 34:25–28

    Google Scholar 

  49. Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693. https://doi.org/10.1016/j.jpba.2006.01.057

    Article  CAS  PubMed  Google Scholar 

  50. Erdelmeier CAJ, Sticher O (1986) A cyclohexanone and a cyclohexadienone glycoside from Eryngium campestre. Phytochemistry 25(3):741–743. https://doi.org/10.1016/0031-9422(86)88036-0

    Article  CAS  Google Scholar 

  51. Hegnauer R (1973) Chemotaxonomie der Pflanzen. Band 6. Birkhäuser Verlag, Berlin, pp 563–627

    Book  Google Scholar 

  52. Hegnauer R (1990) Chemotaxonomie der Pflanzen. Band 9. Birkhäuser Verlag, Berlin, pp 678–679

    Book  Google Scholar 

  53. Santas J, Codony R, Rafecas M (2013) Phytosterols: beneficial effects. In: Ramawat K, Mérillon JM (eds) Natural products. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_149

    Chapter  Google Scholar 

  54. Madej A, Aligiannis N, Głowniak K, Skaltsounis AL (2006) Chemical composition of Eryngium planum L. (Apiaceae). In: 5th international symposium on chromatography of natural products (ISCNP), June 19–22, Lublin, p 151

    Google Scholar 

  55. Dinan L, Lafont R (2006) Effects and applications of arthropod steroid hormones (ecdysteroids) in mammals. J Endocrinol 191:1–8. https://doi.org/10.1677/joe.1.06900

    Article  CAS  PubMed  Google Scholar 

  56. Dinan L, Savchenko T, Whiting P (2001) On the distribution of phytoecdysteroids in plants. Cell Mol Life Sci 58(8):1121–1132. https://doi.org/10.1007/PL00000926

    Article  CAS  PubMed  Google Scholar 

  57. Adrian-Romero M, Wilson SJ, Blunden G, Yang M-H, Carabot-Cuervo A, Bashir AK (1998) Betaines in coastal plants. Biochem Syst Ecol 26:535–543

    Article  CAS  Google Scholar 

  58. Nebija F, Stefkov G, Karapandzova M, Stafilov T, Kadifkova Panovska T, Kulevanova S (2009) Chemical characterization and antioxidant activity of Eryngium campestre L., Apiaceae from Kosovo. Maced Pharm Bull 55(1, 2):22–32. https://doi.org/10.33320/maced.pharm.bull.2009.55.002

    Article  Google Scholar 

  59. Gruenwald J, Brendler T, Jaenicke C (2000) PDR for herbal medicines, 2nd edn. Medical Economics Company, Montvale, pp 729–733

    Google Scholar 

  60. Kupeli E, Kartal M, Aslan S, Yesilada E (2006) Comparative evaluation of the anti-inflammatory and antinociceptive activity of Turkish Eryngium species. J Ethnopharmacol 107(1):32–37

    Article  PubMed  Google Scholar 

  61. Lev E (2002) Reconstructed materia medica of the Medieval and Ottoman al-Sham. J Ethnopharmacol 80:167–179

    Article  PubMed  Google Scholar 

  62. Duke JA, Boegenschutz-Godwin MJ, du Cellier J, Duke PA (2002) Handbook of medicinal herbs. CRC Press, Boca Raton, pp 277–278

    Book  Google Scholar 

  63. Baytop T (1999) Therapy with medicinal plants in Turkey (Past and present), 2nd edn. Nobel Tip Basimevi, Istanbul

    Google Scholar 

  64. Kholkhal W, Ilias F, Bekhechi C, Bekkara FA (2012) Eryngium maritimum: a rich medicinal plant of polyphenols and flavonoids compounds with antioxidant, antibacterial and antifungal activities. Curr Res J Biol Sci 4(4):437–443

    CAS  Google Scholar 

  65. Matkowski A (2008) Plant in vitro culture for the production of the antioxidants – a review. Biotechnol Adv 26(6):548–560. https://doi.org/10.1016/j.biotechadv.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  66. Bajaj YPS, Furmanowa M, Olszowska O (1988) Biotechnology of the micropropagation of medicinal and aromatic plants. In: Bajaj YPS (ed) Medicinal and aromatic plants I. Biotechnology in agriculture and forestry, vol 4. Springer, Berlin/Heidelberg/New York, pp 60–103

    Google Scholar 

  67. Pence VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol Plant 47:176–187. https://doi.org/10.1007/s11627-010-9323-6

    Article  Google Scholar 

  68. Sliwinska E, Thiem B (2007) Genome size stability in six medicinal plant species propagated in vitro. Biol Plant 51(3):556–558. https://doi.org/10.1007/s10535/007-0121-x

    Article  Google Scholar 

  69. Kikowska M, Kędziora I, Krawczyk A, Thiem B (2015) Methyl jasmonate, yeast extract and sucrose stimulate phenolic acid accumulation in Eryngium planum L. shoot cultures. Acta Biochim Pol 62(2):197–200. https://doi.org/10.18388/abp.2014_880

    Article  CAS  PubMed  Google Scholar 

  70. Kikowska M, Budzianowski J, Krawczyk A, Thiem B (2012) Accumulation of rosmarinic, chlorogenic and caffeic acid in in vitro of Eryngium planum L. Acta Physiol Plant 34(6): 2425–2433. https://doi.org/10.1007/s11738-012-1011-1

    Article  CAS  Google Scholar 

  71. Gonçavles S, Romano A (2018) Production of plant secondary metabolites by using biotechnological tools. In: Vijayakumar R, Raja SSS (eds) Secondary metabolites – sources and applications. IntechOpen https://doi.org/10.5772/intechopen.76414

    Google Scholar 

  72. Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228. https://doi.org/10.1007/10_2008_103

    Article  CAS  PubMed  Google Scholar 

  73. Espinosa-Leal C, Puente-Garza CA, Garcia-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248(1):1–18. https://doi.org/10.1007/s00425-018-2910-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wojtanowski KK, Skalicka-Woźniak K, Głowniak K, Mroczek T (2013) Screening of the antioxidant potentials of polar extracts from fruits of Eryngium planum and Eryngium amethystinum using the β-carotene-linoleic assay. Curr Issues Pharm Med Sci 26(3):276–278. https://doi.org/10.12923/j.2084-980x/26.3/a.07

    Article  Google Scholar 

  75. Meot-Duros L, Le Floch G, Magne C (2008) Radical scavenging, antioxidant and antimicrobial activities of halophytic species. J Ethnopharmacol 116(2):258–262. https://doi.org/10.1016/j.jep.2007.11.024

    Article  PubMed  Google Scholar 

  76. Thiem B, Goślińska O, Kikowska M, Budzianowski J (2010) Antimicrobial activity of three Eryngium L. species (Apiaceae). Herba Pol 56(4):52–59

    CAS  Google Scholar 

  77. Kikowska M, Długaszewska J, Kubicka MM, Kędziora I, Budzianowski J, Thiem B (2016) In vitro antimicrobial activity of extracts and their fractions from three Eryngium L. species. Herba Pol 62(2):67–77. https://doi.org/10.1515/hepo-2016-0012

    Article  Google Scholar 

  78. Moghaddam NS, Eryilmaz M, Altanlar N, Yildirim O (2019) Antimicrobial screening of some selected Turkish medicinal plants. Pak J Pharm Sci 32(3):947–951

    PubMed  Google Scholar 

  79. Derda M, Thiem B, Budzianowski J, Hadaś E, Wojt WJ, Wojtkowiak-Giera A (2013) The evaluation of amoebicidal activity of Eryngium planum extracts. Acta Pol Pharm Drug Res 70(6):1027–1034

    Google Scholar 

  80. Bogucka-Kocka A, Smolarz HD, Kocki J (2008) Apoptotic activities of ethanol extracts from some Apiaceae on human leukaemia cell lines. Fitoterapia 79:487–497. https://doi.org/10.1016/j.fitote.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  81. Ożarowski M, Thiem B, Mikołajczak PL, Piasecka A, Kachlicki P, Szulc M, Kaminska E, Bogacz A, Kujawski R, Bartkowiak-Wieczorek J, Kujawska M, Jodynis-Libert J, Budzianowski J, Kędziora I, Seremak-Mrozikiewicz A, Czerny B, Bobkiewicz-Kozłowska T (2015) Improvement in long-term memory following chronic administration of Eryngium planum root extract in scopolamine model: behavioral and molecular study. Evid Based Complement Alternat Med 2015:ID 145140, 1–13. https://doi.org/10.1155/2015/145140

    Article  Google Scholar 

  82. Conea S, Parvu AE, Taulescu MA, Vlase L (2015) Effects of Eryngium planum and Eryngium campestre extracts on ligature-induced rat periodontitis. Dig J Nanomater Biostruct 10(2): 693–704

    Google Scholar 

  83. Lisciani R, Fattorusso E, Surano V, Cozzolino S, Giannattasio M, Sorrentino L (1984) Anti-inflammatory activity of Eryngium maritimum L. rhizome extracts in intact rats. J Ethnopharmacol 12(3):263–270

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Thiem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kikowska, M., Thiem, B. (2020). In Vitro Systems of Selected Eryngium Species (E. planum, E. campestre, E. maritimum, and E. alpinum) for Studying Production of Desired Secondary Metabolites (Phenolic Acids, Flavonoids, Triterpenoid Saponins, and Essential Oil). In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_29-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_29-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    ) for Studying Production of Desired Secondary Metabolites (Phenolic Acids, Flavonoids, Triterpenoid Saponins, and Essential Oil)
    Published:
    17 January 2020

    DOI: https://doi.org/10.1007/978-3-030-11253-0_29-2

  2. Original

    ) for Studying Production of Desired Secondary Metabolites (Phenolic Acids, Flavonoids, Triterpenoid Saponins, and Essential Oil)
    Published:
    11 December 2019

    DOI: https://doi.org/10.1007/978-3-030-11253-0_29-1