Skip to main content

Neuroprotective Xanthones and Their Biosynthesis in Shoot Cultures of Hoppea fastigiata (Griseb.) C.B. Clarke

  • Living reference work entry
  • First Online:
Book cover Plant Cell and Tissue Differentiation and Secondary Metabolites

Abstract

Hoppea fastigiata (Griseb.) C.B. Clarke, an annual medicinal herb belonging to Gentianaceae, is mostly found in South-Asian countries. The genus possesses a unique class of compounds called xanthones, which are known for their potential against Alzheimer’s and Parkinson’s diseases. Three major xanthones were isolated and structurally confirmed as 1,5,7-trihydroxy-3-methoxyxanthone, 1,5-dihydroxy-3,7-dimethoxyxanthone, and 1,3,5-trihydroxy-8-methoxyxanthone from the in vitro shoot cultures which showed potential inhibitions against acetylcholinesterase, monoamine oxidase A, and monoamine oxidase B enzymes. Upon treatment with different elicitors, yeast extract (YE) was found to be most effective which led to a 20-fold increase of 1,3,5-trihydroxy-8-methoxy xanthone. YE treatment caused a rapid burst of reactive oxygen species (ROS) and the subsequent increase in xanthone contents. Phenylalanine ammonia lyase activity remained suppressed and 4-coumarate: CoA ligase activity remained unaffected after elicitation. However, shikimate dehydrogenase and shikimate kinase activities increased after elicitation. This suggested phenylalanine-independent biosynthesis of xanthones. Subsequent treatment of shoots cultures with different inhibitors of superoxide radicals (O2−), hydrogen peroxide (H2O2) generation, and calcium channel was found to suppress accumulation of xanthones. Thus, calcium mediated generation of H2O2 followed by the activation of shikimate pathway enzymes is the key early step of xanthone biosynthesis in H. fastigiata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

4CL:

4-Coumarate CoA ligase

AChE:

Acetylcholinesterase enzyme

AD:

Alzheimer’s disease

BA:

6-benzylaminopurine

BPS:

Benzophenone synthase

Ca2+:

Calcium ion

DHLA:

Dihydrolipoic acid

DIECA:

Diethyldithiocarbamic acid

DPI:

Diphenylene iodide

EGTA:

Ethylene glycol-bis-(β-aminoethyl)

FDA:

Food and Drug Administration

FW:

Fresh weight

H2O2:

Hydrogen peroxide

HPLC:

High pressure liquid chromatography

La:

Lanthanum chloride

MAO:

Monoamine oxidase enzyme

O2−:

Superoxide radical

PAL:

Phenylalanine ammonia-lyase

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SK:

Shikimate kinase

SKDH:

Shikimate dehydrogenase

SOD:

Superoxide dismutase

YE:

Yeast extract

References

  1. GBD 2016 Neurology Collaborators (2019) Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:459–480

    Google Scholar 

  2. Houghton PJ, Howes MJ (2005) Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals 14:6–22

    CAS  PubMed  Google Scholar 

  3. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Heinrich N, Teoh HL (2004) Galanthamine of snowdrop-the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol 92:147–162

    CAS  PubMed  Google Scholar 

  5. Serrano-Duen˜as M, Cardozo-Pelaez F, Sanchez-Ramos JR (2001) Effect of Banisteriopsis caapi extract on Parkinson’s disease. Sci Rev Altern Med 5:127–132

    Google Scholar 

  6. Schulz V (2003) Ginkgo extract or cholinesterase inhibitors in patients with dementia: what clinical trials and guidelines fail to consider. Phytomedicine 10:74–79

    CAS  PubMed  Google Scholar 

  7. Urbain A, Marston A, Queiroz EF, Ndjoko K, Hostettmann K (2004) Xanthones fromGentiana campestris as new acetylcholinesterase inhibitors. Planta Med 70:1011–1014

    CAS  PubMed  Google Scholar 

  8. Bennett GJ, Lee HH (1989) Xanthones from Guttiferae. Phytochemistry 28:967–998

    CAS  Google Scholar 

  9. Struwe L, Albert VA (eds) (2002) Gentianaceae: systematics and natural history. Cambridge University Press, Cambridge, UK

    Google Scholar 

  10. Ambasta SP (1999) The useful plants of India. National Institute of Science Communication, New Delhi

    Google Scholar 

  11. Wungsintaweekul J, Choo-malee J, Charoonratana T, Keawpradub N (2012) Methyl jasmonate and yeast extract stimulate mitragynine production in Mitragyna speciosa (Roxb.) Korth.shoot culture. Biotechnol Lett 34:1945–1950

    PubMed  Google Scholar 

  12. Cardona ML, Fernandez MI, Pedro JR, Serrano A (1990) Xanthones from Hypericum reflexum. Phytochemistry 29:3003–3006

    Google Scholar 

  13. Beerhues L, Berger U (1995) Differential accumulation of xanthones in methyl-jasmonate and yeast-extract treated cell cultures of Centaurium erythraea and Centaurium littorale. Planta 197:608–612

    CAS  Google Scholar 

  14. Negi JS, Bisht VK, Singh P, Rawat MSM, Joshi GP (2013) Naturally occurring xanthones: chemistry and biology. J Appl Chem 2013:621459

    Google Scholar 

  15. Oldenburg TBP, Wilkes H, Horsfield B, Van Duin ACT, Stoddart D, Wilhelms A (2002) Xanthones-novel aromatic oxygen-containing compounds in crude oils. Org Geochem 33:595–609

    CAS  Google Scholar 

  16. Chen Y, Wang GK, Wu C, Qin MJ (2013) Chemical constituents of Gentiana rhodantha. Zhongguo Zhong Yao Za Zhi 38:362–365

    CAS  PubMed  Google Scholar 

  17. Xue QC, Li CJ, Zuo L, Yang JZ, Zhang DM (2009) Three new xanthones from the roots of Polygala japonica houtt. J Asian Nat Prod Res 11:465–469

    CAS  PubMed  Google Scholar 

  18. Krstic D, Jankovic T, Savikin-Fodulovic K, Menkovic N, Grubisic A (2003) Secoiridoids and xanthones in the shoots and roots of Centaurium pulchellum cultures in-vitro. In Vitro Cell Dev Biol 39:203–207

    CAS  Google Scholar 

  19. Iseda S (1957) Isolation of 1,3,6,7-tetrahydroxyxanthone and the skeletal structure of Mangiferin. Bull Chem Soc Jpn 30:625–629

    CAS  Google Scholar 

  20. Aritomi M, Kawasaki T (1970) A new xanthone c-glucoside, position isomer of mangiferin, from Anemarrhena asphodeloides Bunge. Chem Pharm Bull 18:2327–2333

    CAS  Google Scholar 

  21. Plouvier V, Massicot J, Rivaille P (1967) On gentiacauleine, a new tetra-substituted xanthone, aglycone of gentiacauloside of Gentiana acaulis L. C R Acad Sci Hebd Seances, Acad Sci 264:1219–1222

    CAS  Google Scholar 

  22. Suksamrarn S, Komutiban O, Ratananukul P, Chimnoi N, Lartpornmatulee N, Suksamrarn A (2006) Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem Pharm Bull 54:301–305

    CAS  PubMed  Google Scholar 

  23. Castelão JF Jr, Gottlieb OR, De Lima RA, Mesquita HE, Gottlieb HE, Wenkert E (1977) Xantholignoids from Kielmeyera and Caraipa species-13C NMR spectroscopy of xanthones. Phytochemistry 16:735–740

    Google Scholar 

  24. Nielsen H, Arends P (1978) Structure of the xantholignoid kielcorin. Phytochemistry 17:2040–2041

    CAS  Google Scholar 

  25. Ishiguro K, Nagata S, Oku H, Masae Y (2002) Bisxanthones from Hypericum japonicum: inhibitors of PAF-induced hypotension. Planta Med 68:258–261

    CAS  PubMed  Google Scholar 

  26. Nkengfack AE, Mkounga P, Meyer M, Fomum ZT, Bodo B (2002) Globulixanthones C, D and E: three prenylated xanthones with antimicrobial properties from the root bark of Symphonia globulifera. Phytochemistry 61:181–187

    CAS  PubMed  Google Scholar 

  27. Kumagai K, Hosotani N, Kikuchi K, Kimura T, Saji I (2003) Xanthofulvin, a novel semaphoring inhibitor produced by a strain of Penicillium. J Antibiot 56:610–616

    CAS  PubMed  Google Scholar 

  28. Don MJ, Huang YJ, Huang RL, Lin YL (2004) New phenolic principles from Hypericum sampsonii. Chem Pharm Bull 52:866–869

    CAS  PubMed  Google Scholar 

  29. Guo A, Li J, Fu H, Lin W (2003) Xanthone derivatives from medicinal plant Swertia mileensis. Zhongcaoyao 34:107–109

    CAS  Google Scholar 

  30. Inuma M, Tosa H, Tanaka T, Asai F, Kobayashi Y, Shimano R, Miyauchi K (1996) Antibacterial activity of xanthones from guttiferaeous plants against methicillin resistant Staphylococcus aureus. J Pharm Pharmacol 48:861–865

    Google Scholar 

  31. Dall’Acquaa S, Violaa G, Mariella C, Innocentia G (2004) Xanthones from Polygala alpestris (Rchb.). Z Naturforsch 59c:335–338

    Google Scholar 

  32. Nickel P (1994) Chemotherapie und Prophylaxe der Malaria: neuere Entwicklungen. Pharamzeutische Zeitung 49:4307–4313

    Google Scholar 

  33. Ray S, Majumder HK, Chakravarty AK, Mukhopadhyay S, Gil RR, Cordell GA (1996) Amarogentin, a naturally occurring secoiridoid glycoside and a newly recognized inhibitor of topoisomerase I from Leishmania donouani. J Nat Prod 59:27–29

    CAS  PubMed  Google Scholar 

  34. Niiho Y, Yamazaki T, Yamamota T, Ando H, Hirai Y (2006) Gastroprotective effects of bitter principles isolated from gentian root and Swertia herb on experimentally-induced gastric lesions in rats. J Nat Med 60:82–88

    CAS  Google Scholar 

  35. Oztürk N, Korkmaz S, Oztürk Y, Baser KH (2006) Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultures chicken embryonic fibroblasts. Planta Med 72:289–294

    PubMed  Google Scholar 

  36. Ariňo A, Arberas I, Leiton MJ, de Renobales M, Dominguez JB (1997) The extraction of yellow gentian root (Gentiana lutea L.). Z Lebensm Unters Forsch A 205:295–299

    Google Scholar 

  37. Ya BQ, Nian LC, Li C, Gen XP (1999) Protective effect of swerchirin on hematopoiesis in 60 co-irradiated mice. Phytomedicine 6:85–88

    CAS  PubMed  Google Scholar 

  38. Tosa H, Iinuma M, Tanaka T, Nozaki H, Ikeda S, Tsutsui K, Yamada M, Fujimori S (1997) Inhibitory activity of xanthone derivatives isolated from some guttiferaeous plants against DNA topoisomerases I and II. Chem Pharm Bull 42:418–420

    Google Scholar 

  39. Urbain A, Marston A, Queiroz EF, Ndjoko K, Hostettmann K (2004) Xanthones from Gentiana campestris as new acetylcholinesterase inhibitors. Planta Med 70:1011–1014

    CAS  PubMed  Google Scholar 

  40. Urbain A, Marston A, Sintra GL, Bravo J, Purev O, Purevsuren B, Batsuren D, Reist M, Carrupt PA, Hostettmann K (2008) Xanthones from Gentiana amarella ssp. acuta with acetylcholinesterase and monoamine oxidase inhibitory activities. J Nat Prod 71:895–897

    CAS  PubMed  Google Scholar 

  41. Moon UR, Sen SK, Mitra A (2014) Antioxidant capacities and acetylcholinesterase-inhibitory activity of Hoppea fastigiata. Int J Geogr Inf Syst 20:115–123

    Google Scholar 

  42. Schaufelberger D, Hostettmann K (1988) Chemistry and pharmacology of Gentiana lactea. Planta Med 54:219–221

    CAS  PubMed  Google Scholar 

  43. Rocha L, Marston A, Kaplan MAC, Stoeckli-Evans H, Thull U, Testa B, Hostettmann K (1994) An antifungal 7-pyrone and xanthones with monoamine oxidase inhibitory activity from Hypericum brasiliense. Phytochemistry 36:1381–1385

    CAS  PubMed  Google Scholar 

  44. Moon UR, Sircar D, Barthwal R, Sen SK, Beuerle T, Beerhues L, Mitra A (2015) Shoot cultures of Hoppea fastigiata (Griseb.) C.B. Clarke as a potential source of neuroprotective xanthones. J Nat Med 69:375–386

    CAS  PubMed  Google Scholar 

  45. Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian medicinal plants. CSIR Publication, New Delhi, p 161

    Google Scholar 

  46. Mukherjee KS, Chakraborty CK, Chatterjee TP, Bhattacharjee D, Laha S (1991) 1,5,7-Trihydroxy-3-methoxyxanthone from Hoppea fastigiata. Phytochemistry 30:1036–1037

    CAS  Google Scholar 

  47. Mukherjee KS, Manna TK, Laha S, Chakraborty CK (1994) A new xanthone from Hoppea fastigiata. Pharm Biol 32:201–203

    CAS  Google Scholar 

  48. Mukherjee KS, Laha S, Manna TK, Roy SC (1995) Further work on Limnophilla rugosa and Hoppea fastigiata (Gentianaceae). J Indian Chem Soc 72:63–64

    CAS  Google Scholar 

  49. Brahmachari G, Gorai D, Mondal S, Gangopadhay A, Chatterjee D (2003) A new naturally occurring xanthone bearing rare oxygenation pattern from Hoppea fastigiata. J Chem Res 6:362–363

    Google Scholar 

  50. Eugster PJ, Guillarme D, Rudaz S, Veuthey JL, Carrupt PA, Wolfender JL (2011) Ultra high pressure liquid chromatography for crude plant extract profiling. J AOAC Int 94:51–70

    CAS  PubMed  Google Scholar 

  51. Moon UR, Durge AA, Kumar M (2020) Value addition of khus (Vetiveria zizanioides L. Nash) by elicitor and heat treatment. Ind Crop Prod 144:112037

    Google Scholar 

  52. Wang CZ, Maier UH, Keil M, Zenk MH, Bacher A, Rohdich F, Eisenreich W (2003) Phenylalanine-independent biosynthesis of 1,3,5,8-tetrahydroxyxanthone, a retro biosynthetic NMR study with root cultures of Swertia chirata. Eur J Biochem 270:2950–2958

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adinpunya Mitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Moon, U.R., Dey, P.K., Mitra, A. (2020). Neuroprotective Xanthones and Their Biosynthesis in Shoot Cultures of Hoppea fastigiata (Griseb.) C.B. Clarke. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics